The Bidirectional Relationship between Weight Gain and Cognitive Function in First-Episode Schizophrenia: A Longitudinal Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Assessments
2.3. Statistical Analysis
3. Results
3.1. Sample Description and Baseline Characteristics
3.2. Cognitive Function and Weight Changes during the First 6-Month Treatment
3.3. The Relationship between Baseline Cognitive Function and CRW at the Follow-Up Endpoint
3.4. The relationship between CRW and Cognitive Improvements during the 6-Month Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef]
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A Concise Overview of Incidence, Prevalence, and Mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Chesney, E.; Goodwin, G.M.; Fazel, S. Risks of All-Cause and Suicide Mortality in Mental Disorders: A Meta-Review. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2014, 13, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Vancampfort, D.; De Herdt, A.; Yu, W.; De Hert, M. Is the Prevalence of Metabolic Syndrome and Metabolic Abnormalities Increased in Early Schizophrenia? A Comparative Meta-Analysis of First Episode, Untreated and Treated Patients. Schizophr. Bull. 2013, 39, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Vancampfort, D.; Sweers, K.; van Winkel, R.; Yu, W.; De Hert, M. Prevalence of Metabolic Syndrome and Metabolic Abnormalities in Schizophrenia and Related Disorders--a Systematic Review and Meta-Analysis. Schizophr. Bull. 2013, 39, 306–318. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of Metabolic Syndrome and Its Components in People with Schizophrenia and Related Psychotic Disorders, Bipolar Disorder and Major Depressive Disorder: A Systematic Review and Meta-Analysis. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2015, 14, 339–347. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, D.; Wei, G.; Wang, J.; Zhou, H.; Xu, H.; Dai, Q.; Xiu, M.; Chen, D.; Wang, L.; et al. Prevalence of Obesity and Clinical and Metabolic Correlates in First-Episode Schizophrenia Relative to Healthy Controls. Psychopharmacology 2021, 238, 745–753. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory Mechanisms Linking Obesity and Metabolic Disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef]
- Aoki, R.; Saito, T.; Ninomiya, K.; Shimasaki, A.; Ashizawa, T.; Ito, K.; Ikeda, M.; Iwata, N. Shared Genetic Components between Metabolic Syndrome and Schizophrenia: Genetic Correlation Using Multipopulation Data Sets. Psychiatry Clin. Neurosci. 2022, 76, 361–366. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic Syndrome in Psychiatric Patients: Overview, Mechanisms, and Implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef]
- Mazereel, V.; Detraux, J.; Vancampfort, D.; van Winkel, R.; De Hert, M. Impact of Psychotropic Medication Effects on Obesity and the Metabolic Syndrome in People with Serious Mental Illness. Front. Endocrinol. 2020, 11, 573479. [Google Scholar] [CrossRef]
- Heald, A.; Pendlebury, J.; Anderson, S.; Narayan, V.; Guy, M.; Gibson, M.; Haddad, P.; Livingston, M. Lifestyle Factors and the Metabolic Syndrome in Schizophrenia: A Cross-Sectional Study. Ann. Gen. Psychiatry 2017, 16, 12. [Google Scholar] [CrossRef]
- Grajales, D.; Ferreira, V.; Valverde, Á.M. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019, 8, 1336. [Google Scholar] [CrossRef]
- Liu, N.H.; Daumit, G.L.; Dua, T.; Aquila, R.; Charlson, F.; Cuijpers, P.; Druss, B.; Dudek, K.; Freeman, M.; Fujii, C.; et al. Excess Mortality in Persons with Severe Mental Disorders: A Multilevel Intervention Framework and Priorities for Clinical Practice, Policy and Research Agendas. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2017, 16, 30–40. [Google Scholar] [CrossRef]
