Artificial Intelligence in PET Imaging for Alzheimer’s Disease: A Narrative Review
Abstract
1. Introduction
2. Methodology
3. Artificial Intelligence, PET Imaging, and Alzheimer’s Disease
3.1. Artificial Intelligence, 18F-FDG PET and Alzheimer’s Disease
3.2. Artificial Intelligence, Amyloid PET, and Alzheimer’s Disease
3.3. Artificial Intelligence, Tau PET, and Alzheimer’s Disease
4. Artificial Intelligence, Multimodal Data Integration, and Alzheimer’s Disease
5. Current Context, Future Directions, and Outstanding Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AD | Alzheimer’s Disease |
PET | Positron Emission Tomography |
MCI | Mild Cognitive Impairment |
SCD | Subjective Cognitive Decline |
CSF | CerebroSpinal Fluid |
ML | Machine Learning |
DL | Deep Learning |
SVM | Support Vector Machine |
RF | Random Forest |
CNNs | Convolutional Neural Networks |
RNNs | Recurrent Neural Networks |
GAAIN | Global Alzheimer’s Association Interactive Network |
ADNI | Alzheimer’s Disease Neuroimaging Initiative |
AIBL | Australian Imaging, Biomarkers and Lifestyle |
XAI | Explainable AI |
References
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia Prevention, Intervention, and Care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef]
- Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; et al. Global, Regional, and National Burden of Alzheimer’s Disease and Other Dementias, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef]
- Jack, C.R.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised Criteria for Diagnosis and Staging of Alzheimer’s Disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef]
- Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef]
- Lin, Y.; Shan, P.-Y.; Jiang, W.-J.; Sheng, C.; Ma, L. Subjective Cognitive Decline: Preclinical Manifestation of Alzheimer’s Disease. Neurol. Sci. 2019, 40, 41–49. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Earnest, T.; Yang, B.; Kothapalli, D.; Sotiras, A. Alzheimer’s Disease Neuroimaging Initiative Comprehensive Evaluation of AT(N) Imaging Biomarkers for Predicting Cognition. medRxiv 2024, 2024.11.25.24317943. [Google Scholar] [CrossRef]
- Burke, B.T.; Latimer, C.; Keene, C.D.; Sonnen, J.A.; McCormick, W.; Bowen, J.D.; McCurry, S.M.; Larson, E.B.; Crane, P.K. Theoretical Impact of the AT(N) Framework on Dementia Using a Community Autopsy Sample. Alzheimer’s Dement. 2021, 17, 1879–1891. [Google Scholar] [CrossRef]
- Hustinx, R.; Pruim, J.; Lassmann, M.; Visvikis, D. An EANM Position Paper on the Application of Artificial Intelligence in Nuclear Medicine. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 61–66. [Google Scholar] [CrossRef]
- Silva-Spínola, A.; Baldeiras, I.; Arrais, J.P.; Santana, I. The Road to Personalized Medicine in Alzheimer’s Disease: The Use of Artificial Intelligence. Biomedicines 2022, 10, 315. [Google Scholar] [CrossRef]
- Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using Machine Learning Approaches for Multi-Omics Data Analysis: A Review. Biotechnol. Adv. 2021, 49, 107739. [Google Scholar] [CrossRef]
- Al-Shoukry, S.; Rassem, T.H.; Makbol, N.M. Alzheimer’s Diseases Detection by Using Deep Learning Algorithms: A Mini-Review. IEEE Access 2020, 8, 77131–77141. [Google Scholar] [CrossRef]
- Jo, T.; Nho, K.; Saykin, A.J. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Front. Aging Neurosci. 2019, 11, 220. [Google Scholar] [CrossRef]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [CrossRef]
