Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jentzsch, P.V.; Ciobotă, V. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour Fragr. J. 2014, 29, 287–295. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2010, 91, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, W.J. Unsaturated Fatty Acids, Desaturases, and Human Health. J. Med. Food 2014, 17, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Vessby, B.; Uusitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nälsén, C.; Berglund, L.; Louheranta, A.; Rasmussen, B.M.; et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU study. Diabetologia 2001, 44, 312–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kien, C.L.; Bunn, J.Y.; Tompkins, C.L.; Dumas, J.A.; Crain, K.I.; Ebenstein, D.B.; Koves, T.R.; Muoio, D.M. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am. J. Clin. Nutr. 2013, 97, 689–697. [Google Scholar] [CrossRef]
- Bayle, M.S.; Gonzalez-Requejo, A.; Pelaez, M.J.; Morales, M.T.; Asensio-Anton, J.; Anton-Pacheco, E. A ross-sectional study of dietary habits and lipid profiles. The Rivas-Vaciamadrid study. Eur. J. Pediatr. 2008, 167, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. The role of dietary n-6 fatty acids in the prevention of cardiovascular disease. J. Cardiovasc. Med. 2007, 8, S42–S45. [Google Scholar] [CrossRef] [PubMed]
- Pala, V.; Krogh, V.; Muti, P.; Chajes, V.; Riboli, E.; Micheli, A.; Saadatian, M.; Sieri, S.; Berrino, F. Erythrocyte Membrane Fatty Acids and Subsequent Breast Cancer: A Prospective Italian Study. J. Natl. Cancer Inst. 2001, 93, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, Y.; Guo, H.; Xu, J.; Chen, Z.; Zhang, J.; Wang, Y. Identification of waste cooking oil and vegetable oil via Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 860–864. [Google Scholar] [CrossRef]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy and chemometrics. Spectrochim. Acta A 2018, 189, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, P.V.; Gualpa, F.; Ramos, L.A.; Ciobotă, V. Adulteration of clove oil: Detection using a handheld Raman spectrometer. Flavour Frag. J. 2018, 33, 184–190. [Google Scholar] [CrossRef]
- Alvarenga, B.R.; Xavier, F.A.N.; Soares, F.L.F.; Carneiro, R.L. Thermal Stability Assessment of Vegetable Oils by Raman Spectroscopy and Chemometrics. Food Anal. Methods 2018, 11, 1969–1976. [Google Scholar] [CrossRef]
- Fan, Y.; Li, S.; Xu, D.-P. Raman spectra of oleic acid and linoleic acid. Spectrosc. Spect. Anal. 2013, 33, 3240–3243. [Google Scholar]
- Graham, S.F.; Haughey, S.A.; Ervin, R.M.; Cancouët, E.; Bell, S.; Elliott, C.T. The application of near-infrared (NIR) and Raman spectroscopy to detect adulteration of oil used in animal feed production. Food Chem. 2012, 132, 1614–1619. [Google Scholar] [CrossRef] [PubMed]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis. J. Am. Oil Chem. Soc. 2009, 86, 507–511. [Google Scholar] [CrossRef]
- Osawa, C.C.; Gonçalves, L.A.G.; Ragazzi, S. Correlation between free fatty acids of vegetable oils evaluated by rapid tests and by the official method. J. Food Compos. Anal. 2007, 20, 523–528. [Google Scholar] [CrossRef]
- Baeten, V.; Dardenne, P.; Aparicio, R. Interpretation of Fourier Transform Raman Spectra of the Unsaponifiable Matter in a Selection of Edible Oils. J. Agric. Food Chem. 2001, 49, 5098–5107. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sanchidrián, C.; Ruiz, J.R. Use of Raman spectroscopy for analyzing edible vegetable oils. Appl. Spectrosc. Rev. 2016, 51, 417–430. [Google Scholar] [CrossRef]
- Dymińska, L.; Calik, M.; Albegar, A.M.M.; Zając, A.; Kostyń, K.; Lorenc, J.; Hanuza, J. Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. Int. J. Food Prop. 2017, 20, 2003–2015. [Google Scholar] [Green Version]
