The Influence of Recreational Substance Use in TMS Research
Abstract
:1. Introduction
2. Methods
- (transcranial magnetic stimulation) AND ((alcohol) or (alcoholism) or (ethanol));
- (transcranial magnetic stimulation) AND ((nicotine) or (tobacco));
- (transcranial magnetic stimulation) AND (caffeine);
- (transcranial magnetic stimulation) AND ((cannabis) or (THC) or (marijuana)).
Inclusion/Exclusion Criteria
- Studies assessed one or more of the following TMS measures: motor-evoked potential (MEP), resting motor threshold (RMT), active motor threshold (AMT), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), short-interval intracortical facilitation (SICF), long-interval intracortical inhibition (LICI), interhemispheric inhibition (IHI), short-latency afferent inhibition (SAI), long-latency afferent inhibition (LAI), cortical silent period (CSP), ipsilateral silent period (iSP), or TMS-evoked electroencephalography (EEG) potentials.
- Primary research articles (i.e., original research) only.
- Article was written in English.
3. Alcohol
3.1. Acute Effects of Alcohol
Summary
3.2. Chronic Effects of Alcohol
Summary
4. Cannabis
Summary
5. Nicotine
Summary
6. Caffeine
Summary
7. Current Gaps in Knowledge
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Delker, E.; Brown, Q.; Hasin, D.S. Alcohol consumption in demographic subpopulations: An epidemiologic overview. Alcohol Res. Curr. Rev. 2016, 38, 7–15. [Google Scholar]
- SAMHSA. Results from the 2012 National Survey on Drug Use and Health: Summary of National Findings; NSDUH Ser. H-46, HHS Publ. No. 13-4795; SAMHSA: Rockville, MD, USA, 2013; p. 222. [Google Scholar]
- Haug, N.A.; Padula, C.B.; Sottile, J.E.; Vandrey, R.; Heinz, A.J.; Bonn-Miller, M.O. Cannabis use patterns and motives: A comparison of younger, middle-aged, and older medical cannabis dispensary patients. Addict. Behav. 2017, 72, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinial practice and research. Clinial Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelick, D.A.; Zangen, A.; George, M.S. Transcranial magnetic stimulation in the treatment of substance addiction. Ann. N. Y. Acad. Sci. 2014, 1327, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanlon, C.A.; Dowdle, L.T.; Scott Henderson, J. Modulating neural circuits with transcranial magnetic stimulation: Implications for addiction treatment development. Pharmacol. Rev. 2018, 70, 661–683. [Google Scholar] [CrossRef]
- Hauer, L.; Scarano, G.I.; Brigo, F.; Golaszewski, S.; Lochner, P.; Trinka, E.; Sellner, J.; Nardone, R. Effects of repetitive transcranial magnetic stimulation on nicotine consumption and craving: A systematic review. Psychiatry Res. 2019, 281, 112562. [Google Scholar] [CrossRef]
- Mostafavi, S.A.; Khaleghi, A.; Mohammadi, M.R. Noninvasive brain stimulation in alcohol craving: A systematic review and meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 101, 109938. [Google Scholar] [CrossRef]
- Nevo, I.; Hamon, M. Neurotransmitter and neuromodulatory mechanisms involved in alcohol abuse and alcoholism. Neurochem. Int. 1995, 26, 305–336. [Google Scholar] [CrossRef]
- Roberto, M.; Varodayan, F.P. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017, 122, 85–99. [Google Scholar] [CrossRef]
- Blair, L.A.C.; Levitan, E.S.; Marshall, J.; Dionne, V.E.; Barnard, E.A. Single subunits of the GABAA receptor form ion channels with properties of the native receptor. Science (80-.) 1988, 242, 577–579. [Google Scholar] [CrossRef]
- Tatebayashi, H.; Motomura, H.; Narahashi, T. Alcohol modulation of single GABA(A) receptor-channel kinetics. Neuroreport 1998, 9, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, L.G. Ethanol potentiates the GABAA-activated Cl- current in mouse hippocampal and cortical neurons. Eur. J. Pharmacol. 1990, 187, 127–130. [Google Scholar] [CrossRef]
- Nestoros, J.N. Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science (80-.) 1980, 209, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Suzdak, P.D.; Schwartz, R.D.; Skolnick, P.; Paul, S.M. Ethanol stimulates γ-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc. Natl. Acad. Sci. USA 1986, 83, 4071–4075. [Google Scholar] [CrossRef] [Green Version]
- Morrisett, R.A.; Martin, D.; Oetting, T.A.; Lewis, D.V.; Wllson, A.; Swartzwelder, H.S. Ethanol and magnesium ions inhibit N-methyl-d-aspartate-mediated synaptic potentials in an interactive manner. Neuropharmacology 1991, 30, 1173–1178. [Google Scholar] [CrossRef]
- Steffensen, S.C.; Nie, Z.; Criado, J.R.; Siggins, G.R. Ethanol inhibition of N-methyl-D-aspartate responses involves presynaptic γ-aminobutyric acid(B) receptors. J. Pharmacol. Exp. Ther. 2000, 294, 637–647. [Google Scholar]
- Carboni, S.; Isola, R.; Gessa, G.L.; Rossetti, Z.L. Ethanol prevents the glutamate release induced by N-methyl-d-aspartate in the rat striatum. Neurosci. Lett. 1993, 152, 133–136. [Google Scholar] [CrossRef]
- Roberto, M.; Schweitzer, P.; Madamba, S.G.; Stouffer, D.G.; Parsons, L.H.; Siggins, G.R. Acute and Chronic Ethanol Alter Glutamatergic Transmission in Rat Central Amygdala: An In Vitro and In Vivo Analysis. J. Neurosci. 2004, 24, 1594–1603. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Madamba, S.G.; Siggins, G.R. Ethanol inhibits glutamatergic neurotransmission in nucleus accumbens neurons by multiple mechanisms. J. Pharmacol. Exp. Ther. 1994, 271, 1566–1573. [Google Scholar]
- Ziemann, U.; Lönnecker, S.; Paulus, W. Inhibition of human motor cortex by ethanol a transcranial magnetic stimulation study. Brain 1995, 118, 1437–1446. [Google Scholar] [CrossRef]
- Ziemann, U.; Tergau, F.; Wischer, S.; Hildebrandt, J.; Paulus, W. Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr. Clin. Neurophysiol.-Electromyogr. Mot. Control 1998, 109, 321–330. [Google Scholar] [CrossRef]
- Conte, A.; Attilia, M.L.; Gilio, F.; Iacovelli, E.; Frasca, V.; Bettolo, C.M.; Gabriele, M.; Giacomelli, E.; Prencipe, M.; Berardelli, A.; et al. Acute and chronic effects of ethanol on cortical excitability. Clin. Neurophysiol. 2008, 119, 667–674. [Google Scholar] [CrossRef]
