Auditory Personalization of EMDR Treatment to Relieve Trauma Effects: A Feasibility Study [EMDR+]
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrolment
- -
- Diagnosis of PwPT as assessed by professionals in the healthcare system applying criteria for ‘Disorders specifically associated with stress’ as determined by WHO ICD-11, 6B.
- Exclusion:
- -
- Symptoms attributable to the physiological effects of a substance or another medical condition (including psychiatric disorders);
- -
- Epilepsy or other concomitant neurological or general diagnoses;
- -
- Non-corrected major visuo-auditory impairment;
- -
- Under treatment with psychotropic drugs;
- -
- Comorbidity with psychiatric disorders.
2.2. EMDR+ Implementation
2.2.1. Audio-Visual BAS
2.2.2. Reward-Song
2.2.3. Key-Song
2.3. Feasibility Assessment
2.4. Safety Assessment
2.5. PwPT Acceptance Assessment
2.6. Efficacy Assessment
2.7. Data Analysis
3. Results
3.1. Feasibility
3.2. Safety
3.3. Patient Acceptance
3.4. Efficacy
4. Discussion
4.1. Music Expected to Support Recovery from Trauma
4.2. Efficacy of Music in Desensitization and Body Scan Phases
4.3. Music-Enriched Reward
4.4. Music-Enriched Body Scan
4.5. Multisensory Treatment
4.6. EMDR+ Treatment for COVID-19 Related PTSD
4.7. Future Directions of Treatment Personalization
- -
- Degree of extroversion (dynamism-dominance);
- -
- Degree of agreeableness (empathy-cooperativeness);
- -
- Capacity for conscientiousness (conscientiousness-perseverance);
- -
- Predisposition to neuroticism (stability-control);
- -
- Open-mindedness potential (culture-experience).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 Pandemic on Mental Health in the General Population: A Systematic Review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Hatchimonji, J.S.; Swendiman, R.A.; Seamon, M.J.; Nance, M.L. Trauma Does Not Quarantine: Violence during the COVID-19 Pandemic. Ann. Surg. 2020, 272, e53. [Google Scholar] [CrossRef] [PubMed]
- Carmassi, C.; Foghi, C.; Dell’Oste, V.; Cordone, A.; Bertelloni, C.A.; Bui, E.; Dell’Osso, L. PTSD Symptoms in Healthcare Workers Facing the Three Coronavirus Outbreaks: What Can We Expect after the COVID-19 Pandemic. Psychiatry Res. 2020, 292, 113312. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, I.; Pagani, M.; Gallina, E. Post-Traumatic Stress Disorder among Healthcare Workers during the COVID-19 Pandemic in Italy: Effectiveness of an Eye Movement Desensitization and Reprocessing Intervention Protocol. Front. Psychol. 2022, 13, 964334. [Google Scholar] [CrossRef] [PubMed]
- Khalfa, S.; Touzet, C.F. EMDR Therapy Mechanisms Explained by the Theory of Neural Cognition. J. Trauma. Stress Disord. Treat. 2017, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Kanai, R.; Komura, Y.; Shipp, S.; Friston, K. Cerebral Hierarchies: Predictive Processing, Precision and the Pulvinar. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140169. [Google Scholar] [CrossRef] [Green Version]
- Persichilli, G.; Grifoni, J.; Pagani, M.; Bertoli, M.; Gianni, E.; L’Abbate, T.; Cerniglia, L.; Bevacqua, G.; Paulon, L.; Tecchio, F. Sensorimotor Interaction Against Trauma. Front. Neurosci. 2022, 16, 913410. [Google Scholar] [CrossRef]
- Tecchio, F.; Bertoli, M.; Gianni, E.; L’Abbate, T.; Paulon, L.; Zappasodi, F. To Be Is To Become. Fractal Neurodynamics of the Body-Brain Control System. Front. Physiol. 2020, 11, 609768. [Google Scholar] [CrossRef]
- da Silva, V.F.; Ribeiro, A.P.; dos Santos, V.A.; Nardi, A.E.; King, A.L.S.; Calomeni, M.R. Stimulation by Light and Sound: Therapeutics Effects in Humans. Systematic Review. Clin. Pract. Epidemiol. Ment. Health 2015, 11, 150. [Google Scholar] [CrossRef] [Green Version]
- Gerge, A.; Hawes, J.; Eklöf, L.; Pedersen, I.N. Proposed Mechanisms of Change in Arts-Based Psychotherapies. Voices A World Forum Music. Ther. 2019, 19, 31. [Google Scholar] [CrossRef] [Green Version]