- Campforts, B.; Drukker, M.; Crins, J.; van Amelsvoort, T.; Bak, M. Association between Antipsychotic Medication and Clinically Relevant Weight Change: Meta-Analysis. BJPsych Open 2023, 9, e18. [Google Scholar] [CrossRef]
- Pérez-Iglesias, R.; Martínez-García, O.; Pardo-Garcia, G.; Amado, J.A.; Garcia-Unzueta, M.T.; Tabares-Seisdedos, R.; Crespo-Facorro, B. Course of Weight Gain and Metabolic Abnormalities in First Treated Episode of Psychosis: The First Year Is a Critical Period for Development of Cardiovascular Risk Factors. Int. J. Neuropsychopharmacol. 2014, 17, 41–51. [Google Scholar] [CrossRef]
- Raben, A.T.; Marshe, V.S.; Chintoh, A.; Gorbovskaya, I.; Müller, D.J.; Hahn, M.K. The Complex Relationship between Antipsychotic-Induced Weight Gain and Therapeutic Benefits: A Systematic Review and Implications for Treatment. Front. Neurosci. 2017, 11, 741. [Google Scholar] [CrossRef]
- Green, M.F. Impact of Cognitive and Social Cognitive Impairment on Functional Outcomes in Patients with Schizophrenia. J. Clin. Psychiatry 2016, 77 (Suppl. 2), 8–11. [Google Scholar] [CrossRef]
- McCleery, A.; Ventura, J.; Kern, R.S.; Subotnik, K.L.; Gretchen-Doorly, D.; Green, M.F.; Hellemann, G.S.; Nuechterlein, K.H. Cognitive Functioning in First-Episode Schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) Profile of Impairment. Schizophr. Res. 2014, 157, 33–39. [Google Scholar] [CrossRef]
- Dickinson, D.; Ragland, J.D.; Gold, J.M.; Gur, R.C. General and Specific Cognitive Deficits in Schizophrenia: Goliath Defeats David? Biol. Psychiatry 2008, 64, 823–827. [Google Scholar] [CrossRef]
- Sheffield, J.M.; Karcher, N.R.; Barch, D.M. Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective. Neuropsychol. Rev. 2018, 28, 509–533. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Keefe, R.S.E.; McGuire, P.K. Cognitive Impairment in Schizophrenia: Aetiology, Pathophysiology, and Treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef]
- Robison, A.J.; Thakkar, K.N.; Diwadkar, V.A. Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate. Biol. Psychiatry 2020, 87, 204–214. [Google Scholar] [CrossRef]
- Peng, X.-J.; Hei, G.-R.; Yang, Y.; Liu, C.-C.; Xiao, J.-M.; Long, Y.-J.; Huang, J.; Zhao, J.-P.; Wu, R.-R. The Association Between Cognitive Deficits and Clinical Characteristic in First-Episode Drug Naïve Patients with Schizophrenia. Front. Psychiatry 2021, 12, 638773. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Poursharifi, H.; Dolatshahi, B.; Rezaee, O.; Hassanabadi, H.R.; Naeem, F. The Cognitive Model of Negative Symptoms in Schizophrenia: A Hierarchical Component Model With PLS-SEM. Front. Psychiatry 2021, 12, 707291. [Google Scholar] [CrossRef]
- Nielsen, R.E.; Levander, S.; Kjaersdam Telléus, G.; Jensen, S.O.W.; Østergaard Christensen, T.; Leucht, S. Second-Generation Antipsychotic Effect on Cognition in Patients with Schizophrenia—A Meta-Analysis of Randomized Clinical Trials. Acta Psychiatr. Scand. 2015, 131, 185–196. [Google Scholar] [CrossRef]
- Assuncao, N.; Sudo, F.K.; Drummond, C.; de Felice, F.G.; Mattos, P. Metabolic Syndrome and Cognitive Decline in the Elderly: A Systematic Review. PLoS ONE 2018, 13, e0194990. [Google Scholar] [CrossRef]
- Philippou, E.; Michaelides, M.P.; Constantinidou, F. The Role of Metabolic Syndrome Factors on Cognition Using Latent Variable Modeling: The Neurocognitive Study on Aging. J. Clin. Exp. Neuropsychol. 2018, 40, 1030–1043. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Z.; Wei, Q.; Lv, H.; Wu, R.; Zhao, J. The Relationship between Obesity and Neurocognitive Function in Chinese Patients with Schizophrenia. BMC Psychiatry 2013, 13, 109. [Google Scholar] [CrossRef]