- Hoppenbrouwers, S.S.; Hofman, D.; Schutter, D.J.L.G. Alcohol breaks down interhemispheric inhibition in females but not in males: AAlcohol and frontal connectivity. Psychopharmacology 2010, 208, 469–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loheswaran, G.; Barr, M.S.; Zomorrodi, R.; Rajji, T.K.; Blumberger, D.M.; Le Foll, B.; Daskalakis, Z.J. Alcohol Impairs N100 Response to Dorsolateral Prefrontal Cortex Stimulation. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kähkönen, S.; Wilenius, J. Effects of alcohol on TMS-evoked N100 responses. J. Neurosci. Methods 2007, 166, 104–108. [Google Scholar] [CrossRef]
- Muralidharan, K.; Venkatasubramanian, G.; Pal, P.K.; Benegal, V. Abnormalities in cortical and transcallosal inhibitory mechanisms in subjects at high risk for alcohol dependence: A TMS study. Addict. Biol. 2008, 13, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; Bergmann, J.; Kronbichler, M.; Caleri, F.; Lochner, P.; Tezzon, F.; Ladurner, G.; Golaszewski, S. Altered motor cortex excitability to magnetic stimulation in alcohol withdrawal syndrome. Alcohol. Clin. Exp. Res. 2010, 34, 628–632. [Google Scholar] [CrossRef]
- Muralidharan, K.; Venkatasubramanian, G.; Pal, P.K.; Benegal, V. Relationship between motor threshold and externalizing symptoms in subjects at high risk for alcohol dependence: A TMS study. Am. J. Addict. 2013, 22, 84–85. [Google Scholar] [CrossRef]
- Naim-Feil, J.; Bradshaw, J.L.; Rogasch, N.C.; Daskalakis, Z.J.; Sheppard, D.M.; Lubman, D.I.; Fitzgerald, P.B. Cortical inhibition within motor and frontal regions in alcohol dependence post-detoxification: A pilot TMS-EEG study. World J. Biol. Psychiatry 2016, 17, 547–556. [Google Scholar] [CrossRef]
- Kaarre, O.; Kallioniemi, E.; Könönen, M.; Tolmunen, T.; Kekkonen, V.; Kivimäki, P.; Heikkinen, N.; Ferreri, F.; Laukkanen, E.; Määttä, S. Heavy alcohol use in adolescence is associated with altered cortical activity: A combined TMS–EEG study. Addict. Biol. 2018, 23, 268–280. [Google Scholar] [CrossRef]
- Quoilin, C.; Wilhelm, E.; Maurage, P.; De Timary, P.; Duque, J. Deficient inhibition in alcohol-dependence: Let’s consider the role of the motor system! Neuropsychopharmacology 2018, 43, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Reis, J.; Schwenkreis, P.; Rosanova, M.; Strafella, A.; Badawy, R.; Müller-Dahlhaus, F. TMS and drugs revisited 2014. Clin. Neurophysiol. 2015, 126, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, B.; Krampfl, K.; Petri, S.; Bogdanova, D.; Kossev, A.; Bufler, J.; Dengler, R. Selective and nonselective benzodiazepine agonists have different effects on motor cortex excitability. Muscle Nerve 2006, 33, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Premoli, I.; Castellanos, N.; Rivolta, D.; Belardinelli, P.; Bajo, R.; Zipser, C.; Espenhahn, S.; Heidegger, T.; Müller-Dahlhaus, F.; Ziemann, U. TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J. Neurosci. 2014, 34, 5603–5612. [Google Scholar] [CrossRef] [Green Version]
- Wan, F.J.; Berton, F.; Madamba, S.G.; Francesconi, W.; Siggins, G.R. Low ethanol concentrations enhance GABAergic inhibitory postsynaptic potentials in hippocampal pyramidal neurons only after block of GABAB receptors. Proc. Natl. Acad. Sci. USA 1996, 93, 5049–5054. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.H.; Spigelman, I.; Olsen, R.W. Alteration in the sensitivity of GABA(A) receptors to allosteric modulatory drugs in rat hippocampus after chronic intermittent ethanol treatment. Alcohol. Clin. Exp. Res. 1998, 22, 2165–2173. [Google Scholar] [CrossRef]
- Ariwodola, O.J.; Weiner, J.L. Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: Role of presynaptic GABAB receptors. J. Neurosci. 2004, 24, 10679–10686. [Google Scholar] [CrossRef] [Green Version]
- Di Lazzaro, V.; Ziemann, U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front. Neural Circuits 2013, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Mumenthaler, M.S.; Taylor, J.L.; O’Hara, R.; Yesavage, J.A. Gender differences in moderate drinking effects. Alcohol Res. Health 1999, 23, 55–64. [Google Scholar]
- Jones, B.M.; Jones, M. Alcohol and memory impairment in male and female social drinkers. In Alcohol and Human Memory; Birnbaum, I.M., Parker, E.S., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1977; pp. 127–138. [Google Scholar]
- Haut, J.S.; Beckwith, B.E.; Petros, T.V.; Russell, S. Gender differences in retrieval from long-term memory following acute intoxication with ethanol. Physiol. Behav. 1989, 45, 1161–1165. [Google Scholar] [CrossRef]
- Miller, M.A.; Weafer, J.; Fillmore, M.T. Gender differences in alcohol impairment of simulated driving performance and driving-related skills. Alcohol Alcohol. 2009, 44, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frezza, M.; di Padova, C.; Pozzato, G.; Terpin, M.; Baraona, E.; Lieber, C.S. High Blood Alcohol Levels in Women: The Role of Decreased Gastric Alcohol Dehydrogenase Activity and First-Pass Metabolism. N. Engl. J. Med. 1990, 322, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.; King, M.A.; Soliman, M.R.I. Testosterone reverses ethanol-induced deficit in spatial reference memory in castrated rats. Pharmacology 2005, 75, 87–92. [Google Scholar] [CrossRef]
- Vandegrift, B.J.; You, C.; Satta, R.; Brodie, M.S.; Lasek, A.W. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabakoff, B.; Hoffman, P.L. The neurobiology of alcohol consumption and alcoholism: An integrative history. Pharmacol. Biochem. Behav. 2013, 113, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Morrow, A.L.; Suzdak, P.D.; Karanian, J.W.; Paul, S.M. Chronic ethanol administration alters γ-aminobutyric acid, pentobarbital and ethanol-mediated 36Cl- uptake in cerebral cortical synaptoneurosomes. J. Pharmacol. Exp. Ther. 1988, 246, 158–164. [Google Scholar]
- Allan, A.M.; Harris, R.A. Acute and chronic ethanol treatments alter GABA receptor-operated chloride channels. Pharmacol. Biochem. Behav. 1987, 27, 665–670. [Google Scholar] [CrossRef]
