Long-Term Lower Limb Motor Function Correlates with Middle Cerebellar Peduncle Structural Integrity in Sub-Acute Stroke: A ROI-Based MRI Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Assessment
2.3. MRI Protocol
2.4. Image Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sin, D.S.; Kim, M.H.; Park, S.A.; Joo, M.C.; Kim, M.S. Crossed Cerebellar Diaschisis: Risk Factors and Correlation to Functional Recovery in Intracerebral Hemorrhage. Ann. Rehabil. Med. 2018, 42, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunz, W.G.; Sommer, W.H.; Höhne, C.; Fabritius, M.P.; Schuler, F.; Dorn, F.; Othman, A.E.; Meinel, F.G.; von Baumgarten, L.; Reiser, M.F.; et al. Crossed cerebellar diaschisis in acute ischemic stroke: Impact on morphologic and functional outcome. J. Cereb. Blood Flow Metab. 2017, 37, 3615–3624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agosta, F.; Gatti, R.; Sarasso, E.; Volonté, M.A.; Canu, E.; Meani, A.; Sarro, L.; Copetti, M.; Cattrysse, E.; Kerckhofs, E.; et al. Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J. Neurol. 2017, 264, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.M.; Fridriksson, J.; Richardson, J.D.; Stewart, J.C.; Rorden, C.; Bonilha, L.; Middleton, A.; Fritz, S.L. Upper and Lower Limb Motor Function Correlates with Ipsilesional Corticospinal Tract and Red Nucleus Structural Integrity in Chronic Stroke: A Cross-Sectional, ROI-Based MRI Study. Behav. Neurol. 2021, 2021, 3010555. [Google Scholar] [CrossRef]
- Ullman, M.T. The role of declarative and procedural memory in disorders of language. Linguist. Var. 2013, 13, 133–154. [Google Scholar] [CrossRef]
- Ullman, M.T. Chapter 76-The declarative/procedural model: A Neurobiological Model of Language Learning, Knowledge, and Use. In Neurobiology of Language; Gregory, H., Steven, L.S., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2016; pp. 953–968. [Google Scholar]
- Ullman, M.T.; Lovelett, J.T. Implications of the declarative/procedural model for improving second language learning: The role of memory enhancement techniques. Second. Lang. Res. 2018, 34, 39–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, Z.; Li, N.; Liang, J.; Zou, Y.; Wu, H.; Kang, Z.; Dou, Z.; Qiu, W. Regional Alteration within the Cerebellum and the Reorganization of the Cerebrocerebellar System following Poststroke Aphasia. Neural Plast. 2022, 2022, 3481423. [Google Scholar] [CrossRef]
- Liu, G.; Guo, Y.; Dang, C.; Peng, K.; Tan, S.; Xie, C.; Xing, S.; Zeng, J. Longitudinal changes in the inferior cerebellar peduncle and lower limb motor recovery following subcortical infarction. BMC Neurol. 2021, 21, 320. [Google Scholar] [CrossRef]
- Soulard, J.; Huber, C.; Baillieul, S.; Thuriot, A.; Renard, F.; Aubert Broche, B.; Krainik, A.; Vuillerme, N.; Jaillard, A.; ISIS-HERMES Group. Motor tract integrity predicts walking recovery: A diffusion MRI study in subacute stroke. Neurology 2020, 94, e583–e593. [Google Scholar] [CrossRef]