- Lindenmayer, J.P.; Khan, A.; Kaushik, S.; Thanju, A.; Praveen, R.; Hoffman, L.; Cherath, L.; Valdez, G.; Wance, D. Relationship between Metabolic Syndrome and Cognition in Patients with Schizophrenia. Schizophr. Res. 2012, 142, 171–176. [Google Scholar] [CrossRef]
- Depp, C.A.; Strassnig, M.; Mausbach, B.T.; Bowie, C.R.; Wolyniec, P.; Thornquist, M.H.; Luke, J.R.; McGrath, J.A.; Pulver, A.E.; Patterson, T.L.; et al. Association of Obesity and Treated Hypertension and Diabetes with Cognitive Ability in Bipolar Disorder and Schizophrenia. Bipolar Disord. 2014, 16, 422–431. [Google Scholar] [CrossRef]
- Goughari, A.S.; Mazhari, S.; Pourrahimi, A.M.; Sadeghi, M.M.; Nakhaee, N. Associations between Components of Metabolic Syndrome and Cognition in Patients with Schizophrenia. J. Psychiatr. Pract. 2015, 21, 190–197. [Google Scholar] [CrossRef]
- Luckhoff, H.K.; Kilian, S.; Olivier, M.R.; Phahladira, L.; Scheffler, F.; du Plessis, S.; Chiliza, B.; Asmal, L.; Emsley, R. Relationship between Changes in Metabolic Syndrome Constituent Components over 12 Months of Treatment and Cognitive Performance in First-Episode Schizophrenia. Metab. Brain Dis. 2019, 34, 469–476. [Google Scholar] [CrossRef]
- Lowe, C.J.; Reichelt, A.C.; Hall, P.A. The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends Cogn. Sci. 2019, 23, 349–361. [Google Scholar] [CrossRef]
- Martin, A.A.; Davidson, T.L. Human Cognitive Function and the Obesogenic Environment. Physiol. Behav. 2014, 136, 185–193. [Google Scholar] [CrossRef]
- Guxens, M.; Mendez, M.A.; Julvez, J.; Plana, E.; Forns, J.; Basagaña, X.; Torrent, M.; Sunyer, J. Cognitive Function and Overweight in Preschool Children. Am. J. Epidemiol. 2009, 170, 438–446. [Google Scholar] [CrossRef]
- Bond, D.J.; Torres, I.J.; Lee, S.S.; Kozicky, J.-M.; Silveira, L.E.; Dhanoa, T.; Lam, R.W.; Yatham, L.N. Lower Cognitive Functioning as a Predictor of Weight Gain in Bipolar Disorder: A 12-Month Study. Acta Psychiatr. Scand. 2017, 135, 239–249. [Google Scholar] [CrossRef]
- Han, X.; Yuan, Y.-B.; Yu, X.; Zhao, J.-P.; Wang, C.-Y.; Lu, Z.; Yang, F.-D.; Deng, H.; Wu, Y.-F.; Ungvari, G.S. The Chinese First-Episode Schizophrenia Trial: Background and Study Design. East Asian Arch. Psychiatry 2014, 24, 169–173. [Google Scholar]
- First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J.B. Structured Clinical Interview for DSM-IV Axis I Disorders-Patient Edition (SCID-I/P, Version 2.0) New York; Biometrics Research Department, New York State Psychiatric Institute: New York, NY, USA, 1995. [Google Scholar]
- SI, T.; Yang, J.; Shu, L. The Reliability, Validity of PANSS and Its Implication. Chin. Ment. Health J. 2004, 18, 45–47. [Google Scholar]
- Kay, S.R.; Opler, L.A.; Lindenmayer, J.P. Reliability and Validity of the Positive and Negative Syndrome Scale for Schizophrenics. Psychiatry Res. 1988, 23, 99–110. [Google Scholar] [CrossRef]
- Galderisi, S.; Mucci, A.; Dollfus, S.; Nordentoft, M.; Falkai, P.; Kaiser, S.; Giordano, G.M.; Vandevelde, A.; Nielsen, M.Ø.; Glenthøj, L.B.; et al. EPA Guidance on Assessment of Negative Symptoms in Schizophrenia. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2021, 64, e23. [Google Scholar] [CrossRef] [PubMed]
- Shafer, A.; Dazzi, F. Meta-Analysis of the Positive and Negative Syndrome Scale (PANSS) Factor Structure. J. Psychiatr. Res. 2019, 115, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Heaton, R.K.; Cysique, L.A.; Jin, H.; Shi, C.; Yu, X.; Letendre, S.; Franklin, D.R.; Ake, C.; Vigil, O.; Atkinson, J.H.; et al. Neurobehavioral Effects of Human Immunodeficiency Virus Infection among Former Plasma Donors in Rural China. J. Neurovirol. 2008, 14, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Kang, L.; Yao, S.; Ma, Y.; Li, T.; Liang, Y.; Cheng, Z.; Xu, Y.; Shi, J.; Xu, X.; et al. The MATRICS Consensus Cognitive Battery (MCCB): Co-Norming and Standardization in China. Schizophr. Res. 2015, 169, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Yu, X.; Wu, Z.; Heaton, R.; Hua, J.; Marcotte, T. Neuropsychological Feasibility Study among HIV+/AIDS Subjects in China. Chin. Ment. Health J. 2005, 19, 11–14. [Google Scholar]
