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Abstract: Sleep deprivation leads to the deterioration in the physiological functioning of the brain,
cognitive decline, and many neurodegenerative diseases, all of which progress with advancing age.
Sleep insufficiency and impairments in cognitive function are characterized by progressive neu-
ronal losses in the cerebral cortex. In this study, we analyze gene expression profiles following sleep-
deprived murine models and circadian matched controls to identify genes that might underlie cor-
tical homeostasis in response to sleep deprivation. Screening of the literature resulted in three mu-
rine (Mus musculus) gene expression datasets (GSE6514, GSE78215, and GSE33491) that included
cortical tissue biopsies from mice that are sleep deprived for 6 h (1 = 15) and from circadian controls
that are left undisturbed (n = 15). Cortical differentially expressed genes are used to construct a
network of encoded proteins that are ranked based on their interactome according to 11 topological
algorithms. The analysis revealed three genes—NFKBIA, EZR, and SGK1—which exhibited the
highest multi-algorithmic topological significance. These genes are strong markers of increased
brain inflammation, cytoskeletal aberrations, and glucocorticoid resistance, changes that imply ag-
ing-like transcriptional responses during sleep deprivation in the murine cortex. Their potential role
as candidate markers of local homeostatic response to sleep loss in the murine cortex warrants fur-
ther experimental validation.
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1. Introduction

Sleep deprivation is an established global public health burden which is associated
with cognitive impairments, including reduced psychomotor speed, attention, percep-
tion, and overall memory [1-5].

Pathophysiologically, declines in sleep sufficiency and cognitive function are charac-
terized by progressive neuronal losses in the cortex via -amyloid peptides and intracel-
lular neurofibrillary tangles from tau protein hyperstimulation [6]. Recent in vivo findings
have highlighted the potential of sleep deprivation in generating tauopathy and gliosis
that are linked to increased stress responses through disrupting the cortical and thalamic
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synaptic proteome [7,8]. During sleep deprivation, these alterations may mediate protein
synthesis along with prefrontal functional and neuronal connectivity changes in the cere-
bral cortex [9,10], along with the elimination of dendritic spines [11]. Specifically, sleep
deprivation may attenuate the mammalian target of rapamycin complex 1 phosphoryla-
tion and mRNA translation in the cortex [12,13], explaining further the cognitive-induced
impairments from sleep deprivation. Accordingly, the pervasion of sleep disruption-in-
duced cognitive impairment may accelerate abnormal brain aging, contributing to per-
turbed hippocampal and prefrontal-dependent learning ability and memory function
[14,15].

Previous studies identifying causal genes, networks, and transcriptional regulators
have revealed multiple candidates as mediators of sleep deprivation on interaction com-
ponents of the hypothalamus [16] and the hippocampus [17]. However, evidence of gene
expression alterations related to cortical changes following sleep deprivation remains
scarce. Nevertheless, the cortex is particularly vulnerable to the effects of sleep depriva-
tion and the disruption of circadian rhythmicity [18]. Likewise, cortical atrophy has been
longitudinally correlated with sleep quality in community-dwelling populations [19].
Therefore, efforts to identify key regulatory genes linked with sleep deprivation may pro-
vide insights into possible underlying molecular mechanisms that are associated with age-
related cortical pathway senescence. Additionally, the exploration of key regulatory genes
can assist with the development of potential treatments against cortical burden in re-
sponse to sleep insufficiency. To this end, we compared gene expression profiles in the
cerebral cortex of sleep-deprived murine models with circadian-matched controls. Our
aim was to identify differentially expressed genes (DEGs) whose dysregulated expression
and protein interactome were linked with sleep deprivation in the murine cortex.

2. Methods
2.1. Collection of Microarray Datasets

The literature was screened from inception until January 2022 by searching the Na-
tional Center for Biotechnology Information (NCBI) GEO using the following search
terms: (sleep AND deprivation OR restriction OR loss) and (brain OR cortex). A further
search was performed through the National Library of Medicine (NLM) PubMed using
the following additional terms: (differentially expressed genes OR DEGs). Two authors
(PG and KP) created the search strategy and conducted the screening of the retrieved da-
tasets.