- Rudroff, T.; Rainio, O.; Klén, R. AI for the Prediction of Early Stages of Alzheimer’s Disease from Neuroimaging Biomarkers—A Narrative Review of a Growing Field. Neurol. Sci. 2024, 45, 5117–5127. [Google Scholar] [CrossRef]
- Boyle, A.J.; Gaudet, V.C.; Black, S.E.; Vasdev, N.; Rosa-Neto, P.; Zukotynski, K.A. Artificial Intelligence for Molecular Neuroimaging. Ann. Transl. Med. 2021, 9, 822. [Google Scholar] [CrossRef]
- Mirkin, S.; Albensi, B.C. Should Artificial Intelligence Be Used in Conjunction with Neuroimaging in the Diagnosis of Alzheimer’s Disease? Front. Aging Neurosci. 2023, 15, 1094233. [Google Scholar] [CrossRef]
- Kaur, A.; Mittal, M.; Bhatti, J.S.; Thareja, S.; Singh, S. A Systematic Literature Review on the Significance of Deep Learning and Machine Learning in Predicting Alzheimer’s Disease. Artif. Intell. Med. 2024, 154, 102928. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Zhou, L.; Yuan, H.; Shen, D. Alzheimer’s Disease Neuroimaging Initiative Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. Neuroimage 2011, 55, 856–867. [Google Scholar] [CrossRef]
- Lebedev, A.V.; Westman, E.; Van Westen, G.J.P.; Kramberger, M.G.; Lundervold, A.; Aarsland, D.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; et al. Random Forest Ensembles for Detection and Prediction of Alzheimer’s Disease with a Good between-Cohort Robustness. Neuroimage Clin. 2014, 6, 115–125. [Google Scholar] [CrossRef]
- Filippone, M.; Camastra, F.; Masulli, F.; Rovetta, S. A Survey of Kernel and Spectral Methods for Clustering. Pattern Recognit. 2008, 41, 176–190. [Google Scholar] [CrossRef]
- Kishore, N.; Goel, N. Deep Learning Based Diagnosis of Alzheimer’s Disease Using FDG-PET Images. Neurosci. Lett. 2023, 817, 137530. [Google Scholar] [CrossRef]
- Kale, M.; Wankhede, N.; Pawar, R.; Ballal, S.; Kumawat, R.; Goswami, M.; Khalid, M.; Taksande, B.; Upaganlawar, A.; Umekar, M.; et al. AI-Driven Innovations in Alzheimer’s Disease: Integrating Early Diagnosis, Personalized Treatment, and Prognostic Modelling. Ageing Res. Rev. 2024, 101, 102497. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Q.; Zhang, Y.; Zheng, J.; Yang, Y.; Du, X.; Feng, H.; Zhang, S. Application of Deep Learning for Prediction of Alzheimer’s Disease in PET/MR Imaging. Bioengineering 2023, 10, 1120. [Google Scholar] [CrossRef]
- Nuvoli, S.; Bianconi, F.; Rondini, M.; Lazzarato, A.; Marongiu, A.; Fravolini, M.L.; Cascianelli, S.; Amici, S.; Filippi, L.; Spanu, A.; et al. Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers. Diagnostics 2022, 12, 2425. [Google Scholar] [CrossRef]
- Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Mari Aparici, C.; et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. Radiology 2019, 290, 456–464. [Google Scholar] [CrossRef]
- Ryoo, H.; Choi, H.; Shi, K.; Rominger, A.; Lee, D.; Lee, D. Distinct Subtypes of Spatial Brain Metabolism Patterns in Alzheimer’s Disease Identified by Deep Learning-Based FDG PET Clusters. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 443–454. [Google Scholar] [CrossRef]
- Zukotynski, K.; Gaudet, V.; Kuo, P.H.; Adamo, S.; Goubran, M.; Scott, C.; Bocti, C.; Borrie, M.; Chertkow, H.; Frayne, R.; et al. The Use of Random Forests to Classify Amyloid Brain PET. Clin. Nucl. Med. 2019, 44, 784–788. [Google Scholar] [CrossRef]