- Wang, D.M.; Li, J.; Liu, J.R.; Hu, H.Y. Diffusion tensor imaging predicts long-term motor functional outcome in patients with acute supratentorial intracranial hemorrhage. Cerebrovasc. Dis. 2012, 34, 199–205. [Google Scholar] [CrossRef]
- Hayward, D.A.; Pomares, F.; Casey, K.F.; Ismaylova, E.; Levesque, M.; Greenlaw, K.; Vitaro, F.; Brendgen, M.; Rénard, F.; Dionne, G.; et al. Birth weight is associated with adolescent brain development: A multimodal imaging study in monozygotic twins. Hum. Brain Mapp. 2020, 41, 5228–5239. [Google Scholar] [CrossRef]
- Guder, S.; Frey, B.M.; Backhaus, W.; Braass, H.; Timmermann, J.E.; Gerloff, C.; Schulz, R. The Influence of Cortico-Cerebellar Structural Connectivity on Cortical Excitability in Chronic Stroke. Cereb. Cortex 2020, 30, 1330–1344. [Google Scholar] [CrossRef] [PubMed]
- Koch, P.; Schulz, R.; Hummel, F.C. Structural connectivity analyses in motor recovery research after stroke. Ann. Clin. Transl. Neurol. 2016, 3, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Kyeong, S.; Do, K.H.; Lim, S.K.; Cho, H.K.; Jung, S.; Kim, H.W. Brain mapping for long-term recovery of gait after supratentorial stroke: A retrospective cross-sectional study. Medicine 2018, 97, e0453. [Google Scholar] [CrossRef] [PubMed]
- Zrinzo, L.; Hyam, J. Deep Brain Stimulation for Movement Disorders. In Principles of Neurological Surgery, 4th ed.; Ellenbogen, R.G., Sekhar, L.N., Kitchen, N., Eds.; Elsevier: Philadelphia, PA, USA, 2018; pp. 781–798. [Google Scholar]
- Puig, J.; Blasco, G.; Schlaug, G.; Stinear, C.M.; Daunis-I-Estadella, P.; Biarnes, C.; Figueras, J.; Serena, J.; Hernández-Pérez, M.; Alberich-Bayarri, A.; et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke. Neuroradiology 2017, 59, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Handelzalts, S.; Melzer, I.; Soroker, N. Analysis of Brain Lesion Impact on Balance and Gait Following Stroke. Front. Hum. Neurosci. 2019, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wang, J.; Chhatbar, P.Y.; Doughty, C.; Landsittel, D.; Lioutas, V.A.; Kautz, S.A.; Schlaug, G. Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Ann. Neurol. 2015, 78, 860–870. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Alshikho, M.J.; Wang, Y.; Luo, X.; Zafonte, R.; Herbert, M.R.; Wang, Q.M. Correlation of Fractional Anisotropy with Motor Recovery in Patients with Stroke After Postacute Rehabilitation. Arch. Phys. Med. Rehabil. 2016, 97, 1487–1495. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Wang, J.; Luo, F.; Zhao, Y.; Wang, L.; Li, Y.; Zhang, M. Diffusion tensor imaging can predict long-term functional outcomes after ischemic stroke. Chin. J. Phys. Med. Rehabil. 2017, 39, 11–16. [Google Scholar]
- Moura, L.M.; Luccas, R.; de Paiva, J.; Amaro, E., Jr.; Leemans, A.; Leite, C.; Otaduy, M.; Conforto, A.B. Diffusion Tensor Imaging Biomarkers to Predict Motor Outcomes in Stroke: A Narrative Review. Front. Neurol. 2019, 10, 445. [Google Scholar] [CrossRef] [Green Version]