- Bobes, J.; Rejas, J.; Garcia-Garcia, M.; Rico-Villademoros, F.; García-Portilla, M.P.; Fernández, I.; Hernández, G.; EIRE Study Group. Weight Gain in Patients with Schizophrenia Treated with Risperidone, Olanzapine, Quetiapine or Haloperidol: Results of the EIRE Study. Schizophr. Res. 2003, 62, 77–88. [Google Scholar] [CrossRef] [PubMed]
- El-Missiry, A.; Elbatrawy, A.; El Missiry, M.; Moneim, D.A.; Ali, R.; Essawy, H. Comparing Cognitive Functions in Medication Adherent and Non-Adherent Patients with Schizophrenia. J. Psychiatr. Res. 2015, 70, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Liew, A.; Subramaniam, M.; Poon, L.Y. Effect of Treatment on Weight Gain and Metabolic Abnormalities in Patients with First-Episode Psychosis. Aust. N. Z. J. Psychiatry 2009, 43, 812–817. [Google Scholar] [CrossRef]
- Bak, M.; Fransen, A.; Janssen, J.; van Os, J.; Drukker, M. Almost All Antipsychotics Result in Weight Gain: A Meta-Analysis. PLoS ONE 2014, 9, e94112. [Google Scholar] [CrossRef]
- Zhou, T.; Pu, C.; Huang, Z.; Gao, T.; Zhou, E.; Zheng, Y.; Zhang, D.; Huang, B.; Cheng, Z.; Shi, C.; et al. Weight Changes Following Treatment with Aripiprazole, Risperidone and Olanzapine: A 12-Month Study of First-Episode Schizophrenia Patients in China. Asian J. Psychiatry 2023, 84, 103594. [Google Scholar] [CrossRef]
- Pu, C.; Qiu, Y.; Zhou, T.; Yang, F.; Lu, Z.; Wang, C.; Deng, H.; Zhao, J.; Shi, C.; Yu, X. Gender Differences of Neurocognitive Functioning in Patients with First-Episode Schizophrenia in China. Compr. Psychiatry 2019, 95, 152132. [Google Scholar] [CrossRef]
- Bora, E.; Murray, R.M. Meta-Analysis of Cognitive Deficits in Ultra-High Risk to Psychosis and First-Episode Psychosis: Do the Cognitive Deficits Progress over, or after, the Onset of Psychosis? Schizophr. Bull. 2014, 40, 744–755. [Google Scholar] [CrossRef]
- Vázquez-Bourgon, J.; Pérez-Iglesias, R.; Ortiz-García de la Foz, V.; Suárez Pinilla, P.; Díaz Martínez, Á.; Crespo-Facorro, B. Long-Term Metabolic Effects of Aripiprazole, Ziprasidone and Quetiapine: A Pragmatic Clinical Trial in Drug-Naïve Patients with a First-Episode of Non-Affective Psychosis. Psychopharmacology 2018, 235, 245–255. [Google Scholar] [CrossRef]
- Stinson, E.J.; Krakoff, J.; Gluck, M.E. Depressive Symptoms and Poorer Performance on the Stroop Task Are Associated with Weight Gain. Physiol. Behav. 2018, 186, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Storch Jakobsen, A.; Speyer, H.; Nørgaard, H.C.B.; Hjorthøj, C.; Krogh, J.; Mors, O.; Nordentoft, M. Associations between Clinical and Psychosocial Factors and Metabolic and Cardiovascular Risk Factors in Overweight Patients with Schizophrenia Spectrum Disorders—Baseline and Two-Years Findings from the CHANGE Trial. Schizophr. Res. 2018, 199, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S.; Spetter, M.S. Cognitive Control of Eating: The Role of Memory in Appetite and Weight Gain. Curr. Obes. Rep. 2018, 7, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Coppin, G. To What Extent Memory Could Contribute to Impaired Food Valuation and Choices in Obesity? Front. Psychol. 2018, 9, 2523. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, S.; Pariante, C.M.; Dazzan, P.; Aguglia, E.; McGuire, P.; Mondelli, V. The Dietary Pattern of Patients with Schizophrenia: A Systematic Review. J. Psychiatr. Res. 2013, 47, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Gluck, M.E.; Viswanath, P.; Stinson, E.J. Obesity, Appetite, and the Prefrontal Cortex. Curr. Obes. Rep. 2017, 6, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Snelleksz, M.; Rossell, S.L.; Gibbons, A.; Nithianantharajah, J.; Dean, B. Evidence That the Frontal Pole Has a Significant Role in the Pathophysiology of Schizophrenia. Psychiatry Res. 2022, 317, 114850. [Google Scholar] [CrossRef]