- Sanna, E.; Serra, M.; Cossu, A.; Colombo, G.; Follesa, P.; Cuccheddu, T.; Concas, A.; Biggio, G. Chronic Ethanol Intoxication Induces Differential Effects on GABAA and NMDA Receptor Function in the Rat Brain. Alcohol. Clin. Exp. Res. 1993, 17, 115–123. [Google Scholar] [CrossRef]
- Devaud, L.L.; Fritschy, J.-M.; Sieghart, W.; Morrow, A.L. Bidirectional Alterations of GABAA Receptor Subunit Peptide Levels in Rat Cortex During Chronic Ethanol Consumption and Withdrawal. J. Neurochem. 2002, 69, 126–130. [Google Scholar] [CrossRef]
- Matthews, D.B.; Devaud, L.L.; Fritschy, J.M.; Sieghart, W.; Morrow, A.L. Differential Regulation of GABAA Receptor Gene Expression by Ethanol in the Rat Hippocampus Versus Cerebral Cortex. J. Neurochem. 2002, 70, 1160–1166. [Google Scholar] [CrossRef]
- Buck, K.J.; Harris, R.A. Benzodiazepine agonist and inverse agonist actions on GABA(A) receptor-operated chloride channels. I. Acute effects of ethanol. J. Pharmacol. Exp. Ther. 1990, 253, 706–712. [Google Scholar] [PubMed]
- Diana, M.; Brodie, M.; Muntoni, A.; Puddu, M.C.; Pillolla, G.; Steffensen, S.; Spiga, S.; Little, H.J. Enduring effects of chronic ethanol in the CNS: Basis for alcoholism. Alcohol. Clin. Exp. Res. 2003, 27, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.S.; Shefner, S.A.; Dunwiddie, T.V. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990, 508, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Aalto, S.; Ingman, K.; Alakurtti, K.; Kaasinen, V.; Virkkala, J.; Någren, K.; Rinne, J.O.; Scheinin, H. Intravenous ethanol increases dopamine release in the ventral striatum in humans: PET study using bolus-plus-infusion administration of [11 C]raclopride. J. Perinatol. 2015, 35, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Boileau, I.; Assaad, J.M.; Pihl, R.O.; Benkelfat, C.; Leyton, M.; Diksic, M.; Tremblay, R.E.; Dagher, A. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 2003, 49, 226–231. [Google Scholar] [CrossRef]
- Yan, Q.S. Extracellular dopamine and serotonin after ethanol monitored with 5- minute microdialysis. Alcohol 1999, 19, 1–7. [Google Scholar] [CrossRef]
- Yoshimoto, K.; McBride, W.J.; Lumeng, L.; Li, T.K. Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol 1992, 9, 17–22. [Google Scholar] [CrossRef]
- Karkhanis, A.N.; Rose, J.H.; Huggins, K.N.; Konstantopoulos, J.K.; Jones, S.R. Chronic intermittent ethanol exposure reduces presynaptic dopamine neurotransmission in the mouse nucleus accumbens. Drug Alcohol Depend. 2015, 150, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, J.T.H.; Terranova, C.; Swayne, O.; Greenwood, R.J.; Rothwell, J.C. Differing effects of intracortical circuits on plasticity. Exp. Brain Res. 2009, 193, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Di Lazzaro, V.; Pilato, F.; Dileone, M.; Profice, P.; Ranieri, F.; Ricci, V.; Bria, P.; Tonali, P.; Ziemann, U. Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: A TMS study. Clin. Neurophysiol. 2007, 118, 2207–2214. [Google Scholar] [CrossRef]
- Turco, C.V.; El-Sayes, J.; Locke, M.B.; Chen, R.; Baker, S.; Nelson, A.J. Effects of lorazepam and baclofen on short- and long-latency afferent inhibition. J. Physiol. 2018, 596. [Google Scholar] [CrossRef]
- Allan, A.M.; Spuhler, K.P.; Harris, R.A. γ-Aminobutyric acid-activated chloride channels: Relationship to genetic differences in ethanol sensitivity. J. Pharmacol. Exp. Ther. 1988, 244, 866–870. [Google Scholar]
- Harris, R.A.; Allan, A.M. Alcohol intoxication: Ion channels and genetics. FASEB J. 1989, 3, 1689–1695. [Google Scholar] [CrossRef]
- Rotermann, M. What has changed since cannabis was legalized? Health Rep. 2020, 31, 11–20. [Google Scholar] [CrossRef]
- Cerdá, M.; Wall, M.; Feng, T.; Keyes, K.M.; Sarvet, A.; Schulenberg, J.; O’Malley, P.M.; Pacula, R.L.; Galea, S.; Hasin, D.S. Association of state recreational marijuana laws with adolescent marijuana use. JAMA Pediatr. 2017, 171, 142–149. [Google Scholar] [CrossRef]
- Semple, D.M.; McIntosh, A.M.; Lawrie, S.M. Cannabis as a risk factor for psychosis: Systematic review. J. Psychopharmacol. 2005, 19, 187–194. [Google Scholar] [CrossRef]
- Karila, L.; Roux, P.; Rolland, B.; Benyamina, A.; Reynaud, M.; Aubin, H.-J.; Lancon, C. Acute and Long-Term Effects of Cannabis Use: A Review. Curr. Pharm. Des. 2014, 20, 4112–4118. [Google Scholar] [CrossRef] [Green Version]
- Jacobus, J.; Castro, N.; Squeglia, L.M.; Meloy, M.J.; Brumback, T.; Huestis, M.A.; Tapert, S.F. Adolescent cortical thickness pre- and post marijuana and alcohol initiation. Neurotoxicol. Teratol. 2016, 57, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobus, J.; Squeglia, L.M.; Meruelo, A.D.; Castro, N.; Brumback, T.; Giedd, J.N.; Tapert, S.F. Cortical thickness in adolescent marijuana and alcohol users: A three-year prospective study from adolescence to young adulthood. Dev. Cogn. Neurosci. 2015, 16, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Alejandra Infante, M.; Courtney, K.E.; Castro, N.; Squeglia, L.M.; Jacobus, J. Adolescent brain surface area pre-and post-cannabis and alcohol initiation. J. Stud. Alcohol Drugs 2018, 79, 835–843. [Google Scholar] [CrossRef]
- Batalla, A.; Bhattacharyya, S.; Yücel, M.; Fusar-Poli, P.; Crippa, J.A.; Nogué, S.; Torrens, M.; Pujol, J.; Farré, M.; Martin-Santos, R. Structural and Functional Imaging Studies in Chronic Cannabis Users: A Systematic Review of Adolescent and Adult Findings. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Blithikioti, C.; Miquel, L.; Batalla, A.; Rubio, B.; Maffei, G.; Herreros, I.; Gual, A.; Verschure, P.; Balcells-Oliveró, M. Cerebellar alterations in cannabis users: A systematic review. Addict. Biol. 2019, 24, 1121–1137. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, M.; Crescini, A.; Borgwardt, S.; Caverzasi, E.; Politi, P.; Atakan, Z.; Fusar-Poli, P. Is cannabis neurotoxic for the healthy brain? A meta-analytical review of structural brain alterations in non-psychotic users. Psychiatry Clin. Neurosci. 2013, 67, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, V.; Chye, Y.; Silva, P.; Solowij, N.; Roberts, C.A. Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 59–71. [Google Scholar] [CrossRef]