- Berliner, L.; Bisson, J.; Cloitre, M.; Forbes, D.; Goldbeck, L.; Jensen, T.; Lewis, C.; Monson, C.; Olff, M.; Pilling, S.; et al. The International Society for Traumatic Stress Studies New Guidelines for the Prevention and Treatment of Posttraumatic Stress Disorder: Methodology and Development Process. J. Trauma. Stress 2019, 32, 475–483. [Google Scholar] [CrossRef]
- Brillantes-Evangelista, G. Visual arts and poetry usage for PTSD: Considerations for Treatment. In Comprehensive Guide to Post-Traumatic Stress Disorders; Springer: Cham, Switzerland, 2016; pp. 1935–1955. [Google Scholar]
- Di Marco, S.; Sulpizio, V.; Bellagamba, M.; Fattori, P.; Galati, G.; Galletti, C.; Lappe, M.; Maltempo, T.; Pitzalis, S. Multisensory Integration in Cortical Regions Responding to Locomotion-Related Visual and Somatomotor Signals. Neuroimage 2021, 244, 118581. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Levitin, D.J. The Rewards of Music Listening: Response and Physiological Connectivity of the Mesolimbic System. Neuroimage 2005, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Zatorre, R.J.; Evans, A.C.; Meyer, E. Neural Mechanisms Underlying Melodic Perception and Memory for Pitch. J. Neurosaence 1994, 14, 1908–1919. [Google Scholar] [CrossRef] [Green Version]
- Millon, T.; Lerner, M.J.; Weiner, I.B. Handbook of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; Volume 5. [Google Scholar]
- McDermott, J.H.; Simoncelli, E.P. Article Sound Texture Perception via Statistics of the Auditory Periphery: Evidence from Sound Synthesis. Neuron 2011, 71, 926–940. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.S.; Alain, C. Toward a Neurophysiological Theory of Auditory Stream Segregation. Psychol. Bull. 2007, 133, 780–799. [Google Scholar] [CrossRef] [Green Version]
- Bizley, J.K.; Cohen, Y.E. The What, Where and How of Auditory-Object Perception. Nat. Rev. Neurosci. 2013, 14, 693. [Google Scholar] [CrossRef]
- Winkler, I.; Schröger, E. Auditory Perceptual Objects as Generative Models: Setting the Stage for Communication by Sound. Brain Lang. 2015, 148, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Fogazzi, D.V.; Neary, J.P.; Sonza, A.; Reppold, C.T.; Kaiser, V.; Scassola, C.M.; Casali, K.R.; Rasia-Filho, A.A. The Prefrontal Cortex Conscious and Unconscious Response to Social/Emotional Facial Expressions Involve Sex, Hemispheric Laterality, and Selective Activation of the Central Cardiac Modulation. Behav. Brain Res. 2020, 393, 112773. [Google Scholar] [CrossRef]
- Bizzi, E.; Cheung, V.C.K.; Giese, M. The Neural Origin of Muscle Synergies. Front. Comput. Neurosci. 2013, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, T.H.; Hardikar, S.; Demoucron, M.; Niessen, M.; Demey, M.; Giot, O.; Li, Y.; Haynes, J.D.; Villringer, A.; Leman, M. Musical Agency Reduces Perceived Exertion during Strenuous Physical Performance. Proc. Natl. Acad. Sci. USA 2013, 110, 17784. [Google Scholar] [CrossRef] [PubMed]
- Leman, M. Musical Gestures and Embodied Cognition. In Proceedings of the Actes des Journées d’Informatique Musicale JIM, Mons, Belgium, 9–11 May 2012; pp. 5–7. [Google Scholar]
- Buhmann, J.; Desmet, F.; Moens, B.; Van Dyck, E.; Leman, M. Spontaneous Velocity Effect of Musical Expression on Self-Paced Walking. PLoS ONE 2016, 11, e0154414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer, T.; Sedlmeier, P.; Städtler, C.; Huron, D.; Zabelina, D. The Psychological Functions of Music Listening. Front. Psychol. 2013, 4, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niizeki, K.; Saitoh, T. Cardiolocomotor Phase Synchronization during Rhythmic Exercise. J. Phys. Fit. Sports Med. 2014, 3, 11–20. [Google Scholar] [CrossRef] [Green Version]
- McConnell, T.; Graham-Wisener, L.; Regan, J.; Mckeown, M.; Kirkwood, J.; Hughes, N.; Clarke, M.; Leitch, J.; Mcgrillen, K.; Porter, S. Evaluation of the Effectiveness of Music Therapy in Improving the Quality of Life of Palliative Care Patients: A Randomised Controlled Pilot and Feasibility Study. Pilot Feasibility Stud. 2011, 2, 70. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C.P.; Torregrosa, G.; Bardy, B.G. Sound Stabilizes Locomotor-Respiratory Coupling and Reduces Energy Cost. PLoS ONE 2012, 7, e45206. [Google Scholar] [CrossRef] [Green Version]