- Wong, C.H.Y.; Liu, J.; Lee, T.M.C.; Tao, J.; Wong, A.W.K.; Chau, B.K.H.; Chen, L.; Chan, C.C.H. Fronto-Cerebellar Connectivity Mediating Cognitive Processing Speed. NeuroImage 2021, 226, 117556. [Google Scholar] [CrossRef]
- Whitelock, V.; Nouwen, A.; van den Akker, O.; Higgs, S. The Role of Working Memory Sub-Components in Food Choice and Dieting Success. Appetite 2018, 124, 24–32. [Google Scholar] [CrossRef]
- Nelson, N.M.; Redden, J.P. Remembering Satiation: The Role of Working Memory in Satiation. J. Consum. Res. 2017, 44, 633–650. [Google Scholar] [CrossRef]
- Byrne, M.E.; Tanofsky-Kraff, M.; Lavender, J.M.; Parker, M.N.; Shank, L.M.; Swanson, T.N.; Ramirez, E.; LeMay-Russell, S.; Yang, S.B.; Brady, S.M.; et al. Bridging Executive Function and Disinhibited Eating among Youth: A Network Analysis. Int. J. Eat. Disord. 2021, 54, 721–732. [Google Scholar] [CrossRef]
- Lang, X.; Zhou, Y.; Zhao, L.; Gu, Y.; Wu, X.; Zhao, Y.; Li, Z.; Zhang, X. Differences in Patterns of Metabolic Abnormality and Metabolic Syndrome between Early-Onset and Adult-Onset First-Episode Drug-Naive Schizophrenia Patients. Psychoneuroendocrinology 2021, 132, 105344. [Google Scholar] [CrossRef]
- Cavaleri, D.; Capogrosso, C.A.; Guzzi, P.; Bernasconi, G.; Re, M.; Misiak, B.; Crocamo, C.; Bartoli, F.; Carrà, G. Blood Concentrations of Anterior Pituitary Hormones in Drug-Naïve People with First-Episode Psychosis: A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2023, 158, 106392. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Yang, G.; Zhang, J.; Han, M.; Zhang, Y.; Liu, Y. Effects of Anterior Pituitary Adenomas’ Hormones on Glucose Metabolism and Its Clinical Implications. Diabetes Metab. Syndr. Obes. Targets Ther. 2023, 16, 409–424. [Google Scholar] [CrossRef]
- Postolache, T.T.; Del Bosque-Plata, L.; Jabbour, S.; Vergare, M.; Wu, R.; Gragnoli, C. Co-Shared Genetics and Possible Risk Gene Pathway Partially Explain the Comorbidity of Schizophrenia, Major Depressive Disorder, Type 2 Diabetes, and Metabolic Syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2019, 180, 186–203. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, X.R.; Zhang, L.; Zhu, W.B.; Wu, Y.Q.; Guan, X.N.; Xiu, M.H.; Zhang, X.Y. Therapeutic Response Is Associated with Antipsychotic-Induced Weight Gain in Drug-Naive First-Episode Patients with Schizophrenia: An 8-Week Prospective Study. J. Clin. Psychiatry 2021, 82, 20m13469. [Google Scholar] [CrossRef]
- Luckhoff, H.; Phahladira, L.; Scheffler, F.; Asmal, L.; du Plessis, S.; Chiliza, B.; Kilian, S.; Emsley, R. Weight Gain and Metabolic Change as Predictors of Symptom Improvement in First-Episode Schizophrenia Spectrum Disorder Patients Treated over 12 months. Schizophr. Res. 2019, 206, 171–176. [Google Scholar] [CrossRef]
- Aznar, S.; Hervig, M.E.-S. The 5-HT2A Serotonin Receptor in Executive Function: Implications for Neuropsychiatric and Neurodegenerative Diseases. Neurosci. Biobehav. Rev. 2016, 64, 63–82. [Google Scholar] [CrossRef]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef]