- Czarnecki, M.A.; Liu, Y.; Ozaki, Y.; Suzuki, M.; Iwahashi, M. Potential of Fourier transform near-infrared spectroscopy in studies if dissociation of fatty acids in the liquid phase. Appl. Spectrosc. 1993, 47, 2162–2168. [Google Scholar] [CrossRef]
- Sadeghi-Jorabchi, H.; Wilson, R.H.; Belton, P.S.; Edwards-Webb, J.D.; Coxon, D.T. Quantitative analysis of oils and fats by Frourier transform Raman spectroscopy. Spectrochim. Acta A 1991, 47A, 1449–1458. [Google Scholar] [CrossRef]
- Kong, M.H.; Wu, D.X.; Chen, X.B. Qualitative and Quantitative Studies on Artemisinin with Raman Spectroscopy. Spectrosc. Spect. Anal. 2017, 37, 778–782. [Google Scholar]
- Zarei, A.; Klumbach, S.; Keppler, H. The Relative Raman Scattering Cross Sections of H2O and D2O, with Implications for In Situ Studies of Isotope Fractionation. Acs Earth Space Chem. 2018, 2, 925–934. [Google Scholar] [CrossRef]
- Chen, X.B.; Hien, N.T.M.; Han, K.; Nam, J.Y.; Huyen, N.T.; Shin, S.I.; Wang, X.; Cheong, S.W.; Lee, D.; Noh, T.W.; et al. Study of spin-ordering and spin-reorientation transitions in hexagonal manganties through Raman spectroscopy. Sci. Rep. 2015, 5, 13366. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.-H.; Choi, J.-Y.; Kim, H.-T.; Chen, X.-B. Raman spectroscopy studies of spin-wave in V2O3thin films. J. Phys. D Appl. Phys. 2016, 49, 465304. [Google Scholar]
- Noda, I. Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and other Types of Spectroscopy. Appl. Spectrosc. 1993, 47, 1329–1336. [Google Scholar] [CrossRef]
- Noda, I.; Ozaki, Y. Two-Dimentional Correlation Spectroscopy; Applications in Vibrational Spectroscopy; John Wiley & Sons Inc.: New York, NY, USA, 2004. [Google Scholar]
- Jung, Y.M.; Noda, I. New approaches to generalized two-dimensional correlation spectroscopy and its applications. Appl. Spectrosc. Rev. 2006, 41, 515–547. [Google Scholar] [CrossRef]
- Shinzawa, H.; Awa, K.; Noda, I.; Ozaki, Y. Pressure-induced variation of cellulose tablet studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy in conjunction with projection pretreatment. Vib. Spectrosc. 2013, 65, 28–35. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, T.M.H.; Chen, X.-B.; Yang, I.-S.; Park, Y.; Jung, Y.M. 2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3. J. Mol. Struct. 2014, 1069, 280–283. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Nguyen, T.H.; Chen, X.-B.; Park, Y.; Jung, Y.M.; Lee, D.; Noh, T.; Cheong, S.-W.; Yang, I.-S. Correlation between magnon and magnetic symmetries of hexagonal RMnO3 (R = Er, Ho, Lu). J. Mol. Struct. 2016, 1124, 103–109. [Google Scholar] [CrossRef]
- Pi, F.; Shinzawa, H.; Czarnecki, M.A.; Iwahashi, M.; Suzuki, M.; Ozaki, Y. Self-assembling of oleic acid (cis-9-octadecenoic acid) and linoleic acid (cis-9, cis-12-octadecadienoic acid) in ethanol studied by time-dependent attenuated total reflectance (ATR) infrared (IR) and two-dimensional (2D) correlation spectroscopy. J. Mol. Struct. 2010, 974, 40–45. [Google Scholar] [CrossRef]
Sample | MUFA (%) | PUFA (%) | Saturated Fatty Acid (%) |
---|---|---|---|
A | 26 | 61 | 13 |
B | 30 | 56 | 14 |
C | 32 | 53 | 15 |
D | 44 | 38 | 18 |
E | 75 | 10 | 15 |
F | 78 | 7 | 15 |
G | 79 | 6 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Hou, H.-Y.; Huyen, N.T.; Yang, I.-S.; Chen, X.-B. Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Appl. Sci. 2019, 9, 2807. https://doi.org/10.3390/app9142807
Qiu J, Hou H-Y, Huyen NT, Yang I-S, Chen X-B. Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Applied Sciences. 2019; 9(14):2807. https://doi.org/10.3390/app9142807
Chicago/Turabian StyleQiu, Jin, Hua-Yi Hou, Nguyen Thi Huyen, In-Sang Yang, and Xiang-Bai Chen. 2019. "Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils" Applied Sciences 9, no. 14: 2807. https://doi.org/10.3390/app9142807
APA StyleQiu, J., Hou, H.-Y., Huyen, N. T., Yang, I.-S., & Chen, X.-B. (2019). Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Applied Sciences, 9(14), 2807. https://doi.org/10.3390/app9142807