- Carrera, E.; Tononi, G. Diaschisis: Past, present, future. Brain A J. Neurol. 2014, 137, 2408–2422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, W.H.; Bollwein, C.; Thierfelder, K.M.; Baumann, A.; Janssen, H.; Ertl-Wagner, B.; Reiser, M.F.; Plate, A.; Straube, A.; von Baumgarten, L. Crossed cerebellar diaschisis in patients with acute middle cerebral artery infarction: Occurrence and perfusion characteristics. J. Cereb. Blood Flow Metab. 2016, 36, 743–754. [Google Scholar] [CrossRef]
- Zhang, L.; Li, M.; Sui, R. Correlation between cerebellar metabolism and post-stroke depression in patients with ischemic stroke. Oncotarget 2017, 8, 91711–91722. [Google Scholar] [CrossRef] [Green Version]
- Polat, G. Evaluation of relationship between middle cerebellar peduncle asymmetry and dominant hand by diffusion tensor imaging. Folia Morphol. 2019, 78, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Cheng, J.; Lin, Y.; Yang, L.; Cao, Z.; Yang, Y. Changes of fractional anisotropy and RGMa in crossed cerebellar diaschisis induced by middle cerebral artery occlusion. Exp. Ther. Med. 2019, 18, 3595–3602. [Google Scholar] [CrossRef] [Green Version]
- Kohannim, O.; Huang, J.C.; Hathout, G.M. Detection of subthreshold atrophy in crossed cerebellar degeneration via two-compartment mathematical modeling of cell density in DWI: A proof of concept study. Med. Hypotheses 2018, 120, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kyeong, S.; Kang, H.; Kyeong, S.; Kim, D.H. Altered structural connectivity associated with motor improvement in chronic supratentorial ischemic stroke. Neuroreport 2019, 30, 688–693. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Casula, E.P.; Iosa, M.; Paolucci, S.; Pellicciari, M.C.; Cinnera, A.M.; Ponzo, V.; Maiella, M.; Picazio, S.; et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients with Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Doughty, C.; Wang, J.; Feng, W.; Hackney, D.; Pani, E.; Schlaug, G. Detection and Predictive Value of Fractional Anisotropy Changes of the Corticospinal Tract in the Acute Phase of a Stroke. Stroke 2016, 47, 1520–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaram, G.; Stagg, C.J.; Esser, P.; Kischka, U.; Stinear, J.; Johansen-Berg, H. Relationships between functional and structural corticospinal tract integrity and walking post stroke. Clin. Neurophysiol. 2012, 123, 2422–2428. [Google Scholar] [CrossRef] [Green Version]
- Hirai, K.K.; Groisser, B.N.; Copen, W.A.; Singhal, A.B.; Schaechter, J.D. Comparing prognostic strength of acute corticospinal tract injury measured by a new diffusion tensor imaging based template approach versus common approaches. J. Neurosci. Methods 2016, 257, 204–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Fisher, B.E.; Schweighofer, N.; Leahy, R.M.; Haldar, J.P.; Choi, S.; Kay, D.B.; Gordon, J.; Winstein, C.J. A comparison of