Acquisition of Multi-Modal Images of Structural Modifications in Glass with Programmable LED-Array-Based Illumination
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Modifications in Glass Using Femtosecond Laser Pulses
2.2. LED Array Microscope
2.2.1. Optical Setup for an LED Array Microscope
2.2.2. Multi-Contrast Imaging with an LED Array Microscope
2.2.3. Rheinberg Illumination with an LED Array Microscope
3. Results
3.1. Acquisition of Multi-Contrast Images
3.2. Simultaneous Acquisition of Bright Field and Dark Field Images by Rheinberg Illumination
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729–1731. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Watanabe, W.; Nolte, S.; Schaffer, C.B. Ultrafast processes for bulk modification of transparent materials. MRS. Bull. 2006, 31, 620–625. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Homoelle, D.; Wielandy, S.; Gaeta, A.L.; Borrelli, N.F.; Smith, C. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 1999, 24, 1311–1313. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.W.; Huser, T.; Risbud, S.; Krol, D.M. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 2001, 26, 1726–1728. [Google Scholar] [CrossRef] [PubMed]
- Will, M.; Nolte, S.; Chichkov, B.N.; Tünnermann, A. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses. Appl. Opt. 2002, 41, 4360–4364. [Google Scholar] [CrossRef] [PubMed]
- Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Commun. 1999, 171, 279–284. [Google Scholar] [CrossRef]
- Shimotsuma, Y.; Kazansky, P.G.; Qiu, J.; Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 2003, 91, 247405. [Google Scholar] [CrossRef] [PubMed]
- Efimov, O.M.; Gabel, K.; Garnov, S.V.; Glebov, L.B.; Grantham, S.; Richardson, M.; Soileau, M.J. Color-center generation in silicate glasses exposed to infrared femtosecond pulses. J. Opt. Soc. Am. B 1998, 15, 193–199. [Google Scholar] [CrossRef]
- Florea, C.; Winick, K.A. Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Lightwave Technol. 2003, 21, 246–253. [Google Scholar] [CrossRef]
- Chen, G.Y.; Piantedosi, F.; Otten, D.; Qiongyue Kang, Y.; Zhang, W.Q.; Zhou, X.; Monro, T.M.; Lancaster, D.G. Femtosecond-laser-written microstructured waveguides in BK7 glass. Sci. Rep. 2018, 8, 10377. [Google Scholar] [CrossRef] [PubMed]
- Mermillod-Blondin, A.; Burakov, I.M.; Stoian, R.; Rosenfeld, A.; Audouard, E.; Bulgakova, N.; Hertel, I.V. Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy. J. Laser Micro Nanoeng. 2006, 1, 155–160. [Google Scholar] [CrossRef]
- Mishchik, K.; Ferrer, A.; Ruiz de la Cruz, A.; Mermillod-Blondin, A.; Mauclair, C.; Ouerdane, Y.; Boukenter, A.; Solis, J.; Stoian, R. Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass. Opt. Mater. Express 2013, 3, 67–85. [Google Scholar] [CrossRef]
- Samson, E.C.; Blanca, C.M. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns. New J. Phys. 2007, 9, 363. [Google Scholar] [CrossRef]
- Zuo, C.; Sun, J.; Feng, S.; Hua, Y.; Chen, Q. Programmable colored illumination microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Opt. Lasers Eng. 2016, 78, 35–47. [Google Scholar] [CrossRef]
- Yokoe, R.; Watanabe, W. Multi-contrast imaging of femtosecond-laser-induced modifications in glass by variable illumination with a projector-based microscope. Optik 2017, 150, 48–53. [Google Scholar] [CrossRef]
- Zheng, G.; Kolner, C.; Yang, C. Microscopy refocusing and dark-field imaging using a simple LED array. Opt. Lett. 2011, 36, 3987–3989. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wang, J.; Waller, L. 3D differential phase-contrast microscopy with computational illumination using an LED array. Opt. Lett. 2014, 39, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Ryu, S.; Kim, U.; Jung, D.; Joo, C. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging. Biomed. Opt. Express 2015, 6, 4912. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, R.; Maruyama, R.; Tamada, Y.; Arimoto, H.; Watanabe, W. Contrast enhancement by oblique illumination microscopy with an LED array. Optik 2019, 183, 92–98. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugimoto, R.; Maruyama, R.; Watanabe, W. Acquisition of Multi-Modal Images of Structural Modifications in Glass with Programmable LED-Array-Based Illumination. Appl. Sci. 2019, 9, 1136. https://doi.org/10.3390/app9061136
Sugimoto R, Maruyama R, Watanabe W. Acquisition of Multi-Modal Images of Structural Modifications in Glass with Programmable LED-Array-Based Illumination. Applied Sciences. 2019; 9(6):1136. https://doi.org/10.3390/app9061136
Chicago/Turabian StyleSugimoto, Ryo, Ryoji Maruyama, and Wataru Watanabe. 2019. "Acquisition of Multi-Modal Images of Structural Modifications in Glass with Programmable LED-Array-Based Illumination" Applied Sciences 9, no. 6: 1136. https://doi.org/10.3390/app9061136
APA StyleSugimoto, R., Maruyama, R., & Watanabe, W. (2019). Acquisition of Multi-Modal Images of Structural Modifications in Glass with Programmable LED-Array-Based Illumination. Applied Sciences, 9(6), 1136. https://doi.org/10.3390/app9061136