- Bloomfield, M.A.P.; Hindocha, C.; Green, S.F.; Wall, M.B.; Lees, R.; Petrilli, K.; Costello, H.; Ogunbiyi, M.O.; Bossong, M.G.; Freeman, T.P. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol. Ther. 2019, 195, 132–161. [Google Scholar] [CrossRef]
- Chen, J.; Paredes, W.; Lowinson, J.H.; Gardner, E.L. Strain-specific facilitation of dopamine efflux by Δ9-tetrahydrocannabinol in the nucleus accumbens of rat: An in vivo microdialysis study. Neurosci. Lett. 1991, 129, 136–140. [Google Scholar] [CrossRef]
- Malone, D.T.; Taylor, D.A. Modulation by fluoxetine of striatal dopamine release following Δ9-tetrahydrocannabinol: A microdialysis study in conscious rats. Br. J. Pharmacol. 1999, 128, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistis, M.; Porcu, G.; Melis, M.; Diana, M.; Gessa, G.L. Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur. J. Neurosci. 2001, 14, 96–102. [Google Scholar] [CrossRef]
- Pistis, M.; Ferraro, L.; Pira, L.; Flore, G.; Tanganelli, S.; Gessa, G.L.; Devoto, P. Δ9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: An in vivo microdialysis study. Brain Res. 2002, 948, 155–158. [Google Scholar] [CrossRef]
- Hoffman, A.F.; Lupica, C.R. Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J. Neurosci. 2000, 20, 2470–2479. [Google Scholar] [CrossRef] [Green Version]
- Katona, I.; Sperlágh, B.; Sík, A.; Käfalvi, A.; Vizi, E.S.; Mackie, K.; Freund, T.F. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 1999, 19, 4544–4558. [Google Scholar] [CrossRef]
- Katona, I.; Sperlágh, B.; Maglóczky, Z.; Sántha, E.; Köfalvi, A.; Czirják, S.; Mackie, K.; Vizi, E.S.; Freund, T.F. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 2000, 100, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Auclair, N.; Otani, S.; Soubrie, P.; Crepel, F. Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J. Neurophysiol. 2000, 83, 3287–3293. [Google Scholar] [CrossRef] [PubMed]
- Misner, D.L.; Sullivan, J.M. Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J. Neurosci. 1999, 19, 6795–6805. [Google Scholar] [CrossRef] [Green Version]
- Derkinderen, P.; Valjent, E.; Toutant, M.; Corvol, J.C.; Enslen, H.; Ledent, C.; Trzaskos, J.; Caboche, J.; Girault, J.A. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci. 2003, 23, 2371–2382. [Google Scholar] [CrossRef]
- Robbe, D.; Alonso, G.; Duchamp, F.; Bockaert, J.; Manzoni, O.J. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J. Neurosci. 2001, 21, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessa, G.L.; Casu, M.A.; Carta, G.; Mascia, M.S. Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. Eur. J. Pharmacol. 1998, 355, 119–124. [Google Scholar] [CrossRef]
- Mishima, K.; Egashira, N.; Matsumoto, Y.; Iwasaki, K.; Fujiwara, M. Involvement of reduced acetylcholine release in Δ9-tetrahydrocannabinol-induced impairment of spatial memory in the 8-arm radial maze. Life Sci. 2002, 72, 397–407. [Google Scholar] [CrossRef]
- D’Souza, D.C.; Ranganathan, M.; Braley, G.; Gueorguieva, R.; Zimolo, Z.; Cooper, T.; Perry, E.; Krystal, J. Blunted psychotomimetic and amnestic effects of Δ-9- tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology 2008, 33, 2505–2516. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Crippa, J.A.; Allen, P.; Martin-Santos, R.; Borgwardt, S.; Fusar-Poli, P.; Rubia, K.; Kambeitz, J.; O’Carroll, C.; Seal, M.L.; et al. Induction of psychosis by Δ9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing. Arch. Gen. Psychiatry 2012, 69, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Martin-Santos, R.A.; Crippa, J.; Batalla, A.; Bhattacharyya, S.; Atakan, Z.; Borgwardt, S.; Allen, P.; Seal, M.; Langohr, K.; Farre, M.; et al. Acute Effects of a Single, Oral dose of d9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) Administration in Healthy Volunteers. Curr. Pharm. Des. 2012, 18, 4966–4979. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Zehra, A.; Burns, J.; Liu, C.K.; Manza, P.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Cannabis Addiction and the Brain: A Review. J. Neuroimmune Pharmacol. 2018, 13, 438–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomfield, M.A.P.; Morgan, C.J.A.; Egerton, A.; Kapur, S.; Curran, H.V.; Howes, O.D. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol. Psychiatry 2014, 75, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, M.A.P.; Morgan, C.J.A.; Kapur, S.; Curran, H.V.; Howes, O.D. The link between dopamine function and apathy in cannabis users: An [18F]-DOPA PET imaging study. Psychopharmacology 2014, 231, 2251–2259. [Google Scholar] [CrossRef]
- Lile, J.A.; Kelly, T.H.; Hays, L.R. Separate and combined effects of the GABA reuptake inhibitor tiagabine and Δ 9-THC in humans discriminating Δ 9-THC. Drug Alcohol Depend. 2012, 122, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lile, J.A.; Kelly, T.H.; Hays, L.R. Separate and combined effects of the GABAB agonist baclofen and Δ9-THC in humans discriminating Δ9-THC. Drug Alcohol Depend. 2012, 126, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Prescot, A.P.; Locatelli, A.E.; Renshaw, P.F.; Yurgelun-Todd, D.A. Neurochemical alterations in adolescent chronic marijuana smokers: A proton MRS study. Neuroimage 2011, 57, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Prescot, A.P.; Renshaw, P.F.; Yurgelun-Todd, D.A. γ-Amino butyric acid and glutamate abnormalities in adolescent chronic marijuana smokers. Drug Alcohol Depend. 2013, 129, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Cloak, C.; Yakupov, R.; Ernst, T. Combined and independent effects of chronic marijuana use and HIV on brain metabolites. J. Neuroimmune Pharmacol. 2006, 1, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Rigucci, S.; Xin, L.; Klauser, P.; Baumann, P.S.; Alameda, L.; Cleusix, M.; Jenni, R.; Ferrari, C.; Pompili, M.; Gruetter, R.; et al. Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex. Psychopharmacology 2018, 235, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; Rothenberger, A.; Münchau, A.; Wobrock, T.; Falkai, P.; Roessner, V. Oral Δ9-tetrahydrocannabinol improved refractory Gilles de la Tourette syndrome in an adolescent by increasing intracortical inhibition: A case report. J. Clin. Psychopharmacol. 2010, 30, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.B.; Williams, S.; Daskalakis, Z.J. A transcranial magnetic stimulation study of the effects of cannabis use on motor cortical inhibition and excitability. Neuropsychopharmacology 2009, 34, 2368–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Rodriguez, J.F.; Ruiz-Veguilla, M.; Alvarez de Toledo, P.; Aizpurua-Olaizola, O.; Zarandona, I.; Canal-Rivero, M.; Rodriguez-Baena, A.; Mir, P. Impaired motor cortical plasticity associated with cannabis use disorder in young adults. Addict. Biol. 2020, e12912. [Google Scholar] [CrossRef]
