Changes in ImPACT Cognitive Subtest Networks Following Sport-Related Concussion
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measure
2.3. Procedure
2.4. Analyses
2.4.1. Network Architecture
2.4.2. Centrality Analysis
2.4.3. Network Accuracy
2.4.4. Sensitivity Analysis
2.4.5. Network Comparison
2.4.6. Supplemental Analyses
3. Ethical Considerations
4. Results
4.1. Network Architecture
4.2. Centrality Results
4.3. Network Accuracy Results
4.4. Sensitivity Analysis Results
4.5. Network Comparison Results
4.6. Supplemental Cognitive Composite Score Comparisons
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCrory, P.; Meeuwisse, W.; Dvorak, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus statement on concussion in sport—The 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 2017, 51, 838–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giza, C.C.; Hovda, D.A. The New Neurometabolic Cascade of Concussion. Neurosurgery 2014, 75, S24–S33. [Google Scholar] [CrossRef] [Green Version]
- Belanger, H.G.; Vanderploeg, R.D. The neuropsychological impact of sports-related concussion: A meta-analysis. J. Int. Neuropsychol. Soc. 2005, 11, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Broglio, S.P.; McAllister, T.; Katz, B.P.; LaPradd, M.; Zhou, W.; McCrea, M.A.; Hoy, A.; Hazzard, J.B.; Kelly, L.A.; DiFiori, J.; et al. The Natural History of Sport-Related Concussion in Collegiate Athletes: Findings from the NCAA-DoD CARE Consortium. Sports Med. 2021, 52, 403–415. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, A.-A.; Tang, K.; Yeates, K.; Pusic, M.; Boutis, K.; Craig, W.; Gravel, J.; Freedman, S.B.; Gagnon, I.; Gioia, G.A.; et al. Natural Progression of Symptom Change and Recovery From Concussion in a Pediatric Population. JAMA Pediatr. 2019, 173, e183820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell. ImPACT Administration and Interpretation Manual (Version 2.1) [Computer Software]; ImPACT Applications: Coralville, IA, USA.
- Van Der Maas, H.L.J.; Dolan, C.V.; Grasman, R.P.P.P.; Wicherts, J.M.; Huizenga, H.M.; Raijmakers, M.E.J. A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychol. Rev. 2006, 113, 842–861. [Google Scholar] [CrossRef] [PubMed]
- Kan, K.-J.; van der Maas, H.L.; Levine, S.Z. Extending psychometric network analysis: Empirical evidence against g in favor of mutualism? Intelligence 2019, 73, 52–62. [Google Scholar] [CrossRef]
- Iverson, G.L. Network Analysis and Precision Rehabilitation for the Post-concussion Syndrome. Front. Neurol. 2019, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Iverson, G.L.; Jones, P.J.; Karr, J.E.; Maxwell, B.; Zafonte, R.; Berkner, P.D.; McNally, R.J. Architecture of Physical, Cognitive, and Emotional Symptoms at Preseason Baseline in Adolescent Student Athletes With a History of Mental Health Problems. Front. Neurol. 2020, 11, 175. [Google Scholar] [CrossRef] [Green Version]
- Iverson, G.L.; Jones, P.J.; Karr, J.E.; Maxwell, B.; Zafonte, R.; Berkner, P.D.; McNally, R.J. Network Structure of Physical, Cognitive, and Emotional Symptoms at Preseason Baseline in Student Athletes with Attention-Deficit/ Hyperactivity Disorder. Arch. Clin. Neuropsychol. 2020, 35, 1109–1122. [Google Scholar] [CrossRef]
- Rabinowitz, A.R.; Fisher, A.J. Person-Specific Methods for Characterizing the Course and Temporal Dynamics of Concussion Symptomatology: A Pilot Study. Sci. Rep. 2020, 10, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preszler, J.; Manderino, L.; Fazio-Sumrok, V.; Eagle, S.R.; Holland, C.; Collins, M.W.; Kontos, A.P. Multidomain concussion symptoms in adolescents: A network analysis. Appl. Neuropsychol. Child 2022, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.J.; Salva, C.E.; Rodrigues, J.; Maietta, J.; Kuwabara, H.C.; Ross, S.; Kinsora, T.F.; Allen, D.N. Characterizing the Network Structure of Post-Concussion Symptoms. Arch. Clin. Neuropsychol. 2022, 37, 1248. [Google Scholar] [CrossRef]