Datasets were restricted based on organism type (Mus musculus), expression profil-
ing (microarray), sample type (cerebral cortex), and condition (sleep deprivation). No
search restrictions were employed and datasets in absence of expression data for controls
were omitted. No further exclusion criteria based on the baseline characteristics of murine
models, from which cortical tissue samples were retrieved, were considered.

2.2. Identification of Differentially Expressed Genes

Cerebral cortex samples from mice that were sleep deprived were compared to cir-
cadian-matched controls that were left undisturbed. DEGs were obtained through the ran-
dom effect model that was ensued for the integration of differential gene expression using
ImaGEO [20]. Genes with the strongest average effect between all included datasets were
retrieved [21]. Significant DEGs were defined based on a p < 0.05 corrected by the Benja-
mini-Hochberg False Discovery Rate and those with a Z-score >1.96 were considered as
upregulated, while those with a Z-score <1.96 as downregulated (both corresponding to a
5% significance level).

2.3. Construction of Protein—Protein Interaction Networks

Cortical DEGs from sleep-deprived murine models were used to create a network of
encoded proteins via ‘“The Search Tool for the Retrieval of Interacting Genes (STRING)
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[22]. The protein—protein interactions (PPI) in the network were predicted using a medium
probabilistic confidence score >0.4 and mapped with Cystoscope [23]. The application of
a reasonably moderate interaction threshold was ensued to amplify coverage of potential
protein interactions without overappraisal of their precision. Proteins naive to interactions
were excluded from the network.

2.4. Identification of Regulatory Differentially Expressed Genes

The interactome of cortical DEGs from sleep-deprived murine models in the PPI net-
work was analyzed using the overlap of 11 topological algorithms, namely, the following;:
Degree, Closeness, Betweenness, Radiality, Stress, EcCentricity, BottleNeck, Edge Perco-
lated Component (EPC), Maximum Neighborhood Component (MNC), Density of Maxi-
mum Neighborhood Component (DMNC), and Maximal Clique Centrality (MCC) [24,25].
DEGs based on multi-algorithmic ranking at the top 3% of the network were regarded as
regulatory genes in cortical sleep deprivation.

3. Results
3.1. Overview of Microarray Datasets

The literature search of the GEO and PubMed databases yielded three expression
datasets on the cerebral cortex of sleep-deprived mice (GSE6514 [26], GSE78215 [27], and
GSE33491 [28]; Table S1). The former datasets included cortical tissue biopsies from
C57BL/6] mice (8-10 weeks old) that were sleep deprived for 6 h (n = 15) and from circa-
dian and age-matched controls that were left undisturbed (1 = 15).

3.2. Regulatory Differentially Expressed Genes in Sleep-Deprived Murine Cortex

A total of 195 cortical DEGs were retrieved in sleep-deprived murine models when
compared to circadian controls (Table S2). Of these, 91 DEGs showed increased cortical
expression and 104 DEGs exhibited decreased cortical expression. A network of a total of
89 encoded cortical proteins with 110 interactions of DEGs in response to sleep depriva-
tion was constructed. Multi-algorithmic topological analysis of their interactome revealed
the following three highest-ranked regulatory genes: NFKB Inhibitor Alpha (NFKBIA; p
=7.72 x 103, Z = 4.10), Ezrin (EZR; p = 6.34 x 104, Z = 4.87), and Serum/Glucocorticoid
Regulated Kinase 1 (SGK1; p =1.82 x 10-%, Z = 3.80) (Figure 1, Tables S3-55).



Brain Sci. 2022, 12, 825

4 of 10

uakt
Ptz
Fami75a ng2 O O
cmo "‘WO
rariz
S o
Adorat Sk
O Hirth Bibdo
Brea2 Mod
Memd adddsa O
Map2ks Serpinbta Hexm1
© o
O O
Gommd10 Plont
Dbz O Pppdca
O - @ wowr(0) i
Prss23 Pop2rib
OFerMc
Rnd3
O Poparzd
O Belo
i3 £nt Arhgel?
0) ewzi(0)
Zmz
Bhihed0 O " O Tsc2203
Ko Fosi
Foxos2 et CNMO
QO q " 0
= O O
e Mett3 Hedstl
Asp: Cat
Uspénl
OAcusn O Rin2
Rint Hs2st1 O

O oz O
b
cfiz
Conaat

P
Arhgap25 Congs

Enppa

Pde2a

Figure 1. Regulatory genes (NFKB Inhibitor Alpha (NFKBIA), Ezrin (EZR) and Serum/Glucocorti-
coid Regulated Kinase 1 (SGK1)) in the protein—protein interaction network of cerebral cortex dif-
ferentially expressed genes from murine models that were sleep deprived for 6 h and circadian-
matched control that were left undisturbed. Red nodes indicate upregulated genes and blue nodes
display downregulated genes.

