Optimization of Replaced Grinding Wheel Diameter for Minimum Grinding Cost in Internal Grinding
Abstract
1. Introduction
2. Cost Analysis
3. Experimental Work
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malkin, S.; Guo, C. Grinding Technology: Theory and Applications of Machining with Abrasives; Industrial Press: New York, NY, USA, 2008. [Google Scholar]
- Li, G.F.; Wang, L.S.; Yang, L.B. Multi-parameter optimization and control of the cylindrical grinding process. J. Mater. Process. Technol. 2002, 129, 232–236. [Google Scholar] [CrossRef]
- Gupta, R.; Shishodia, K.S.; Sekhon, G.S. Optimization of grinding process parameters using enumeration method. J. Mater. Process. Technol. 2001, 112, 63–67. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rudrapati, R.; Kumar pal, P.; Nandi, G. Experiments, analysis and parametric optimization of cylindrical traverse cut grinding of aluminium bronze. Mater. Today: Proc. 2018, 5, 5272–5280. [Google Scholar] [CrossRef]
- Pi, V.N.; The, P.Q.; Khiem, V.H.; Huong, N.N. Cost optimization of external cylindrical grinding. Appl. Mech. Mater. 2013, 312, 982–989. [Google Scholar] [CrossRef]
- Rana, P.; Lalwani, D.I. Parameters optimization of surface grinding process using Modified ε constrained Differential Evolution. Mater. Today: Proc. 2017, 4, 10104–10108. [Google Scholar] [CrossRef]
- Warnecke, G.; Barth, C. Optimization of the Dynamic Behavior of Grinding Wheels for Grinding of Hard and Brittle Materials Using the Finite Element Method. CIRP Ann. Manuf. Technol. 1999, 48, 261–264. [Google Scholar] [CrossRef]
- Pi, V.N.; Tung, L.A.; Hung, L.X.; Ngoc, N.C. Experimental Determination of Optimum Replaced Diameter in Surface Grinding Process. J. Environ. Sci. Eng. 2017, 5, 85–89. [Google Scholar]
- Pandiyan, V.; Caesarendra, W. Tegoeh Tjahjowidodo, and Gunasekaran Praveen, Predictive Modelling and Analysis of Process Parameters on Material Removal Characteristics in Abrasive Belt Grinding Process. Appl. Sci. 2017, 7, 363. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, H.; Yang, Y. Reliability Modeling and Evaluation Method of CNC Grinding Machine Tool. Appl. Sci. 2019, 9, 14. [Google Scholar] [CrossRef]
- Vu, N.P.; Nguyen, O.-X.; Tran, T.-H.; Le, H.-K.; Nguyen, A.-T.; Luu, A.-T.; Nguyen, V.-T.; Le, X.-H. Optimization of Grinding Parameters for Minimum Grinding Time When Grinding Tablet Punches by CBN Wheel on CNC Milling. Appl. Sci. 2019, 9, 957. [Google Scholar] [CrossRef]
- Inasaki, I. Monitoring and Optimization of Internal Grinding Process. CIRP Ann. Manuf. Technol. 1991, 40, 359–362. [Google Scholar] [CrossRef]
- Daneshi, A.; Jandaghi, N.; Tawakoli, T. Effect of Dressing on Internal Cylindrical Grinding. Procedia CIRP 2014, 14, 37–41. [Google Scholar] [CrossRef]
- Xiao, G.; Malkin, S. On-Line Optimization for Internal Plunge Grinding. CIRP Ann. Manuf. Technol. 1996, 45, 287–292. [Google Scholar] [CrossRef]
- Tönshoff, H.K.; Walter, A. Self-tuning fuzzy-controller for process control in internal grinding. Fuzzy Sets Syst. 1994, 63, 359–373. [Google Scholar] [CrossRef]
- Pi, V.N.; Hung, L.X.; Tung, L.N.; Long, B.T. Cost Optimization of Internal Grinding. J. Mater. Sci. Eng. B 2016, 6, 291–296. [Google Scholar]