seven different DTI-derived estimates of corticospinal tract sstructural characteristics in chronic stroke survivors. J. Neurosci. Methods 2018, 304, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.E.; Gabr, R.E.; Hasan, K.M.; George, S.; Arevalo, O.D.; Zha, A.; Alderman, S.; Jeevarajan, J.; Mas, M.F.; Zhang, X.; et al. Ongoing Secondary Degeneration of the Limbic System in Patients with Ischemic Stroke: A Longitudinal MRI Study. Front. Neurol. 2019, 10, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Patients | MCA Infarction | ICH | Control | |
---|---|---|---|---|
# of patients | 44 | 24 | 20 | 19 |
Age (Yrs) | 58.9 ± 9.2 | 58.5 ± 10.2 | 59.5 ± 8.0 | 55.95 ± 7.37 |
Gender (%, Female) | 18 | 21 | 15 | 42 |
Lesion side (%, Right) | 31.8 | 33.3 | 30 | / |
Lesion Volume (in cc) | 36.5 ± 38.2 | 45.4 ± 46.7 | 25.9± 20.9 | / |
Handedness (%, Right) | 100 | 100 | 100 | / |
NIHSS, baseline | 12.1 ± 4.6 | 11.1 ± 5.0 | 13.2 ± 3.8 | / |
NIHSS, 12-months | 7.0 ± 4.6 | 6.8 ± 4.7 | 7.3 ± 4.6 | / |
UE-PG, baseline(%, ≤1) | 2.3 | 4.2 | 0 | / |
UE-PG, 12-months(%, ≤1) | 43.2 | 41.7 | 45 | / |
LE-PG, baseline(%, ≤1) | 25 | 25 | 25 | / |
LE-PG, 12-months(%, ≤1) | 63.6 | 66.7 | 60 | / |
BBA, 12-months | 8.6 ± 3.5 | 9.6 ± 2.9 | 7.5 ± 3.9 | / |
FIM motor sub-score, 12-months | 70.3 ± 20.4 | 73.6 ± 18.8 | 66.5 ± 22.0 | / |
MRS, 12-months (%, ≤2) | 31.8 | 41.7 | 20 | / |
Imaging days post-stroke (days) | 44.0 ± 22.1 | 42.6 ± 17.3 | 45.7 ± 27.2 | / |
physical therapy duration (days) | 84.5 ± 71.2 | 82.2 ± 67.6 | 87.3 ± 77.0 | / |
Following up days post-stroke(days) | 359.8 ± 64.1 | 351.5 ± 45.4 | 369.8 ± 81.4 | / |
Hypertension (%) | 55 | 46 | 65 | 5 |
Hyperlipidemia (%) | 52 | 58 | 45 | 16 |
Diabetes (%) | 36 | 46 | 25 | 5 |
Coronary artery disease (%) | 32 | 36 | 28 | 21 |
Atrial Fibrillation (%) | 25 | 29 | 20 | 0 |
Smoking (%) | 50 | 50 | 50 | 32 |
Alcohol (%) | 48 | 46 | 50 | 26 |
Controls a | All Patients b | ICH b | IS-MCA b | |
---|---|---|---|---|
CP | ||||
rFA | 0.946 ± 0.021 | 0.794 ± 0.015 * | 0.745 ± 0.142 * | 0.835 ± 0.138 * |
FA LI | 0.008 ± 0.03 | −0.123 ± 0.092 * | −0.156 ± 0.092 * | −0.096 ± 0.084 * |
rADC | 0.951 ± 0.021 | 0.877 ± 0.099 * | 0.86 ± 0.098 * | 0.892 ± 0.1 |
ADC LI | 0.002 ± 0.03 | 0.019 ± 0.089 | 0.021 ± 0.098 | 0.017 ± 0.083 |
MCP | ||||
rFA | 0.972 ± 0.021 | 0.909 ± 0.0138 * | 0.927 ± 0.145 | 0.894 ± 0.132 * |
FA LI | −0.01 ± 0.085 | −0.046 ± 0.082 * | −0.028 ± 0.087 * | −0.061 ± 0.075 * |
rADC | 0.951 ± 0.032 | 0.905 ± 0.068 * | 0.92 ± 0.054 | 0.892 ± 0.076 * |
ADC LI | −0.012 ± 0.029 | 0.022 ± 0.06 * | 0.029 ± 0.044 * | 0.016 ± 0.072 |
CP rFA | CP LI a | MCP rFA | MCP LI b | |||||
---|---|---|---|---|---|---|---|---|
r * | p Value a | r * | p Value | |||||
NIHSS, 12-months | −0.403 | 0.007 | −0.403 | 0.007 | −0.519 | 0.000 | −0.407 | 0.006 |
UE-PG, 12-months | −0.565 | 0.000 | −0.554 | 0.000 | −0.642 | 0.000 | −0.528 | 0.000 |
LE-PG, 12-months | −0.386 | 0.010 | −0.372 | 0.013 | −0.651 | 0.000 | −0.575 | 0.000 |