- Wobrock, T.; Hasan, A.; Malchow, B.; Wolff-Menzler, C.; Guse, B.; Lang, N.; Schneider-Axmann, T.; Ecker, U.K.H.; Falkai, P. Increased cortical inhibition deficits in first-episode schizophrenia with comorbid cannabis abuse. Psychopharmacology 2010, 208, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Flavel, S.C.; White, J.M.; Todd, G. Motor cortex and corticospinal excitability in humans with a history of illicit stimulant use. J. Appl. Physiol. 2012, 113, 1486–1494. [Google Scholar] [CrossRef] [Green Version]
- Goodman, M.S.; Bridgman, A.C.; Rabin, R.A.; Blumberger, D.M.; Rajji, T.K.; Daskalakis, Z.J.; George, T.P.; Barr, M.S. Differential effects of cannabis dependence on cortical inhibition in patients with schizophrenia and non-psychiatric controls. Brain Stimul. 2017, 10, 275–282. [Google Scholar] [CrossRef]
- Russo, M.; Calabrò, R.S.; Naro, A.; Sessa, E.; Rifici, C.; D’Aleo, G.; Leo, A.; De Luca, R.; Quartarone, A.; Bramanti, P. Sativex in the Management of Multiple Sclerosis-Related Spasticity: Role of the Corticospinal Modulation. Neural Plast. 2015, 2015, 656582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leocani, L.; Nuara, A.; Houdayer, E.; Schiavetti, I.; Del Carro, U.; Amadio, S.; Straffi, L.; Rossi, P.; Martinelli, V.; Vila, C.; et al. Sativex® and clinical–neurophysiological measures of spasticity in progressive multiple sclerosis. J. Neurol. 2015, 262, 2520–2527. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Russo, M.; Naro, A.; Ciurleo, R.; D’Aleo, G.; Rifici, C.; Balletta, T.; La Via, C.; Destro, M.; Bramanti, P.; et al. Nabiximols plus robotic assisted gait training in improving motor performances in people with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 43, 102177. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Flisher, A.J.; King, G. A systematic review of the relationship between high school dropout and substance use. Clin. Child Fam. Psychol. Rev. 2007, 10, 295–317. [Google Scholar] [CrossRef] [PubMed]
- Macleod, J.; Oakes, R.; Copello, A.; Crome, P.I.; Egger, P.M.; Hickman, M.; Oppenkowski, T.; Stokes-Lampard, H.; Smith, G.D. Psychological and social sequelae of cannabis and other illicit drug use by young people: A systematic review of longitudinal, general population studies. Lancet 2004, 363, 1579–1588. [Google Scholar] [CrossRef]
- Jablensky, A. Prevalence and Incidence of Schizophrenia Spectrum Disorders: Implications for Prevention. Aust. N. Z. J. Psychiatry 2000, 34, S26–S34. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.C.; Abi-Saab, W.M.; Madonick, S.; Forselius-Bielen, K.; Doersch, A.; Braley, G.; Gueorguieva, R.; Cooper, T.B.; Krystal, J.H. Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biol. Psychiatry 2005, 57, 594–608. [Google Scholar] [CrossRef]
- Batalla, A.; Janssen, H.; Gangadin, S.S.; Bossong, M.G. The Potential of Cannabidiol as a Treatment for Psychosis and Addiction: Who Benefits Most? A Systematic Review. J. Clin. Med. 2019, 8, 1058. [Google Scholar] [CrossRef] [Green Version]
- Zuardi, A.W.; Morais, S.L.; Guimaraes, F.S.; Mechoulam, R. Antipsychotic effect of cannabidiol. J. Clin. Psychiatry 1995, 56, 485–486. [Google Scholar]
- Dajas-Bailador, F.; Wonnacott, S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol. Sci. 2004, 25, 317–324. [Google Scholar] [CrossRef]
- Mansvelder, H.D.; McGehee, D.S. Cellular and synaptic mechanisms of nicotine addiction. J. Neurobiol. 2002, 53, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Wooltorton, J.R.A.; Pidoplichko, V.I.; Broide, R.S.; Dani, J.A. Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J. Neurosci. 2003, 23, 3176–3185. [Google Scholar] [CrossRef]
- D’Souza, M.S.; Markou, A. The “Stop” and “Go” of nicotine dependence: Role of GABA and glutamate. Cold Spring Harb. Perspect. Med. 2013, 3, a012146. [Google Scholar] [CrossRef]
- Even, N.; Cardona, A.; Soudant, M.; Corringer, P.J.; Changeux, J.P.; Cloëz-Tayarani, I. Regional differential effects of chronic nicotine on brain α4-containing and α6 -containing receptors. Neuroreport 2008, 19, 1545–1550. [Google Scholar] [CrossRef]
- Alkondon, M.; Pereira, E.F.R.; Almeida, L.E.F.; Randall, W.R.; Albuquerque, E.X. Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology 2000, 39, 2726–2739. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Meyerhoff, D.J.; Murray, D.E. Comparison of regional brain perfusion levels in chronically smoking and non-smoking adults. Int. J. Environ. Res. Public Health 2015, 12, 8198–8213. [Google Scholar] [CrossRef] [Green Version]
- Gons, R.A.R.; Van Norden, A.G.W.; De Laat, K.F.; Van Oudheusden, L.J.B.; Van Uden, I.W.M.; Zwiers, M.P.; Norris, D.G.; De Leeuw, F.E. Cigarette smoking is associated with reduced microstructural integrity of cerebral white matter. Brain 2011, 134, 2116–2124. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.L.R.; Gharbawie, O.A.; Whishaw, I.Q.; Kolb, B. Nicotine stimulates dendritic arborization in motor cortex and improves concurrent motor skill but impairs subsequent motor learning. Synapse 2005, 55, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Orth, M.; Amann, B.; Robertson, M.M.; Rothwell, J.C. Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. Brain 2005, 128, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundey, J.; Freznosa, S.; Klinker, F.; Lang, N.; Paulus, W.; Nitsche, M.A. Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology 2013, 229, 653–664. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Oliviero, A.; Profice, P.; Pennisi, M.; Di Giovanni, S.; Zito, G.; Tonali, P.; Rothwell, J. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp. Brain Res. 2000, 135, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, M.; Hikawa, T.; Abe, T.; Ishii, K.; Kobayashi, H. Reduced short latency afferent inhibition in diffuse axonal injury patients with memory impairment. Neurosci. Lett. 2006, 405, 226–230. [Google Scholar] [CrossRef]