4. Discussion

Multi-algorithmic topological analysis of DEGs in the cerebral cortex of sleep-de-
prived murine models, identified the following three regulatory genes: NFKBIA, EZR and
SGKI1. These genes may have a potential role as candidate markers of murine cortex ho-
meostasis in response to sleep loss (Figure 2).

NFKBIA is responsible for the negative feedback regulation of NF-kappa B (NF-kB)
activation that regulates the expression of genes involved in cell signaling of innate im-
munity [29]. A microarray analysis of the mouse central nervous system revealed that
increased NFKBIA expression following melatonin treatment correlated with neuropro-
tective and anti-inflammatory activity [30]. Melatonin is an internal synchronizer of circa-
dian rhythms. Melatonin is produced from the pineal gland located in in the posterior
aspect of the cranial fossa [31], where its synthesis can be induced by macrophages [32].
Sleep deprivation may disrupt the immune-pineal axis via NF-kB activation and promote
increases in circulating interleukin-6, tumor necrosis factor-alpha, and C-reactive protein
[33]. Oxidative stress and systemic inflammation have also been associated with cortical
thinning [34-37], specifically neuronal apoptosis in the prefrontal [38] and motor cortices
[39]. Thus, dysregulation of NFKBIA, which may be partially determined by sleep depri-
vation and melatonin disruption, could trigger immune responses responsible for in-
creased brain inflammation and accelerate aging [40].
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Figure 2. Cortical homeostasis in response to sleep deprivation is accompanied by the overexpres-
sion of three regulatory genes (NFKB Inhibitor Alpha (NFKBIA), Ezrin (EZR) and Serum/Glucocor-
ticoid Regulated Kinase 1 (SGK1)), which are strong markers of increased brain inflammation, cy-
toskeletal aberrations, and glucocorticoid resistance and whose dysregulated expression changes
imply aging-like transcriptional responses.

SGK1 is a serine-threonine kinase that is regulated by glucocorticoid hormones, me-
diating cell survival, proliferation, differentiation, and apoptosis via phosphorylation of
Mouse Double Minutes 2-dependent p53 degradation [41]. Chronically elevated circulat-
ing glucocorticoid levels may alter brain SGK1 expression in rat models, downregulating
glucocorticoid receptor responsiveness [42], impairing neuronal plasticity [43], and oli-
godendrocyte morphology [44]. These changes may be explained, in part, by activation of
NEF-kB and subsequent expression of NMDA receptor NR2A and NR2B subunits [45]. Par-
ticularly, an increased concentration of glucocorticoids may disrupt the hypothalamic-pi-
tuitary-adrenal axis and promote aberrant glucocorticoid receptor activation [46]. Inter-
estingly, previous research has demonstrated that SGK1 may upregulate glucocorticoid
receptor phosphorylation, counteracting the cortisol-induced reduction in hippocampal
neurogenesis from anxiety and depressive-like behaviors [47-49]. Indeed, decreased ex-
pression of SGK1 in the prefrontal cortex via traumatic stress may contribute to helpless-
ness- and anhedonic-like behaviors in rodents [50]. Studies in sleep-deprived rodents
have shown considerably increased response expression of SGK1 [51-54], with its expres-
sion further increased after long-term with respect to short-term SD [55-58]. During sleep
deprivation, the prefrontal cortex interacts with the medial temporal lobe in memory en-
coding and recall stages [59], as well as serial subtraction [60], executive function [61], and
attention processes [62,63]. Finally, SGK1 is involved in the under-expression of brain-
derived neurotrophic factors and the vascular endothelial growth factor, leading to neu-
ronal degeneration that is a consequence of aberrant glucocorticoid receptor activation
[64,65]. Therefore, a close link between sleep deprivation and advancing brain aging may
be described by dysregulated SGK1 expression that leads to an increased risk of cognitive
deficits.
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EZR is an astrocytic member of the ezrin-radixin-moesin protein family, involved in
peripheral astrocyte process motility [66]. Specifically, EZR has a pivotal role in the con-
nection of the intracellular actin cytoskeleton with transmembrane proteins, which are
essential for cell signaling, development, proliferation, and migration [67,68]. Interest-
ingly, EZR expression is mediated by radial glia and migrating cells of the cerebral cortex
[69] and has been used as a marker of brain injury [70], cognitive impairment, and neuro-
degenerative disease [71]. During sleep deprivation, dysregulated EZR phosphorylation
status has been linked with dry eyes and disrupted microvilli morphology of superficial
corneal epithelial cells that is crucial for hydrating and protecting tear film adhesion from
pathogenic infiltration [72]. Lastly, EZR activity is linked with the extracellular matrix and
cytoskeleton through the Ras-like guanosine triphosphatase Gem, which drives sleep-
wake-dependent elongation of peripheral astrocytic processes [73]. Taken together, EZR
expression may explain cortical alterations and cytoskeletal abnormalities experienced
during aging.