- Chen, W.; Cai, W.; Hoover, B.; Kahn, C.R. Insulin Action in the Brain: Cell Types, Circuits, and Diseases. Trends Neurosci. 2022, 45, 384–400. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.M.; Kowalchuk, C.; Castellani, L.; Costa-Dookhan, K.A.; Caravaggio, F.; Asgariroozbehani, R.; Chintoh, A.; Graff-Guerrero, A.; Hahn, M. Brain Insulin Action: Implications for the Treatment of Schizophrenia. Neuropharmacology 2020, 168, 107655. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Pawlak, E.; Rembacz, K.; Kotas, M.; Żebrowska-Różańska, P.; Kujawa, D.; Łaczmański, Ł.; Piotrowski, P.; Bielawski, T.; Samochowiec, J.; et al. Associations of Gut Microbiota Alterations with Clinical, Metabolic, and Immune-Inflammatory Characteristics of Chronic Schizophrenia. J. Psychiatr. Res. 2024, 171, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Bahr, S.M.; Tyler, B.C.; Wooldridge, N.; Butcher, B.D.; Burns, T.L.; Teesch, L.M.; Oltman, C.L.; Azcarate-Peril, M.A.; Kirby, J.R.; Calarge, C.A. Use of the Second-Generation Antipsychotic, Risperidone, and Secondary Weight Gain Are Associated with an Altered Gut Microbiota in Children. Transl. Psychiatry 2015, 5, e652. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Siafis, S.; Hamza, T.; Schneider-Thoma, J.; Davis, J.M.; Salanti, G.; Leucht, S. Antipsychotic-Induced Weight Gain: Dose-Response Meta-Analysis of Randomized Controlled Trials. Schizophr. Bull. 2022, 48, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Hidese, S.; Matsuo, J.; Ishida, I.; Hiraishi, M.; Teraishi, T.; Ota, M.; Hattori, K.; Kunugi, H. Relationship of Handgrip Strength and Body Mass Index with Cognitive Function in Patients with Schizophrenia. Front. Psychiatry 2018, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, D.; Wang, D.; Wang, J.; Xu, H.; Dai, Q.; Andriescue, E.C.; Wu, H.E.; Xiu, M.; Chen, D.; et al. Obesity in Chinese Patients with Chronic Schizophrenia: Prevalence, Clinical Correlates and Relationship with Cognitive Deficits. Schizophr. Res. 2020, 215, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, M.; Du, X.; Liao, W.; Chen, D.; Fan, F.; Xiu, M.; Jia, Q.; Ning, Y.; Huang, X.; et al. Glucose Disturbances, Cognitive Deficits and White Matter Abnormalities in First-Episode Drug-Naive Schizophrenia. Mol. Psychiatry 2020, 25, 3220–3230. [Google Scholar] [CrossRef]
- Sayed, S.E.; Gomaa, S.; Alhazmi, A.; ElKalla, I.; Khalil, D. Metabolic Profile in First Episode Drug Naïve Patients with Psychosis and Its Relation to Cognitive Functions and Social Cognition: A Case Control Study. Sci. Rep. 2023, 13, 5435. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Akdede, B.B.; Alptekin, K. The Relationship between Cognitive Impairment in Schizophrenia and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Psychol. Med. 2017, 47, 1030–1040. [Google Scholar] [CrossRef]
- MacKenzie, N.E.; Kowalchuk, C.; Agarwal, S.M.; Costa-Dookhan, K.A.; Caravaggio, F.; Gerretsen, P.; Chintoh, A.; Remington, G.J.; Taylor, V.H.; Müeller, D.J.; et al. Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia. Front. Psychiatry 2018, 9, 622. [Google Scholar] [CrossRef]
- Mohorko, N.; Černelič-Bizjak, M.; Poklar-Vatovec, T.; Grom, G.; Kenig, S.; Petelin, A.; Jenko-Pražnikar, Z. Weight Loss, Improved Physical Performance, Cognitive Function, Eating Behavior, and Metabolic Profile in a 12-Week Ketogenic Diet in Obese Adults. Nutr. Res. 2019, 62, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, K.; Mazur, A.; Mak, M.; Samochowiec, J.; Kucharska-Mazur, J. Metabolic Syndrome and Cognitive Functions in Schizophrenia-Implementation of Dietary Intervention. Front. Psychiatry 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Kimhy, D.; Vakhrusheva, J.; Bartels, M.N.; Armstrong, H.F.; Ballon, J.S.; Khan, S.; Chang, R.W.; Hansen, M.C.; Ayanruoh, L.; Lister, A.; et al. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals with Schizophrenia: A Single-Blind, Randomized Clinical Trial. Schizophr. Bull. 2015, 41, 859–868. [Google Scholar] [CrossRef]