- van den Hout, M.A.; Rijkeboer, M.M.; Engelhard, I.M.; Klugkist, I.; Hornsveld, H.; Toffolo, M.J.B.; Cath, D.C. Tones Inferior to Eye Movements in the EMDR Treatment of PTSD. Behav. Res. Ther. 2012, 50, 275–279. [Google Scholar] [CrossRef]
- Landin-Romero, R.; Moreno-Alcazar, A.; Pagani, M.; Amann, B.L. How Does Eye Movement Desensitization and Reprocessing Therapy Work? A Systematic Review on Suggested Mechanisms of Action. Front. Psychol. 2018, 9, 1395. [Google Scholar] [CrossRef]
- Cattell, R.B.; Anderson, J.C. The Measurement of Personality and Behavior Disorders by the I. P. A. T. Music Preference Test. J. Appl. Psychol. 1953, 37, 446–454. [Google Scholar] [CrossRef]
- Smith, J.C.; Joyce, C.A. Mozart versus New Age Music: Relaxation States, Stress, and ABC Relaxation Theory. J. Music. Ther. 2004, 41, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.; Zheng, Y.; Hsiao, J.H.; Hu, X. Studying the Effect of Self-Selected Background Music on Reading Task with Eye Movements. Sci. Rep. 2023, 13, 1704. [Google Scholar] [CrossRef] [PubMed]
- Foster Vander Elst, O.; Foster, N.H.D.; Vuust, P.; Keller, P.E.; Kringelbach, M.L. The Neuroscience of Dance: A Conceptual Framework and Systematic Review. Neurosci. Biobehav. Rev. 2023, 150, 105197. [Google Scholar] [CrossRef] [PubMed]
- Buelow, M.T.; Jungers, M.K.; Parks, C.; Rinato, B. Contextual Factors Affecting Risky Decision Making: The Influence of Music on Task Performance and Perceived Distraction. Front. Psychol. 2022, 13, 818689. [Google Scholar] [CrossRef]
- Nardozzi, R. Attitudine Musicale e Verifica Del Potenziale Di Apprendimento in Musica: La Ricerca e i Test Di Edwin Gordon. Musica Docta 2020, 10, 25–61. [Google Scholar] [CrossRef]
- Deming, W.E. Out of the Crisis; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Shapiro, F. Eye Movement Desensitization: A New Treatment for Post-Traumatic Stress Disorder. J. Behav. Ther. Exp. Psychiatry 1989, 20, 211–217. [Google Scholar] [CrossRef]
- Garrido, S.; Baker, F.A.; Davidson, J.W.; Moore, G.; Wasserman, S. Music and Trauma: The Relationship between Music, Personality, and Coping Style. Front. Psychol. 2015, 6, 977. [Google Scholar] [CrossRef] [Green Version]
- Bertolotti, G.; Michielin, P.; Vidotto, G.; Sanavio, E.; Bottesi, G.; Bettinardi, O.; Zotti, A.M. Metric Qualities of the Cognitive Behavioral Assessment for Outcome Evaluation to Estimate Psychological Treatment Effects. Neuropsychiatr. Dis. Treat. 2015, 11, 2449–2460. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analsis of the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [Google Scholar] [CrossRef]
- Stickgold, R. EMDR: A Putative Neurobiological Mechanism of Action. J. Clin. Psychol. 2002, 58, 61–75. [Google Scholar] [CrossRef]
- Salimpoor, V.N.; Zald, D.H.; Zatorre, R.J.; Dagher, A.; McIntosh, A.R. Predictions and the Brain: How Musical Sounds Become Rewarding. Trends Cogn. Sci. 2015, 19, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Becker, J. Deep Listeners: Music, Emotion, and Trancing; Indiana University Press: Bloomington, IN, USA, 2004. [Google Scholar]
- Clarke, E.F. Lost and Found in Music: Music, Consciousness and Subjectivity. Music. Sci. 2014, 18, 354–368. [Google Scholar] [CrossRef]
- Centonze, D.; Siracusano, A.; Calabresi, P.; Bernardi, G. Removing Pathogenic Memories: A Neurobiology of Psychotherapy. Mol. Neurobiol. 2005, 32, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Alberini, C.M.; Ledoux, J.E. Memory Reconsolidation. Curr. Biol. 2013, 23, R746–R750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Kolk, B.A. The Body Keeps Score: Approaches to the Psychobiology of Posttraumatic Stress Disorder. Available online: https://psycnet.apa.org/record/1996-98017-010 (accessed on 12 June 2023).