- Brian Rowe, W. Principle of Modern Grinding Technology; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Long, B.T.; Pi, V.N.; Hung, L.X.; Tung, L.A. Building cutting regime formulas for internal grinding (In Vietnamese). J. Sci. Technol. 2016, 9, 15–18. [Google Scholar]
- Kozuro, L.M.; Panov, A.A.; Remizovski, E.I.; Tristosepdov, P.S. Handbook of Grinding (in Russian); Publish Housing of High-Education: Minsk, Russia, 1981. [Google Scholar]
- Hung, L.X.; Hong, T.T.; Ky, L.H.; Tuan, N.Q.; Tung, L.A.; Long, B.T.; Pi, V.N. A study on calculation of optimum exchanged grinding wheel diameter when internal grinding. In Proceedings of the 9th International Conference on Materials Processing and Characterization, Hyderabad, India, 8–10 March 2019. [Google Scholar]
Coefficient depends on | Code | Value | Reference |
---|---|---|---|
Work-piece material and tolerance grade | c1 | [18] | |
Grinding wheel diameter | c2 | [18] | |
Measurement type | c3 | 1 (using micrometer) | [19] |
Ratio of length to diameter of work-piece | c4 | [18] |
Name | Code | Equation |
---|---|---|
Grinding time | tc | |
Dressing time | td,p | |
Wheel replacing time per work-piece | twr,p |
Factor | Code | Unit | Low | High |
---|---|---|---|---|
Initial grinding wheel diameter | D0 | mm | 10 | 40 |
Grinding wheel width | Wgw | mm | 8 | 40 |
L/d ratio | Rld | - | 1.2 | 4 |
Total depth of dressing cut | aed | mm | 0.05 | 0.15 |
Life of wheel | Tw | min | 10 | 30 |
Radial grinding wheel wear per dress | Wpd | mm | 0.01 | 0.03 |
Cost of the grinding machine | Cm,h | USD/h | 4 | 10 |
Wheel cost per piece | Cgw | USD/p. | 0.3 | 5 |
StdOrder | RunOrder | CenterPt | Blocks | D0 | Wgw | Rld | aed | Tw | Wpd | Cm,h | Cgw | De,op |
---|---|---|---|---|---|---|---|---|---|---|---|---|
97 | 1 | 1 | 1 | 10 | 8 | 1.2 | 0.05 | 10 | 0.03 | 10 | 0.3 | 7.84 |
82 | 2 | 1 | 1 | 40 | 8 | 1.2 | 0.05 | 30 | 0.01 | 10 | 5 | 32.2 |
51 | 3 | 1 | 1 | 10 | 40 | 1.2 | 0.05 | 30 | 0.03 | 4 | 5 | 5.33 |
89 | 4 | 1 | 1 | 10 | 8 | 1.2 | 0.15 | 30 | 0.01 | 10 | 5 | 5.86 |
108 | 5 | 1 | 1 | 40 | 40 | 1.2 | 0.15 | 10 | 0.03 | 10 | 5 | 25.69 |
104 | 6 | 1 | 1 | 40 | 40 | 4 | 0.05 | 10 | 0.03 | 10 | 5 | 28.24 |
… | ||||||||||||
54 | 127 | 1 | 1 | 40 | 8 | 4 | 0.05 | 30 | 0.03 | 4 | 0.3 | 36.23 |
9 | 128 | 1 | 1 | 10 | 8 | 1.2 | 0.15 | 10 | 0.01 | 4 | 5 | 3.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.-H.; Le, X.-H.; Nguyen, Q.-T.; Le, H.-K.; Hoang, T.-D.; Luu, A.-T.; Banh, T.-L.; Vu, N.-P. Optimization of Replaced Grinding Wheel Diameter for Minimum Grinding Cost in Internal Grinding. Appl. Sci. 2019, 9, 1363. https://doi.org/10.3390/app9071363
Tran T-H, Le X-H, Nguyen Q-T, Le H-K, Hoang T-D, Luu A-T, Banh T-L, Vu N-P. Optimization of Replaced Grinding Wheel Diameter for Minimum Grinding Cost in Internal Grinding. Applied Sciences. 2019; 9(7):1363. https://doi.org/10.3390/app9071363
Chicago/Turabian StyleTran, Thi-Hong, Xuan-Hung Le, Quoc-Tuan Nguyen, Hong-Ky Le, Tien-Dung Hoang, Anh-Tung Luu, Tien-Long Banh, and Ngoc-Pi Vu. 2019. "Optimization of Replaced Grinding Wheel Diameter for Minimum Grinding Cost in Internal Grinding" Applied Sciences 9, no. 7: 1363. https://doi.org/10.3390/app9071363
APA StyleTran, T.-H., Le, X.-H., Nguyen, Q.-T., Le, H.-K., Hoang, T.-D., Luu, A.-T., Banh, T.-L., & Vu, N.-P. (2019). Optimization of Replaced Grinding Wheel Diameter for Minimum Grinding Cost in Internal Grinding. Applied Sciences, 9(7), 1363. https://doi.org/10.3390/app9071363