- Bradley, T.; Campbell, E.; Dray, J.; Bartlem, K.; Wye, P.; Hanly, G.; Gibson, L.; Fehily, C.; Bailey, J.; Wynne, O.; et al. Systematic Review of Lifestyle Interventions to Improve Weight, Physical Activity and Diet among People with a Mental Health Condition. Syst. Rev. 2022, 11, 198. [Google Scholar] [CrossRef]
- Stevens, H.; Smith, J.; Bussey, L.; Innerd, A.; McGeechan, G.; Fishburn, S.; Giles, E. Weight Management Interventions for Adults Living with Overweight or Obesity and Severe Mental Illness: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2023, 130, 536–552. [Google Scholar] [CrossRef]
Cognitive Domains | Tests |
---|---|
Processing speed | Trail Making Test Part A |
Color Trails Test 1 | |
Animals-Naming | |
Stroop Color and Word Test | |
Vocabulary learning and memory | Hopkins Verbal Learning Test-Revised |
Visual learning and memory | Brief Visuospatial Memory Test-Revised |
Working memory and attention | Wechsler Memory Scale-spatial span subtest |
Executive function | Paced Auditory Serial Addition Test |
Color Trails Test 2 | |
Stroop Test-unconscious | |
Fine motor function | Grooved Pegboard Test–dominant and non-dominant hand |
Whole Sample (N = 337) | Risperidone (N = 115) | Olanzapine (N = 114) | Aripiprazole (N = 108) | p | |
---|---|---|---|---|---|
Demographics | |||||
Age, mean (SD), y | 25.03 (7.17) | 25.81 (7.15) | 24.43 (7.41) | 24.82 (6.90) | 0.326 |
Male, % | 49.55 | 53.91 | 51.75 | 42.59 | 0.203 |
Single, % | 83.48 | 86.08 | 81.57 | 82.69 | 0.634 |
Education years, mean (SD), y | 12.55 (2.82) | 12.64 (2.79) | 12.59 (2.86) | 12.43 (2.82) | 0.846 |
Clinical characteristics | |||||
Duration of illness, mean (SD) | 10.28 (10.21) | 10.50 (9.45) | 10.02 (10.13) | 10.33 (11.15) | 0.944 |
PANSS Positive, mean (SD) | 22.95 (5.53) | 23.49 (6.20) | 22.74 (5.22) | 22.60 (5.07) | 0.431 |
PANSS Negative, mean (SD) | 20.67 (7.28) | 20.68 (7.28) | 20.53 (7.60) | 20.82 (6.98) | 0.956 |
PANSS General, mean (SD) | 42.14 (8.48) | 41.97 (7.53) | 42.28 (9.55) | 42.17 (8.30) | 0.960 |
PANSS Total, mean (SD) | 85.54 (14.60) | 86.20 (14.17) | 84.81 (14.73) | 85.63 (15.02) | 0.770 |
Metabolic characteristics | |||||
Weight, mean (SD), kg | 58.50 (11.19) | 59.91 (11.86) | 57.18 (10.89) | 58.37 (10.67) | 0.185 |
BMI, mean (SD), kg/m2 | 21.05 (3.07) | 21.35 (2.97) | 20.72 (3.07) | 21.08 (3.16) | 0.305 |
Baseline Mean (SD) | 6-Month Follow-Up Mean (SD) | t | p | |
---|---|---|---|---|
Processing speed | ||||
TRAIL A | 49.82 (23.26) | 40.01 (16.77) | 9.613 | <0.001 |
CTT1 | 57.21 (29.34) | 46.89 (27.64) | 6.764 | <0.001 |
Animals-Naming | 17.02 (5.58) | 17.00 (5.58) | 0.085 | 0.932 |
Stroop Word | 79.39 (21.30) | 82.43 (18.18) | −3.221 | 0.001 |
Stroop Color | 54.00 (16.91) | 56.58 (14.48) | −3.734 | <0.001 |
Vocabulary learning and memory | ||||
HVLT-R Learning (total 3 trials) | 22.16 (6.41) | 22.52 (5.35) | −1.054 | 0.293 |
HVLT-R delayed recall | 7.57 (2.93) | 7.49 (2.70) | 0.454 | 0.650 |
Visual learning and memory | ||||
BVMT-R Learning (total 3 trials) | 22.18 (7.50) | 24.01 (6.89) | −5.039 | <0.001 |
BVMT-R delayed recall | 8.97 (2.94) | 9.41 (2.45) | −2.949 | 0.003 |
Working memory and attention | ||||
Spatial Span | 14.98 (3.81) | 16.05 (3.48) | −5.911 | <0.001 |
PASAT | 31.01 (11.00) | 37.16 (9.52) | −12.162 | <0.001 |
Executive function | ||||
CTT2 | 119.58 (58.24) | 95.63 (36.53) | 8.850 | <0.001 |
Stroop Unconscious | 31.34 (11.33) | 34.01 (10.06) | −5.605 | <0.001 |
Fine motor function | ||||
Peg-SD | 85.46 (28.65) | 77.52 (17.25) | 5.860 | <0.001 |
Peg-SN | 95.02 (32.64) | 90.02 (24.85) | 3.164 | 0.002 |
Body Weight | 58.54 (11.18) | 64.89 (11.14) | −21.147 | <0.001 |
OR | 95% CI | p | |
---|---|---|---|
Model 1 | |||