PG, 12-months | −0.541 | 0.000 | −0.528 | 0.000 | −0.698 | 0.000 | −0.595 | 0.000 |
BBA | 0.581 | 0.000 | 0.573 | 0.000 | 0.547 | 0.004 | 0.452 | 0.002 |
MRS | −0.494 | 0.001 | −0.49 | 0.001 | −0.430 | 0.004 | −0.344 | 0.022 |
FIM motor sub-score | 0.435 | 0.003 | 0.43 | 0.004 | 0.487 | 0.001 | 0.443 | 0.003 |
Motor Outcome (n) | Lower Extremity Motor Outcome (n) | Upper Extremity Motor Outcome (n) | ||||
---|---|---|---|---|---|---|
Good | Poor | Good | Poor | Good | Poor | |
Age ≥ 65 years | ||||||
Yes | 7 | 7 | 8 | 6 | 6 | 8 |
No | 14 | 16 | 20 | 10 | 13 | 17 |
p value | 1 | 0.738 | 1 | |||
NIHSS ≥ 8 | ||||||
Yes | 10 | 22 | 17 | 15 | 10 | 22 |
No | 11 | 1 | 11 | 1 | 9 | 3 |
p value | 0.000 † | 0.032 † | 0.016 † | |||
Lesion volume ≥ 30 mL | ||||||
Yes | 5 | 14 | 10 | 9 | 3 | 16 |
No | 16 | 9 | 18 | 7 | 16 | 9 |
p value | 0.017 † | 0.220 | 0.002 † | |||
Intraventricular bleeding (for ICH) | ||||||
Yes | 2 | 7 | 4 | 5 | 2 | 7 |
No | 7 | 4 | 8 | 3 | 7 | 4 |
p value | 0.092 | 0.362 | 0.092 | |||
CP rFA ≥ 0.745 # | ||||||
Yes | 19 | 7 | 22 | 5 | 19 | 7 |
No | 2 | 16 | 6 | 11 | 0 | 18 |
p value | 0.000 † | 0.003 † | 0.000 † | |||
MCP rFA ≥ 0.925 | ||||||
Yes | 17 | 5 | 22 | 0 | 15 | 7 |
No | 4 | 18 | 6 | 16 | 4 | 18 |
p value | 0.000 † | 0.000 † | 0.002 † | |||
CP LI ≥ −0.16895 @ | ||||||
Yes | 19 | 7 | 24 | 6 | 19 | 7 |
No | 2 | 16 | 4 | 10 | 0 | 18 |
p value | 0.000 † | 0.002 † | 0.000 † | |||
MCP LI ≥ −0.04975 $ | ||||||
Yes | 17 | 6 | 24 | 2 | 18 | 13 |
No | 4 | 17 | 4 | 14 | 1 | 12 |
p value | 0.000 † | 0.000 † | 0.002 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Wang, L.; Guo, D.; Pan, S.; Mao, L.; Zhao, Y.; Zou, L.; Zhao, Y.; Shi, A.; Chen, Z. Long-Term Lower Limb Motor Function Correlates with Middle Cerebellar Peduncle Structural Integrity in Sub-Acute Stroke: A ROI-Based MRI Cohort Study. Brain Sci. 2023, 13, 412. https://doi.org/10.3390/brainsci13030412
Wang D, Wang L, Guo D, Pan S, Mao L, Zhao Y, Zou L, Zhao Y, Shi A, Chen Z. Long-Term Lower Limb Motor Function Correlates with Middle Cerebellar Peduncle Structural Integrity in Sub-Acute Stroke: A ROI-Based MRI Cohort Study. Brain Sciences. 2023; 13(3):412. https://doi.org/10.3390/brainsci13030412
Chicago/Turabian StyleWang, Daming, Lingyan Wang, Dazhi Guo, Shuyi Pan, Lin Mao, Yifan Zhao, Liliang Zou, Ying Zhao, Aiqun Shi, and Zuobing Chen. 2023. "Long-Term Lower Limb Motor Function Correlates with Middle Cerebellar Peduncle Structural Integrity in Sub-Acute Stroke: A ROI-Based MRI Cohort Study" Brain Sciences 13, no. 3: 412. https://doi.org/10.3390/brainsci13030412
APA StyleWang, D., Wang, L., Guo, D., Pan, S., Mao, L., Zhao, Y., Zou, L., Zhao, Y., Shi, A., & Chen, Z. (2023). Long-Term Lower Limb Motor Function Correlates with Middle Cerebellar Peduncle Structural Integrity in Sub-Acute Stroke: A ROI-Based MRI Cohort Study. Brain Sciences, 13(3), 412. https://doi.org/10.3390/brainsci13030412