- Di Lazzaro, V. Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1064–1069. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L. Pharmacokinetic considerations in understanding nicotine dependence. In The Biology of Nicotine Dependence; Bock, G., Marsh, J., Eds.; Wiley: Chichester, UK, 1990; pp. 186–209. [Google Scholar]
- Shiffman, S.; Dresler, C.M.; Hajek, P.; Gilburt, S.J.A.; Targett, D.A.; Strahs, K.R. Efficacy of a nicotine lozenge for smoking cessation. Arch. Intern. Med. 2002, 162, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Shiffman, S.; Dresler, C.M.; Rohay, J.M. Successful treatment with a nicotine lozenge of smokers with prior failure in pharmacological therapy. Addiction 2004, 99, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Hasan, A.; Sueske, E.; Paulus, W.; Nitsche, M.A. Cortical Hypoexcitability in Chronic Smokers? A Transcranial Magnetic Stimulation Study. Neuropsychopharmacology 2008, 33, 2517–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khedr, E.M.; Tony, A.A.; Abdelwarith, A.; Safwat, M. Effect of chronic nicotine consumption on motor cortical excitability: A transcranial magnetic stimulation study. Neurophysiol. Clin. 2020, 50, 33–39. [Google Scholar] [CrossRef]
- Grundey, J.; Thirugnanasambandam, N.; Kaminsky, K.; Drees, A.; Skwirba, A.C.; Lang, N.; Paulus, W.; Nitsche, M.A. Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J. Neurosci. 2012. [Google Scholar] [CrossRef] [Green Version]
- Grundey, J.; Thirugnasambandam, N.; Amu, R.; Paulus, W.; Nitsche, M.A. Nicotinic restoration of excitatory neuroplasticity is linked to improved implicit motor learning skills in deprived smokers. Front. Neurol. 2018, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Lavender, A.P.; Obata, H.; Kawashima, N.; Nakazawa, K. Effect of paired associative stimulation on corticomotor excitability in chronic smokers. Brain Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Bolton, S.; Null, G. Caffeine psychological effects, use and abuse. J. Orthomol. Psychiatry 1981, 10, 202–211. [Google Scholar]
- Nehlig, A. Is caffeine a cognitive enhancer? J. Alzheimer’s Dis. 2010, 20, S85–S94. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Sturgess, W.; Gallagher, J. Effects of a low dose of caffeine given in different drinks on mood and performance. Hum. Psychopharmacol. 1999, 14, 473–482. [Google Scholar] [CrossRef]
- Griffiths, R.R.; Evans, S.M.; Heishman, S.J.; Preston, K.L.; Sannerud, C.A.; Wolf, B.; Woodson, P.P. Low-dose caffeine discrimination in humans. J. Pharmacol. Exp. Ther. 1990, 252, 970–978. [Google Scholar]
- Kaplan, G.B.; Greenblatt, D.J.; Ehrenberg, B.L.; Goddard, J.E.; Cotreau, M.M.; Harmatz, J.S.; Shader, R.I. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J. Clin. Pharmacol. 1997, 37, 693–703. [Google Scholar] [CrossRef]
- Daly, J.W.; Fredholm, B.B. Caffeine-An atypical drug of dependence. Drug Alcohol Depend. 1998, 51, 199–206. [Google Scholar] [CrossRef]
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-An update. Pharmacol. Rev. 2011, 63, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.H.; Katims, J.J.; Annau, Z.; Bruns, R.F.; Daly, J.W. Adenosine receptors and behavioral actions of methylxanthines [caffeine/theophylline/N 6-cyclohexyladenosine/N 6-(phenylisopropyl)adenosine]. Proc. Natl. Acad. Sci. USA 1981, 78, 3260–3264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Adenosine Receptors: Caffeine. In Lessons on Caffeine, Cannabis & Co; Springer International Publishing: Cham, Switzerland, 2018; pp. 64–68. [Google Scholar]
- Vyleta, N.P.; Smith, S.M. Fast inhibition of glutamate-activated currents by caffeine. PLoS ONE 2008, 3. [Google Scholar] [CrossRef] [Green Version]
- Ferré, S.; Fuxe, K.; von Euler, G.; Johansson, B.; Fredholm, B.B. Adenosine-dopamine interactions in the brain. Neuroscience 1992, 51, 501–512. [Google Scholar] [CrossRef]
- Garrett, B.E.; Griffiths, R.R. The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol. Biochem. Behav. 1997, 57, 533–541. [Google Scholar] [CrossRef]
- Orth, M.; Amann, B.; Ratnaraj, N.; Patsalos, P.N.; Rothwell, J.C. Caffeine has no effect on measures of cortical excitability. Clin. Neurophysiol. 2005, 116, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, R.N.O.; Cronin, N.J.; Kyröläinen, H.; Hintikka, J.; Avela, J. Effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise. Exp. Physiol. 2020, 105, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, V.; de Mendonça, A.; Minez, A.; Dias, A.R.; de Carvalho, M. Does caffeine modify corticomotor excitability? Neurophysiol. Clin. 2006, 36, 219–226. [Google Scholar] [CrossRef]
- De Carvalho, M.; Marcelino, E.; De Mendonça, A. Electrophysiological studies in healthy subjects involving caffeine. J. Alzheimer’s Dis. 2010, 20, S63–S69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Concerto, C.; Infortuna, C.; Chusid, E.; Coira, D.; Babayev, J.; Metwaly, R.; Naenifard, H.; Aguglia, E.; Battaglia, F. Caffeinated energy drink intake modulates motor circuits at rest, before and after a movement. Physiol. Behav. 2017, 179, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Kalmar, J.M.; Cafarelli, E. Central fatigue and transcranial magnetic stimulation: Effect of caffeine and the confound of peripheral transmission failure. J. Neurosci. Methods 2004, 138, 15–26. [Google Scholar] [CrossRef]
- Hanajima, R.; Tanaka, N.; Tsutsumi, R.; Shirota, Y.; Shimizu, T.; Terao, Y.; Ugawa, Y. Effect of caffeine on long-term potentiation-like effects induced by quadripulse transcranial magnetic stimulation. Exp. Brain Res. 2019, 237, 647–651. [Google Scholar] [CrossRef]