- Hartung, J.; Engelhardt, L.E.; Thibodeaux, M.L.; Harden, K.P.; Tucker-Drob, E.M. Developmental transformations in the structure of executive functions. J. Exp. Child Psychol. 2019, 189, 104681. [Google Scholar] [CrossRef]
- Vandenbroucke, L.; Weeda, W.; Lee, N.; Baeyens, D.; Westfall, J.; Figner, B.; Huizinga, M. Heterogeneity in Cognitive and Socio-Emotional Functioning in Adolescents With On-Track and Delayed School Progression. Front. Psychol. 2018, 9, 1572. [Google Scholar] [CrossRef]
- Maerlender, A.; Flashman, L.; Kessler, A.; Kumbhani, S.; Greenwald, R.; Tosteson, T.; McAllister, T. Discriminant construct validity of ImPACT™: A companion study. Clin. Neuropsychol. 2012, 27, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Schatz, P.; Ferris, C.S. One-Month Test-Retest Reliability of the ImPACT Test Battery. Arch. Clin. Neuropsychol. 2013, 28, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Schatz, P. Long-Term Test-Retest Reliability of Baseline Cognitive Assessments Using ImPACT. Am. J. Sports Med. 2009, 38, 47–53. [Google Scholar] [CrossRef]
- Elbin, R.; Schatz, P.; Covassin, T. One-Year Test-Retest Reliability of the Online Version of ImPACT in High School Athletes. Am. J. Sports Med. 2011, 39, 2319–2324. [Google Scholar] [CrossRef]
- Van Kampen, D.A.; Lovell, M.R.; Pardini, J.E.; Collins, M.W.; Fu, F.H. The “value added” of neurocognitive testing after sports-related concussion. Am. J. Sport. Med. 2006, 34, 1630–1635. [Google Scholar] [CrossRef]
- Schatz, P.; Pardini, J.E.; Lovell, M.R.; Collins, M.W.; Podell, K. Sensitivity and specificity of the ImPACT Test Battery for concussion in athletes. Arch. Clin. Neuropsychol. 2006, 21, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epskamp, S.; Cramer, A.O.J.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Epskamp, S.; Fried, E.I. A tutorial on regularized partial correlation networks. Psychol. Methods 2018, 23, 617–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P. Networktools: Tools for Identifying Important Nodes in Networks. R Package Version 1.2.1. 2018. Available online: https://CRAN.R-project.org/package=networktools. (accessed on 18 January 2023).
- van Borkulo, C.D.; Epskamp, S.; Jones, P.J. Network Comparison Test: Statistical Comparison of Two Networks Based on Three Invariance Measures. R Package Version 2.2.1. 2018. Available online: https://cran.r-project.org/package=NetworkComparisonTest. (accessed on 18 January 2023).
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Li, X.; Liu, H.; Roeder, K.; Lafferty, J.; Wasserman, L. Huge: High-Dimensional Undirected Graph Estimation. R Package Version 1.2.7. 2015. Available online: https://CRAN.R-project.org/package=huge. (accessed on 18 January 2023).
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2007, 9, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 2008, 95, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Foygel, R.; Drton, M. Extended Bayesian information criteria for Gaussian graphical models. Adv. Neural Inf. Process. Syst. 2010, 23, 20200–22028. [Google Scholar]
- Robinaugh, D.J.; Millner, A.J.; McNally, R.J. Identifying highly influential nodes in the complicated grief network. J. Abnorm. Psychol. 2016, 125, 747–757. [Google Scholar] [CrossRef] [Green Version]
- van Borkulo, C.D.; van Bork, R.; Boschloo, L.; Kossakowski, J.J.; Tio, P.; Schoevers, R.A.; Borsboom, D.; Waldorp, L.J. Comparing network structures on three aspects: A permutation test. Psychol. Methods 2022. Available online: https://psycnet.apa.org/doiLanding?doi=10.1037%2Fmet0000476 (accessed on 18 January 2023). [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Meier, T.B.; Giraldo-Chica, M.; España, L.Y.; Mayer, A.R.; Harezlak, J.; Nencka, A.S.; Wang, Y.; Koch, K.M.; Wu, Y.-C.; Saykin, A.J.; et al. Resting-State fMRI Metrics in Acute Sport-Related Concussion and Their Association with Clinical Recovery: A Study from the NCAA-DOD CARE Consortium. J. Neurotrauma 2020, 37, 152–162. [Google Scholar] [CrossRef]