- An, E.J.; Kim, J.B.; Son, J.; Jeong, S.Y.; Lee, S.-W.; Ahn, B.-C.; Ko, P.-W.; Hong, C.M. Deep Learning-Based Binary Classification of Beta-Amyloid Plaques Using 18 F Florapronol PET. Nucl. Med. Commun. 2024, 45, 1055–1060. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, K.; Che, T.; Du, K.; Sun, H.; Liu, S.; Zheng, Y.; Li, S.; Liu, B.; Liu, Y.; et al. Quantitative Radiomic Features as New Biomarkers for Alzheimer’s Disease: An Amyloid PET Study. Cereb. Cortex 2021, 31, 3950–3961. [Google Scholar] [CrossRef]
- Jiao, F.; Wang, M.; Sun, X.; Ju, Z.; Lu, J.; Wang, L.; Jiang, J.; Zuo, C. Based on Tau PET Radiomics Analysis for the Classification of Alzheimer’s Disease and Mild Cognitive Impairment. Brain Sci. 2023, 13, 367. [Google Scholar] [CrossRef]
- Wang, Y.-T.T.; Rosa-Neto, P.; Gauthier, S. Advanced Brain Imaging for the Diagnosis of Alzheimer Disease. Curr. Opin. Neurol. 2023, 36, 481–490. [Google Scholar] [CrossRef]
- Park, S.W.; Yeo, N.Y.; Lee, J.; Lee, S.-H.; Byun, J.; Park, D.Y.; Yum, S.; Kim, J.-K.; Byeon, G.; Kim, Y.; et al. Machine Learning Application for Classification of Alzheimer’s Disease Stages Using 18F-Flortaucipir Positron Emission Tomography. Biomed. Eng. Online 2023, 22, 40. [Google Scholar] [CrossRef]
- Ruwanpathirana, G.P.; Williams, R.C.; Masters, C.L.; Rowe, C.C.; Johnston, L.A.; Davey, C.E. Mapping the Association between Tau-PET and Aβ-Amyloid-PET Using Deep Learning. Sci. Rep. 2022, 12, 14797. [Google Scholar] [CrossRef]
- Lee, J.; Burkett, B.J.; Min, H.-K.; Senjem, M.L.; Dicks, E.; Corriveau-Lecavalier, N.; Mester, C.T.; Wiste, H.J.; Lundt, E.S.; Murray, M.E.; et al. Synthesizing Images of Tau Pathology from Cross-Modal Neuroimaging Using Deep Learning. Brain 2024, 147, 980–995. [Google Scholar] [CrossRef]
- Woo, C.-W.; Chang, L.J.; Lindquist, M.A.; Wager, T.D. Building Better Biomarkers: Brain Models in Translational Neuroimaging. Nat. Neurosci. 2017, 20, 365–377. [Google Scholar] [CrossRef]
- Gupta, Y.; Lama, R.K.; Kwon, G.-R. Alzheimer’s Disease Neuroimaging Initiative Prediction and Classification of Alzheimer’s Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers. Front. Comput. Neurosci. 2019, 13, 72. [Google Scholar] [CrossRef]
- Bao, Y.-W.; Wang, Z.-J.; Shea, Y.-F.; Chiu, P.K.-C.; Kwan, J.S.; Chan, F.H.-W.; Mak, H.K.-F. Combined Quantitative Amyloid-β PET and Structural MRI Features Improve Alzheimer’s Disease Classification in Random Forest Model—A Multicenter Study. Acad. Radiol. 2024, 31, 5154–5163. [Google Scholar] [CrossRef]
- Cascianelli, S.; Scialpi, M.; Amici, S.; Forini, N.; Minestrini, M.; Fravolini, M.L.; Sinzinger, H.; Schillaci, O.; Palumbo, B. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases. Curr. Alzheimer Res. 2017, 14, 198–207. [Google Scholar] [CrossRef]
- Aberathne, I.; Kulasiri, D.; Samarasinghe, S. Detection of Alzheimer’s Disease Onset Using MRI and PET Neuroimaging: Longitudinal Data Analysis and Machine Learning. Neural Regen. Res. 2023, 18, 2134–2140. [Google Scholar] [CrossRef]
- Aljuhani, M.; Ashraf, A.; Edison, P. Use of Artificial Intelligence in Imaging Dementia. Cells 2024, 13, 1965. [Google Scholar] [CrossRef]
- Liu, X.; Chen, K.; Wu, T.; Weidman, D.; Lure, F.; Li, J. Use of Multimodality Imaging and Artificial Intelligence for Diagnosis and Prognosis of Early Stages of Alzheimer’s Disease. Transl. Res. 2018, 194, 56–67. [Google Scholar] [CrossRef]