- Kalmar, J.M.; Cafarelli, E. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. J. Appl. Physiol. 2006, 100, 1757–1764. [Google Scholar] [CrossRef] [Green Version]
- Bowtell, J.L.; Mohr, M.; Fulford, J.; Jackman, S.R.; Ermidis, G.; Krustrup, P.; Mileva, K.N. Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants. Front. Nutr. 2018, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Specterman, M.; Bhuiya, A.; Kuppuswamy, A.; Strutton, P.H.; Catley, M.; Davey, N.J. The effect of an energy drink containing glucose and caffeine on human corticospinal excitability. Physiol. Behav. 2005, 83, 723–728. [Google Scholar] [CrossRef]
- Jia, F.; Yue, M.; Chandra, D.; Keramidas, A.; Goldstein, P.A.; Homanics, G.E.; Harrison, N.L. Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus. J. Neurosci. 2008, 28, 106–115. [Google Scholar] [CrossRef] [Green Version]
- El Idrissi, A.; Trenkner, E. Taurine as a Modulator of Excitatory and Inhibitory Neurotransmission. Neurochem. Res. 2004, 29, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Oja, S.S.; Saransaari, P. Modulation of taurine release by glutamate receptors and nitric oxide. Prog. Neurobiol. 2000, 62, 407–425. [Google Scholar] [CrossRef]
- El Idrissi, A.; Harris, C.; Trenkner, E. Taurine modulates glutamate- and growth factors-mediated signaling mechanisms. Adv. Exp. Med. Biol. 1998, 442, 385–396. [Google Scholar] [CrossRef]
- Infortuna, C.; Milisits, T.F.; Shaju, S.; Desai, J.K.; Patel, S.P.; Sheikh, A.M.; Chusid, E.; Han, Z.; Battaglia, F. Effects of taurine acute intake on cortical excitability and post-exercise facilitation: A TMS study. Behav. Brain Res. 2019, 359, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Onishi, H.; Sugawara, K.; Kirimoto, H.; Suzuki, M.; Tamaki, H. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation. BMC Neurosci. 2013, 14, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, M.K.F.; Gavioli, E.C.; Rosa, L.S.; de Paula Soares-Rachetti, V.; Lobão-Soares, B. Craving espresso: The dialetics in classifying caffeine as an abuse drug. Naunyn. Schmiedebergs. Arch. Pharmacol. 2018, 391, 1301–1318. [Google Scholar] [CrossRef]
- Muetzel, R.L.; Marjańska, M.; Collins, P.F.; Becker, M.P.; Valabrègue, R.; Auerbach, E.J.; Lim, K.O.; Luciana, M. In vivo 1H magnetic resonance spectroscopy in young-adult daily marijuana users. NeuroImage Clin. 2013, 2, 581–589. [Google Scholar] [CrossRef]
- Wiers, C.E.; Shokri-Kojori, E.; Wong, C.T.; Abi-Dargham, A.; Demiral, Ş.B.; Tomasi, D.; Wang, G.J.; Volkow, N.D. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males. Neuropsychopharmacology 2016, 41, 2596–2605. [Google Scholar] [CrossRef] [Green Version]
- Perkins, K.A. Sex differences in nicotine versus nonnicotine reinforcement as determinants of tobacco smoking. Exp. Clin. Psychopharmacol. 1996, 4, 166–177. [Google Scholar] [CrossRef]
- Hatsukami, D.; Skoog, K.; Allen, S.; Bliss, R. Gender and the Effects of Different Doses of Nicotine Gum on Tobacco Withdrawal Symptoms. Exp. Clin. Psychopharmacol. 1995, 3, 163–173. [Google Scholar] [CrossRef]
- Li, M.D. The genetics of nicotine dependence. Curr. Psychiatry Rep. 2006, 8, 158–164. [Google Scholar] [CrossRef]
- MacKillop, J.; Obasi, E.M.; Amlung, M.T.; McGeary, J.E.; Knopik, V.S. The Role of Genetics in Nicotine Dependence: Mapping the Pathways from Genome to Syndrome. Curr. Cardiovasc. Risk Rep. 2010, 4, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, K.E.; Allen, D.L.; Filbey, F.M.; Jepson, C.; Lerman, C.; Benowitz, N.L.; Stitzel, J.; Bryan, A.; McGeary, J.; Haughey, H.M. CHRNA4 and tobacco dependence: From gene regulation to treatment outcome. Arch. Gen. Psychiatry 2007, 64, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Broms, U.; Wedenoja, J.; Largeau, M.R.; Korhonen, T.; Pitkäniemi, J.; Keskitalo-Vuokko, K.; Häppölä, A.; Heikkilä, K.H.; Heikkilä, K.; Ripatti, S.; et al. Analysis of detailed phenotype profiles reveals CHRNA5-CHRNA3-CHRNB4 gene cluster association with several nicotine dependence traits. Nicotine Tob. Res. 2012, 14, 720–733. [Google Scholar] [CrossRef] [Green Version]
- Saccone, N.L.; Culverhouse, R.C.; Schwantes-An, T.H.; Cannon, D.S.; Chen, X.; Cichon, S.; Giegling, I.; Han, S.; Han, Y.; Keskitalo-Vuokko, K.; et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: A meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010, 6. [Google Scholar] [CrossRef]
- Furberg, H.; Kim, Y.; Dackor, J.; Boerwinkle, E.; Franceschini, N.; Ardissino, D.; Bernardinelli, L.; Mannucci, P.M.; Mauri, F.; Merlini, P.A.; et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 2010, 42, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Berrettini, W.; Yuan, X.; Tozzi, F.; Song, K.; Francks, C.; Chilcoat, H.; Waterworth, D.; Muglia, P.; Mooser, V. A-5/A-3 Nicotinic Receptor Subunit Alleles Increase Risk for Heavy Smoking. Mol. Psychiatry 2008, 13, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Hartz, S.M.; Short, S.E.; Saccone, N.L.; Culverhouse, R.; Chen, L.S.; Schwantes-An, T.H.; Coon, H.; Han, Y.; Stephens, S.H.; Sun, J.; et al. Increased genetic vulnerability to smoking at CHRNA5 in early-onset smokers. Arch. Gen. Psychiatry 2012, 69, 854–861. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Morrison, P.D.; Fusar-Poli, P.; Martin-Santos, R.; Borgwardt, S.; Winton-Brown, T.; Nosarti, C.; O’Carroll, C.M.; Seal, M.; Allen, P.; et al. Opposite effects of δ-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 2010, 35, 764–774. [Google Scholar] [CrossRef]
- Pertwee, R.G. The diverse CB 1 and CB 2 receptor pharmacology of three plant cannabinoids: Δ 9-tetrahydrocannabinol, cannabidiol and Δ 9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, A.; Ehret, A.M.; Kirsch, P. From the neurobiological basis of comorbid alcohol dependence and depression to psychological treatment strategies: Study protocol of a randomized controlled trial. BMC Psychiatry 2017, 17, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frye, M.A.; Salloum, I.M. Bipolar disorder and comorbid alcoholism: Prevalence rate and treatment considerations. Bipolar Disord. 2006, 8, 677–685. [Google Scholar] [CrossRef]