- van Der Kolk, B.A.; Fisler, R. Dissociation and the Fragmentary Nature of Traumatic Memories: Overview and Exploratory Study. J. Trauma. Stress 1995, 8, 505–525. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Oquendo, M.A.; Simpson, N.; Van Heertum, R.L.; Mann, J.J.; Parsey, R.V. Brain Serotonin1A Receptor Binding in Major Depression Is Related to Psychic and Somatic Anxiety. Biol. Psychiatry 2005, 58, 947–954. [Google Scholar] [CrossRef]
- Blood, A.J.; Zatorre, R.J. Intensely Pleasurable Responses to Music Correlate with Activity in Brain Regions Implicated in Reward and Emotion. Proc. Natl. Acad. Sci. USA 2001, 98, 11818. [Google Scholar] [CrossRef]
- Alluri, V.; Brattico, E.; Toiviainen, P.; Burunat, I.; Bogert, B.; Numminen, J.; Kliuchko, M. Musical Expertise Modulates Functional Connectivity of Limbic Regions during Continuous Music Listening. Psychomusicology Music. Mind Brain 2015, 25, 443–454. [Google Scholar] [CrossRef]
- Juslin, P.N.; Västfjäll, D. Emotional Responses to Music: The Need to Consider Underlying Mechanisms. Behav. Brain Sci. 2008, 31, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Huron, D. Sweet Anticipation: Music and the Psychology of Expectation; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar] [CrossRef]
- Leman, M. The Expressive Moment: How Interaction (with Music) Shapes Human Empowerment; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gebauer, L.; Kringelbach, M.L.; Vuust, P. Ever-Changing Cycles of Musical Pleasure: The Role of Dopamine and Anticipation. Psychomusicology Music. Mind Brain 2012, 22, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Zatorre, R.J.; Salimpoor, V.N. From Perception to Pleasure: Music and Its Neural Substrates. Proc. Natl. Acad. Sci. USA 2013, 110, 10430–10437. [Google Scholar] [CrossRef] [PubMed]
- Zatorre, R.J. Music and the Brain. Ann. N. Y. Acad. Sci. 2003, 999, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, R.M.; Shapiro, F. EMDR and the Adaptive Information Processing ModelPotential Mechanisms of Change. J. EMDR Pract. Res. 2008, 2, 315–325. [Google Scholar] [CrossRef]
- Nolen-Hoeksema, S. The Response Styles Theory. In Depressive Rumination: Nature, Theory and Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Van Den Hout, M.A.; Engelhard, I.M.; Beetsma, D.; Slofstra, C.; Hornsveld, H.; Houtveen, J.; Leer, A. EMDR and Mindfulness. Eye Movements and Attentional Breathing Tax Working Memory and Reduce Vividness and Emotionality of Aversive Ideation. J. Behav. Ther. Exp. Psychiatry 2011, 42, 423–431. [Google Scholar] [CrossRef]
- Sherin, J.E.; Nemeroff, C.B. Post-Traumatic Stress Disorder: The Neurobiological Impact of Psychological Trauma. Dialogues Clin. Neurosci. 2011, 13, 263–278. [Google Scholar] [CrossRef]
- Vance, M.C.; Kovachy, B.; Dong, M.; Bui, E. Peritraumatic Distress: A Review and Synthesis of 15 Years of Research. J. Clin. Psychol. 2018, 74, 1457–1484. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Cancelli, A.; Cottone, C.; Giordani, A.; Asta, G.; Lupoi, D.; Pizzella, V.; Tecchio, F. MRI-Guided Regional Personalized Electrical Stimulation in Multisession and Home Treatments. Front. Neurosci. 2018, 12, 284. [Google Scholar] [CrossRef]
- Tecchio, F.; Cancelli, A.; Cottone, C.; Zito, G.; Pasqualetti, P.; Ghazaryan, A.; Rossini, P.M.; Filippi, M.M. Multiple Sclerosis Fatigue Relief by Bilateral Somatosensory Cortex Neuromodulation. J. Neurol. 2014, 261, 1552–1558. [Google Scholar] [CrossRef]