Processing speed T1 | 0.834 | (0.731, 0.952) | 0.007 |
Gender | 0.701 | (0.416, 1.181) | 0.185 |
Age | 0.971 | (0.936, 1.008) | 0.129 |
BMI T1 | 0.769 | (0.701, 0.843) | <0.001 |
Treated with olanzapine | 3.097 | (1.509, 6.357) | <0.001 |
Antipsychotic dose (in olanzapine equivalent) | 0.991 | (0.938, 1.048) | 0.756 |
Model 2 | |||
Working memory and attention T1 | 0.889 | (0.794, 0.996) | 0.043 |
Gender | 0.771 | (0.462, 1.285) | 0.318 |
Age | 0.985 | (0.951, 1.021) | 0.402 |
BMI T1 | 0.769 | (0.701, 0.844) | <0.001 |
Treated with olanzapine | 2.869 | (1.410, 5.839) | 0.004 |
Antipsychotic dose (in olanzapine equivalent) | 0.999 | (0.946, 1.055) | 0.978 |
Model 3 | |||
Executive function T1 | 0.862 | (0.776, 0.958) | 0.006 |
Gender | 0.724 | (0.430, 1.217) | 0.223 |
Age | 0.969 | (0.933, 1.006) | 0.099 |
BMI T1 | 0.767 | (0.699, 0.843) | <0.001 |
Treated with olanzapine | 2.882 | (1.423, 5.838) | 0.003 |
Antipsychotic dose (in olanzapine equivalent) | 0.998 | (0.945, 1.054) | 0.936 |
(a) | |||
ΔBVMT-R Delayed Recall | Standardized Beta-Coefficient | T | p |
CRW | 0.122 | 2.090 | 0.037 |
Gender | 0.082 | 1.453 | 0.147 |
Age | −0.013 | −0.231 | 0.817 |
Education years | −0.071 | −1.252 | 0.212 |
ΔPANSS Positive Factor scores | 0.097 | 1.235 | 0.218 |
ΔPANSS Negative Factor scores | 0.210 | 2.474 | 0.014 |
ΔPANSS Total scores | 0.301 | 2.852 | 0.004 |
Treatment groups | 0.129 | 1.296 | 0.196 |
Antipsychotic dose (in olanzapine equivalent) | 0.120 | 1.377 | 0.170 |
Combined use of benzodiazepines or anticholinergics | −0.016 | −0.271 | 0.787 |
BVMT-R: Brief Visuospatial Memory Test-Revised, CRW: clinically relevant weight gain, PANSS: Positive and Negative Syndrome Scale. Δ was calculated by (T2 scores−T1 scores)/T1 scores. Statistically significant results (p < 0.05) are showed in bold. | |||
(b) | |||
ΔSpatial Span | Standardized Beta-Coefficient | T | p |
CRW | 0.105 | 1.777 | 0.077 |
Gender | −0.010 | −0.173 | 0.863 |
Age | 0.092 | 1.587 | 0.114 |
Education years | −0.064 | −1.111 | 0.268 |
ΔPANSS Positive Factor scores | 0.059 | 0.733 | 0.464 |
ΔPANSS Negative Factor scores | 0.073 | 0.848 | 0.397 |
ΔPANSS Total scores | 0.050 | 0.468 | 0.640 |
Treatment groups | 0.035 | 0.352 | 0.725 |
Antipsychotic dose (in olanzapine equivalent) | 0.043 | 0.491 | 0.623 |
Combined use of benzodiazepines or anticholinergics | −0.069 | −1.131 | 0.259 |
Spatial Span: Wechsler Memory Scale-spatial span subtest, CRW: clinically relevant weight gain, PANSS: Positive and Negative Syndrome Scale. Δ was calculated by (T2 scores−T1 scores)/T1 scores. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Zhou, T.; Pu, C.; Cheng, Z.; Han, X.; Yang, L.; Yu, X. The Bidirectional Relationship between Weight Gain and Cognitive Function in First-Episode Schizophrenia: A Longitudinal Study in China. Brain Sci. 2024, 14, 310. https://doi.org/10.3390/brainsci14040310
Ma K, Zhou T, Pu C, Cheng Z, Han X, Yang L, Yu X. The Bidirectional Relationship between Weight Gain and Cognitive Function in First-Episode Schizophrenia: A Longitudinal Study in China. Brain Sciences. 2024; 14(4):310. https://doi.org/10.3390/brainsci14040310
Chicago/Turabian StyleMa, Ke, Tianhang Zhou, Chengcheng Pu, Zhang Cheng, Xue Han, Lei Yang, and Xin Yu. 2024. "The Bidirectional Relationship between Weight Gain and Cognitive Function in First-Episode Schizophrenia: A Longitudinal Study in China" Brain Sciences 14, no. 4: 310. https://doi.org/10.3390/brainsci14040310
APA StyleMa, K., Zhou, T., Pu, C., Cheng, Z., Han, X., Yang, L., & Yu, X. (2024). The Bidirectional Relationship between Weight Gain and Cognitive Function in First-Episode Schizophrenia: A Longitudinal Study in China. Brain Sciences, 14(4), 310. https://doi.org/10.3390/brainsci14040310