- McCormick, L.M.; Buchanan, J.R.; Onwuameze, O.E.; Pierson, R.K.; Paradiso, S. Beyond alcoholism: Wernicke-korsakoff syndrome in patients with psychiatric disorders. Cogn. Behav. Neurol. 2011, 24, 209–216. [Google Scholar] [CrossRef] [PubMed]
Study | AMT | RMT | MEP | CSP | iSP | SAI | LAI | SICI | ICF | SICF | LICI | SIHI | LIHI | N100 | N45 | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ziemann et al. [21] | ○ | ○ | ○ | ▲ | – | – | – | ▲ | ▼ | – | – | – | – | – | – | Acute intake |
Ziemann et al. [22] | – | ○ | ○ | – | – | – | – | – | – | ▼ | – | – | – | – | – | Acute intake |
Conte et al. [23] | – | ○ | ○ | ▲ | – | – | – | – | – | – | – | – | – | – | – | Acute intake in controls |
– | ○ | – | ○ | – | – | – | ○ | ○ | – | – | – | – | – | – | Alcoholics vs. controls | |
Hoppenbrouwers et al. [24] | – | – | ▼ | – | – | – | – | – | – | – | – | ▼* | – | – | – | Acute intake; * significant in females only |
Loheswaran et al. [25] | – | – | ○ | – | – | – | – | – | – | – | – | – | – | ▼* | – | Acute intake in alcoholics; * acquired in DLPFC |
Kähkönen et al. [26] | – | – | – | – | – | – | – | – | – | – | – | – | – | ▼* | – | Acute intake; * acquired in M1 |
Muralidharan et al. [27] | – | ○ | – | ▼ | ▼ | – | – | – | – | – | – | – | – | – | – | High-vs. low-risk for alcohol dependence |
Nardone et al. [28] | ○ | ○ | – | ○ | – | – | – | ○ | ▲ | – | – | – | – | – | – | AWS vs. alcoholics and controls |
Muralidharan et al. [29] | – | ○ | ○ | – | – | – | – | – | – | – | – | – | – | – | – | High-vs. low-risk for alcohol dependence |
Naim-Feil et al. [30] | ▼ | ▼ | ▼ | ○ | – | – | – | ○ | ○ | – | ▼* | – | – | – | – | Alcoholics vs. controls; * LICI acquired in DLPFC |
Kaarre et al. [31] | – | ○ | – | – | – | – | – | – | – | – | – | – | – | – | ▲ | Heavy alcohol use in adolescence vs. controls |
Quoilin et al. [32] | – | – | ▼ | – | – | – | – | – | – | – | – | – | – | – | – | Alcoholics vs. controls |
Study. | AMT | RMT | MEP | CSP | iSP | SAI | LAI | SICI | ICF | SICF | LICI | SIHI | LIHI | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hasan et al. [104] | – | ○ | ○ | ▲ | – | – | – | ▲ | – | – | – | – | – | Acute intake |
Fitzgerald et al. [105] | ○ | ○ | ○ | ○ | – | – | – | ▼ | ○ | – | ○ | – | – | Heavy and light cannabis users vs. non-users |
Martin-Rodriguez et al. [106] | ○ | ○ | ○ | – | – | – | – | ▼ | – | – | – | – | – | CUD and daily cannabis users vs. non-users |
Wobrock et al. [107] | – | ○ | – | – | – | – | – | ▼ | ▲ | – | – | – | – | Schizophrenia cannabis users vs. non-users |
Flavel et al. [108] | – | ○ | ○ | ○ | – | – | – | – | – | ○ | ○ | – | – | Cannabis users vs. nonusers |
Goodman et al. [109] | – | ○ | – | ○ | – | – | – | ▲ | ○ | – | ○ | – | – | Schizophrenia cannabis users vs. non-users |
– | ○ | – | ○ | – | – | – | ▼ | ○ | – | ○ | – | – | Control cannabis users vs. nonusers | |
Russo et al. [110] | ○ | ○ | ○ | ○ | – | ○ | ○ | ▲ | ▼ | – | – | – | – | MS patients on 1 month of Sativex |
Leocani et al. [111] | – | ○ | ○ | – | – | – | – | ○ | ○ | – | – | – | – | MS patients on 1 month of Sativex |
Calabrò et al. [112] | – | – | ▲ | – | – | – | – | ▼ | ▼ | – | – | – | – | MS patients on 6 weeks of Sativex + gait training |
Study | AMT | RMT | MEP | CSP | iSP | SAI | LAI | SICI | ICF | SICF | LICI | SIHI | LIHI | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grundey et al. [129] | ○ | ○ | ○ | – | – | ▲ | – | ▲ | ○ | ○ | – | – | – | Non-smokers after acute intake |
○ | ○ | ○ | – | – | ○ | – | ○ | ▲ | ○ | – | – | – | Smokers after acute intake | |
○ | ○ | ○ | – | – | ○ | – | ○ | ▼ | ○ | – | – | – | Smokers vs. non-smokers | |
Orth et al. [128] | ○ | ○ | – | ○ | – | ○ | – | ○ | ○ | – | – | – | – | Non-smokers after acute intake |
○ | ○ | – | ○ | – | ○ | – | ○ | ○ | – | – | – | – | Tourette’s after acute intake | |
Lang et al. [136] | ○ | ○ | ▼ | ▲ | – | ▲ | ○ | ○ | ▼ | – | ○ | – | – | Smokers vs. non-smokers |
Khedr et al. [137] | ○ | ○ | ▲ | ○ | ○ | – | – | – | – | – | – | – | – | Smokers vs. non-smokers |
Study | AMT | RMT | MEP | CSP | iSP | SAI | LAI | SICI | ICF | SICF | LICI | SIHI | LIHI | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kalmar et al. [159] | – | – | ○ | – | – | – | – | – | – | – | – | – | – | Acute intake |
Orth et al. [154] | ○ | ○ | ○ | ○ | – | – | – | ○ | ○ | – | – | – | – | Acute intake |
Specterman et al. [163] | – | – | ▲ | – | – | – | – | – | – | – | – | – | – | Acute intake |
Cerqueira et al. [156] | – | ○ | ○ | ▼ | – | – | – | – | – | – | – | – | – | Acute intake |
de Carvahlo et al. [157] | – | ○ | ○ | ▼ | – | – | – | ○ | ○ | – | ○ | – | – | Acute intake |
Concerto et al. [158] | – | ○ | ○ | ○ | – | ○ | ○ | ○ | ▼ | – | – | – | – | Acute intake |
Hanajima et al. [160] | – | – | ○ * | – | – | – | – | – | – | – | – | – | – | Acute intake; * between-subject comparison |
Kalmar et al. [161] | – | – | ○ * | – | – | – | – | – | – | – | – | – | – | Acute intake; * trending increase after caffeine intake, but not significant |
Bowtell et al. [162] | – | – | ▲ * | ○ | – | – | – | – | – | – | – | – | – | Acute intake; * caffeine only potentiated MEPs obtained during maximal contraction |
Mesquita et al. [155] | ○ | – | ○ | ▼ | – | – | – | ○ * | ○ | – | – | – | – | Acute intake; * SICI reduced in caffeine and placebo condition |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turco, C.V.; Arsalan, S.O.; Nelson, A.J. The Influence of Recreational Substance Use in TMS Research. Brain Sci. 2020, 10, 751. https://doi.org/10.3390/brainsci10100751
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sciences. 2020; 10(10):751. https://doi.org/10.3390/brainsci10100751
Chicago/Turabian StyleTurco, Claudia V., Sarah O. Arsalan, and Aimee J. Nelson. 2020. "The Influence of Recreational Substance Use in TMS Research" Brain Sciences 10, no. 10: 751. https://doi.org/10.3390/brainsci10100751
APA StyleTurco, C. V., Arsalan, S. O., & Nelson, A. J. (2020). The Influence of Recreational Substance Use in TMS Research. Brain Sciences, 10(10), 751. https://doi.org/10.3390/brainsci10100751