Although our findings make a novel contribution to the literature, an important con-
sideration in the current study is the age of the mice, which was relatively young (8-10-
week-old, young adult mice). Nevertheless, this work highlights possible age-dependent
changes in gene expression with sleep deprivation. Understanding the unique neurophys-
iological underpinnings of cognitive impairments in young vs. aged animals is critical
given that sleep impairments throughout life serve as a risk factor for neurodegenerative
states in older age [74,75]. Indeed, previous work on proteomics shows the independent
effects of sleep deprivation on young vs. older brains. For example, sleep deprivation dif-
ferentially alters the expression of multiple proteins associated with neuroplasticity in
young (2.5 months) vs. aged (24 months) mouse cortices [76]. Sleep deprivation also pro-
duces opposite effects on synaptic proteins in very young (3 weeks) and young adult (8
weeks) mice. Future work should focus on continuing to understand the unique develop-
mental neurophysiological fingerprints of sleep impairments. Prospective outlooks of our
analysis beyond the cerebral cortex using deep RNA sequencing will allow us to explore
potential brain region-specific dimorphisms in gene responses following sleep depriva-
tion.

5. Conclusions

Sleep deprivation can lead to brain deterioration, including cognitive decline and the
onset of neurodegeneration, all of which advance with age. Sleep insufficiency and cog-
nitive impairments are characterized by progressive neuronal losses in the cerebral cortex.
Current evidence on cortical gene expression dynamics linked to sleep deprivation is
scarce. Our study revealed three regulatory genes (NFKBIA, EZR, and SGK1) that exhib-
ited the highest multi-algorithmic topological significance among DEGs in the cerebral
cortex of sleep-deprived murine models. These genes constitute strong markers of in-
creased brain inflammation, cytoskeletal abnormalities, and glucocorticoid resistance.
Therefore, gene expression changes underpinning murine cortex homeostasis during
sleep deprivation imply aging-like transcriptional responses. Future experimental human
studies are warranted to validate the functional associations of these genes in sleep dep-
rivation, across sleep-wake states, and vis-a -vis gene expression from the aging cortex.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/brainsci12070825/s1, Table S1. Characteristics of the gene ex-
pression datasets included in the analysis, Table S2. Differentially expressed genes of the cerebral
cortex between mice that were sleep deprived for 6 hours and circadian-matched controls that were
left undisturbed., Table S3. Interactome of the protein-protein interaction network of differentially
expressed genes of the cerebral cortex between mice that were sleep deprived for 6 hours and circa-
dian-matched controls that were left undisturbed. Ranking was ensued based on the intersection of
11 topological algorithms. Percolated Component (EPC), Maximum Neighborhood Component
(MNC), Density of Maximum Neighborhood Component (DMNC), Maximal Clique Centrality
(MCC)., Table S4. Highest-interacting genes in the protein-protein interaction network of
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differentially expressed genes of the cerebral cortex between mice that were sleep deprived for 6
hours and circadian-matched controls that were left undisturbed., Table S5. Characteristics of high-
est-interacting genes in the protein-protein interaction network of differentially expressed genes of
the cerebral cortex between mice that were sleep deprived for 6 hours and circadian-matched con-
trols that were left undisturbed.
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