- Toga, A.W.; Neu, S.C.; Bhatt, P.; Crawford, K.L.; Ashish, N. The Global Alzheimer’s Association Interactive Network. Alzheimer’s Dement. 2016, 12, 49–54. [Google Scholar] [CrossRef]
- Petersen, R.C.; Aisen, P.S.; Beckett, L.A.; Donohue, M.C.; Gamst, A.C.; Harvey, D.J.; Jack, C.R.; Jagust, W.J.; Shaw, L.M.; Toga, A.W.; et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical Characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef]
- Ellis, K.A.; Bush, A.I.; Darby, D.; De Fazio, D.; Foster, J.; Hudson, P.; Lautenschlager, N.T.; Lenzo, N.; Martins, R.N.; Maruff, P.; et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging: Methodology and Baseline Characteristics of 1112 Individuals Recruited for a Longitudinal Study of Alzheimer’s Disease. Int. Psychogeriatr. 2009, 21, 672–687. [Google Scholar] [CrossRef]
- Landau, S.M.; Harrison, T.M.; Baker, S.L.; Boswell, M.S.; Lee, J.; Taggett, J.; Ward, T.J.; Chadwick, T.; Murphy, A.; DeCarli, C.; et al. Positron Emission Tomography Harmonization in the Alzheimer’s Disease Neuroimaging Initiative: A Scalable and Rigorous Approach to Multisite Amyloid and Tau Quantification. Alzheimer’s Dement. 2025, 21, e14378. [Google Scholar] [CrossRef]
- Burkett, B.J.; Johnson, D.R.; Lowe, V.J. Evaluation of Neurodegenerative Disorders with Amyloid-β, Tau, and Dopaminergic PET Imaging: Interpretation Pitfalls. J. Nucl. Med. 2024, 65, 829–837. [Google Scholar] [CrossRef]
- Davatzikos, C. Machine Learning in Neuroimaging: Progress and Challenges. Neuroimage 2019, 197, 652–656. [Google Scholar] [CrossRef]
- Taiyeb Khosroshahi, M.; Morsali, S.; Gharakhanlou, S.; Motamedi, A.; Hassanbaghlou, S.; Vahedi, H.; Pedrammehr, S.; Kabir, H.M.D.; Jafarizadeh, A. Explainable Artificial Intelligence in Neuroimaging of Alzheimer’s Disease. Diagnostics 2025, 15, 612. [Google Scholar] [CrossRef]
- Montavon, G.; Samek, W.; Müller, K.-R. Methods for Interpreting and Understanding Deep Neural Networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Arras, L.; Horn, F.; Montavon, G.; Müller, K.-R.; Samek, W. “What Is Relevant in a Text Document?”: An Interpretable Machine Learning Approach. PLoS ONE 2017, 12, e0181142. [Google Scholar] [CrossRef]
- Samek, W.; Binder, A.; Montavon, G.; Bach, S.; Müller, K.-R. Evaluating the Visualization of What a Deep Neural Network Has Learned. arXiv 2015, arXiv:1509.06321. [Google Scholar] [CrossRef]
- Tejani, A.S.; Klontzas, M.E.; Gatti, A.A.; Mongan, J.T.; Moy, L.; Park, S.H.; Kahn, C.E. CLAIM 2024 Update Panel Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update. Radiol. Artif. Intell. 2024, 6, e240300. [Google Scholar] [CrossRef] [PubMed]
- Gallifant, J.; Afshar, M.; Ameen, S.; Aphinyanaphongs, Y.; Chen, S.; Cacciamani, G.; Demner-Fushman, D.; Dligach, D.; Daneshjou, R.; Fernandes, C.; et al. The TRIPOD-LLM Reporting Guideline for Studies Using Large Language Models. Nat. Med. 2025, 31, 60–69. [Google Scholar] [CrossRef]
- Ibrahim, H.; Liu, X.; Rivera, S.C.; Moher, D.; Chan, A.-W.; Sydes, M.R.; Calvert, M.J.; Denniston, A.K. Reporting Guidelines for Clinical Trials of Artificial Intelligence Interventions: The SPIRIT-AI and CONSORT-AI Guidelines. Trials 2021, 22, 11. [Google Scholar] [CrossRef]
- Ethics Guidelines for Trustworthy AI|Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (accessed on 25 August 2025).