- Murdaugh, D.L.; King, T.Z.; Sun, B.; Jones, R.A.; Ono, K.E.; Reisner, A.; Burns, T.G. Longitudinal Changes in Resting State Connectivity and White Matter Integrity in Adolescents With Sports-Related Concussion. J. Int. Neuropsychol. Soc. 2018, 24, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, M.; España, L.Y.; Nencka, A.S.; Wang, Y.; Nelson, L.D.; McCrea, M.A.; Meier, T.B. Resting-state functional connectivity after concussion is associated with clinical recovery. Hum. Brain Mapp. 2018, 40, 1211–1220. [Google Scholar] [CrossRef] [Green Version]
- Czerniak, S.M.; Sikoglu, E.M.; Liso Navarro, A.A.; McCafferty, J.; Eisenstock, J.; Stevenson, J.H.; King, J.A.; Moore, C.M. A Resting State Functional Magnetic Resonance Imaging Study of Concussion in Collegiate Athletes. Brain Imaging Behav. 2015, 9, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Berglund, P.; Rönnbäck, L. Mental fatigue and impaired information processing after mild and moderate traumatic brain injury. Brain Inj. 2009, 23, 1027–1040. [Google Scholar] [CrossRef]
- Makdissi, M.; Schneider, K.J.; Feddermann-Demont, N.; Guskiewicz, K.M.; Hinds, S.; Leddy, J.J.; McCrea, M.; Turner, M.; Johnston, K.M. Approach to investigation and treatment of persistent symptoms following sport-related concussion: A systematic review. Br. J. Sports Med. 2017, 51, 958–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohlberg, M.M.; Ledbetter, A.K. Management of Persistent Cognitive Symptoms After Sport-Related Concussion. Am. J. Speech-Language Pathol. 2016, 25, 138–149. [Google Scholar] [CrossRef]
- Evald, L. Prospective memory rehabilitation using smartphones in patients with TBI: What do participants report? Neuropsychol. Rehabilitation 2014, 25, 283–297. [Google Scholar] [CrossRef]
- Acabchuk, R.L.; Brisson, J.M.; Park, C.L.; Babbott-Bryan, N.; Parmelee, O.A.; Johnson, B.T. Therapeutic Effects of Meditation, Yoga, and Mindfulness-Based Interventions for Chronic Symptoms of Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Appl. Psychol. Health Well-Being 2020, 13, 34–62. [Google Scholar] [CrossRef]
- Merritt, V.; Padgett, C.R.; Jak, A.J. A systematic review of sex differences in concussion outcome: What do we know? Clin. Neuropsychol. 2018, 33, 1016–1043. [Google Scholar] [CrossRef]
T1 | T2 | T3 | |
---|---|---|---|
Age | |||
Mean (SD) | 14.7 (1.02) | 15.5 (1.16) | 15.5 (1.16) |
Sex | |||
Female Total (%) | 564 (36.3%) | — | — |
Male | 989 (63.7%) | — | — |
Symptom Score | |||
Mean (SD) | 5.25 (1.02) | 18.7 (1.16) | 1.90 (1.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodwin, G.J.; John, S.E.; Donohue, B.; Keene, J.; Kuwabara, H.C.; Maietta, J.E.; Kinsora, T.F.; Ross, S.; Allen, D.N. Changes in ImPACT Cognitive Subtest Networks Following Sport-Related Concussion. Brain Sci. 2023, 13, 177. https://doi.org/10.3390/brainsci13020177
Goodwin GJ, John SE, Donohue B, Keene J, Kuwabara HC, Maietta JE, Kinsora TF, Ross S, Allen DN. Changes in ImPACT Cognitive Subtest Networks Following Sport-Related Concussion. Brain Sciences. 2023; 13(2):177. https://doi.org/10.3390/brainsci13020177
Chicago/Turabian StyleGoodwin, Grace J., Samantha E. John, Bradley Donohue, Jennifer Keene, Hana C. Kuwabara, Julia E. Maietta, Thomas F. Kinsora, Staci Ross, and Daniel N. Allen. 2023. "Changes in ImPACT Cognitive Subtest Networks Following Sport-Related Concussion" Brain Sciences 13, no. 2: 177. https://doi.org/10.3390/brainsci13020177
APA StyleGoodwin, G. J., John, S. E., Donohue, B., Keene, J., Kuwabara, H. C., Maietta, J. E., Kinsora, T. F., Ross, S., & Allen, D. N. (2023). Changes in ImPACT Cognitive Subtest Networks Following Sport-Related Concussion. Brain Sciences, 13(2), 177. https://doi.org/10.3390/brainsci13020177