- Tecchio, F.; Cancelli, A.; Pizzichino, A.; L’Abbate, T.; Gianni, E.; Bertoli, M.; Paulon, L.; Zannino, S.; Giordani, A.; Lupoi, D.; et al. Home Treatment against Fatigue in Multiple Sclerosis by a Personalized, Bilateral Whole-Body Somatosensory Cortex Stimulation. Mult. Scler. Relat. Disord. 2022, 63, 103813. [Google Scholar] [CrossRef]
- Gilbert, J.A. Seasonal and Pandemic Influenza: Global Fatigue versus Global Preparedness. Lancet Respir. Med. 2018, 6, 94–95. [Google Scholar] [CrossRef] [Green Version]
- Munblit, D.; Nicholson, T.; Akrami, A.; Apfelbacher, C.; Chen, J.; De Groote, W.; Diaz, J.V.; Gorst, S.L.; Harman, N.; Kokorina, A.; et al. A Core Outcome Set for Post-COVID-19 Condition in Adults for Use in Clinical Practice and Research: An International Delphi Consensus Study. Lancet Respir. Med. 2022, 10, 715–724. [Google Scholar] [CrossRef]
- Lucarelli, L.; Ambruzzi, A.M.; Cimino, S.; D’Olimpio, F.; Finistrella, V. Feeding disorders in infancy: An empirical study on mother-infant interactions. Minerva Pediatr. 2003, 55, 243–259. [Google Scholar]
- Rentfrow, P.J.; Goldberg, L.R.; Levitin, D.J. The Structure of Musical Preferences: A Five-Factor Model. J. Personal. Soc. Psychol. 2011, 100, 1139–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M. Music Preferences and Personality Types: An Exploratory Study. Recent Adv. Psychol. 2017, 4, 52–63. [Google Scholar]
- Rentfrow, P.J.; Gosling, S.D. The Do Re Mi’s of Everyday Life: The Structure and Personality Correlates of Music Preferences. J. Personal. Soc. Psychol. 2003, 84, 1236–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa Jr, P.T.; McCrae, R.R. Six Approaches to the Explication of Facet-level Traits: Examples from Conscientiousness—Costa—1998—European Journal of Personality—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-0984(199803/04)12:2%3C117::AID-PER295%3E3.0.CO;2-C (accessed on 12 June 2023).
- Meier, N.C. The Meier Art Tests. I. Art Judgment. Available online: https://psycnet.apa.org/record/1941-01089-000 (accessed on 12 June 2023).
- Cattell, R.B.; McMichael, R.E. Clinical Diagnosis by the IPAT Music Preference Test. J. Consult. Psychol. 1960, 24, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Shuter-Dyson, R. Musical Ability. In Ciba Foundation Symposium; John Wiley & Sons: Hoboken, NJ, USA, 1993; Volume 178. [Google Scholar] [CrossRef]
- Bleidorn, W.; Schönbrodt, F.; Gebauer, J.E.; Rentfrow, P.J.; Potter, J.; Gosling, S.D. To Live Among Like-Minded Others. Psychol. Sci. 2016, 27, 419–427. [Google Scholar] [CrossRef] [Green Version]
Phase | EMDR | EMDR+ |
---|---|---|
1. ANAMNESIS | Therapist develops the therapeutic plan depending on the patient’s history and functioning, considering health, work, and social status, and identifying the PTSD triggers. The therapist scores the CBA. | After CBA scoring, through the MAAS test the patient identifies her/his favorite music piece (Reward-Song) and evocative music piece (Key-Song). |
2. PREPARATION | Therapist explains the EMDR treatment, obtains informed consent, and teaches relaxation techniques by encouraging the patient to develop new coping strategies (deep respiration, muscular relaxation). | |
3. ASSESSMENT | The therapist leads the patient in evocating her/his target memory by recalling images, emotions, physical sensations, and associated thoughts identifying her/his positive cognition identifying and assessing her/his secure place. SUD and VOC collection. | The patient listens to Reward-Song to increase concentration on safe place. |