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- CDC Health Insurance Portability and Accountability Act of 1996 (HIPAA). Available online: https://www.cdc.gov/phlp/php/resources/health-insurance-portability-and-accountability-act-of-1996-hipaa.html (accessed on 25 August 2025).
AI Procedures | Representative References | Main Purpose |
---|---|---|
Machine Learning Supervised Learning (SVM *, Logistic Regression, Decision Trees, and K-Nearest Neighbors) Ensemble Learning (Bagging, Boosting, and Random Forests) | [15,18,19,20,21] | AD classification MCI/AD conversion prediction AD subtype identification Improving the performance of Primary classifiers |
Deep Learning (CNNs **, RNNs ***, Autoencoder) | [18,22] | AD classification MCI/AD conversion prediction AD progression prediction Features learning and extraction |
Combined Methods (DL Features Extraction + ML Classification; Unsupervised Learning + ML Classification) | [23,24] | AD classification AD subtype identification Multimodal data integration |
Cohort Size | Data Source | External Validation | |
---|---|---|---|
Zhang et al. [19] | 202 | ADNI | No |
Lebedev et al. [20] | 896 | ADNI + AddNeuroMed | Yes |
Kishore & Goel [22] | 83 | ADNI | No |
Nuvoli et al. [25] | 150 | Single-center | No |
Ding et al. [26] | 1042 | ADNI + Single center | Yes |
Ryoo et al. [27] | 1607 | ADNI | No |
Zukotynski et al. [28] | 57 | Multicenter | No |
An et al. [29] | 175 | Single-center (?) | No |
Ding et al. [30] | 1078 | ADNI | No |
Jiao et al. [31] | 642 | ADNI + Single-center | Yes |
Park et al. [33] | 199 | ADNI | No |
Gupta et al. [37] | 158 | ADNI | No |
Bao et al. [38] | 261 | AIBL + GAAIN + Single-center | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marongiu, A.; Spanu, A.; Palumbo, B.; Bianconi, F.; Filippi, L.; Madeddu, G.; Nuvoli, S. Artificial Intelligence in PET Imaging for Alzheimer’s Disease: A Narrative Review. Brain Sci. 2025, 15, 1038. https://doi.org/10.3390/brainsci15101038
Marongiu A, Spanu A, Palumbo B, Bianconi F, Filippi L, Madeddu G, Nuvoli S. Artificial Intelligence in PET Imaging for Alzheimer’s Disease: A Narrative Review. Brain Sciences. 2025; 15(10):1038. https://doi.org/10.3390/brainsci15101038
Chicago/Turabian StyleMarongiu, Andrea, Angela Spanu, Barbara Palumbo, Francesco Bianconi, Luca Filippi, Giuseppe Madeddu, and Susanna Nuvoli. 2025. "Artificial Intelligence in PET Imaging for Alzheimer’s Disease: A Narrative Review" Brain Sciences 15, no. 10: 1038. https://doi.org/10.3390/brainsci15101038
APA StyleMarongiu, A., Spanu, A., Palumbo, B., Bianconi, F., Filippi, L., Madeddu, G., & Nuvoli, S. (2025). Artificial Intelligence in PET Imaging for Alzheimer’s Disease: A Narrative Review. Brain Sciences, 15(10), 1038. https://doi.org/10.3390/brainsci15101038