4. DESENSITIZATION | Visual BAS, while the patient focuses on the traumatic event until SUD is 0 and/or VOC is 7 new thoughts, sensations, images, and feelings, may emerge. | Audio-visual BAS instead of visual BAS. Patient listens to Key-Song. The patient listens to Reward-Song (secure place) to contain spill over. |
5. INSTALLATION | During visual BAS the patient reinforces positive cognition during trauma revocation until it is over. | Audio-visual BAS instead of visual BAS. The patient listens to Key-Song. |
6. BODY SCAN | Patient focuses on both the PTSD triggers and the positive cognition while scanning the body from head to toe. Any lingering disturbance from the body is reprocessed. | The patient listens to Reward-Song |
7. CLOSURE | Patients are assisted to return to a state of calm, considering if the reprocessing is complete. Reprocessing is finalized when SUD = 0 and VOC = 7. The therapist scores the CBA. | The patient listens to Reward-Song. |
8. REVALUATION | Patient and therapist discuss recently processed memories to ensure that distress is still low, and that positive cognition is still strong. Future targets and directions for continued treatment are determined. |
PwPT | Sex | Age (years) | Symptoms’ Duration (months) | Sessions (#) |
---|---|---|---|---|
Ptsd1 | F | 34 | 6 | 8 |
Ptsd2 | F | 49 | 6 | 9 |
Ptsd3 | M | 64 | 6 | 8 |
Ptsd4 | M | 61 | 6 | 8 |
Ptsd5 | F | 56 | 8 | 8 |
Ptsd6 | F | 27 | 7 | 10 |
Pysd7 | M | 58 | 6 | 8 |
Ptsd8 | M | 71 | 120 | 12 |
Ptsd9 | M | 47 | 15 | 8 |
Ptsd10 | F | 22 | 6 | 8 |
Ptsd11 | M | 38 | 6 | 8 |
Ptsd12 | F | 54 | 6 | 8 |
Mean | Six Female Six Male | 48.4 | 8.3 | 8.6 |
sd | 15.3 | 3.8 | 1.2 | |
(min, max) | (22, 75) | (6, 120) | (8, 12) |
Domain | Baseline | After EMDR+ | p |
---|---|---|---|
WELL-BEING | 11.2 ± 1.5 | 36.2 ± 4.0 | <0.001 |
POSITIVE CHANGE | 19.9 ± 4.0 | 34.9 ± 3.8 | <0.001 |
ANXIETY | 38.3 ± 4.0 | 8.3 ± 1.6 | <0.001 |
DEPRESSION | 53.3 ± 1.9 | 19.8 ± 1.7 | <0.001 |
DISEASE | 46.7 ± 2.5 | 25.8 ± 2.3 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grifoni, J.; Pagani, M.; Persichilli, G.; Bertoli, M.; Bevacqua, M.G.; L’Abbate, T.; Flamini, I.; Brancucci, A.; Cerniglia, L.; Paulon, L.; et al. Auditory Personalization of EMDR Treatment to Relieve Trauma Effects: A Feasibility Study [EMDR+]. Brain Sci. 2023, 13, 1050. https://doi.org/10.3390/brainsci13071050
Grifoni J, Pagani M, Persichilli G, Bertoli M, Bevacqua MG, L’Abbate T, Flamini I, Brancucci A, Cerniglia L, Paulon L, et al. Auditory Personalization of EMDR Treatment to Relieve Trauma Effects: A Feasibility Study [EMDR+]. Brain Sciences. 2023; 13(7):1050. https://doi.org/10.3390/brainsci13071050
Chicago/Turabian StyleGrifoni, Joy, Marco Pagani, Giada Persichilli, Massimo Bertoli, Maria Gabriela Bevacqua, Teresa L’Abbate, Ilaria Flamini, Alfredo Brancucci, Luca Cerniglia, Luca Paulon, and et al. 2023. "Auditory Personalization of EMDR Treatment to Relieve Trauma Effects: A Feasibility Study [EMDR+]" Brain Sciences 13, no. 7: 1050. https://doi.org/10.3390/brainsci13071050
APA StyleGrifoni, J., Pagani, M., Persichilli, G., Bertoli, M., Bevacqua, M. G., L’Abbate, T., Flamini, I., Brancucci, A., Cerniglia, L., Paulon, L., & Tecchio, F. (2023). Auditory Personalization of EMDR Treatment to Relieve Trauma Effects: A Feasibility Study [EMDR+]. Brain Sciences, 13(7), 1050. https://doi.org/10.3390/brainsci13071050