The Prostate Clinical Outlook (PCO) Classifier Application for Predicting Biochemical Recurrences in Patients Treated by Stereotactic Body Radiation Therapy (SBRT)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patients
3.2. Factors Associated with BCR after SBRT
3.3. The PCO Classifier Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Approval
Availability of Data and Materials
Appendix A. Referenced Risk Assessment
Classification | Criteria [16] |
Low | Gleason score ≤ 6 and PSA ≤ 10 ng/mL |
Intermediate | Gleason score = 7 or PSA > 10 and PSA ≤ 20 |
High | Gleason score ≥ 8 or PSA > 20 |
Appendix B. PCO Classifier and Cutoff of Total Score
Prob. of 4-Year BCR-Free Rate | Cutoff of Total Score | Range of Total Score | PCO Class | N | % |
99% | 34 | 0–34 | Low | 137 | 16.9 |
90% | 115 | 35–115 | Intermediate | 570 | 70.5 |
80% | 141 | 116–156 | High | 102 | 12.6 |
Appendix C. Life Table of BCR
PCO Class | bRFS (Biochemical Relapse Free Survival) Rates—Follow-Up (Years) | ||||
1 | 2 | 3 | 4 | 5 | |
Low | 100.0 | 100.0 | 100.0 | 98.3 | 98.3 |
Intermediate | 99.5 | 99.5 | 96.3 | 96.3 | 95.4 |
High | 97.2 | 89.2 | 86.4 | 86.4 | 86.4 |
Appendix D. The PCO Classifier Table with Patients’ Scores
Modified Risk Level | Clinical Stage | Age at Diagnosis | |||
Under 50 | 60–69 | 70–79 | Over 80 | ||
Gleason score ≤ 6 and PSA ≤ 10 ng/mL | T1 | 0 | 33 | 67 | 100 |
T2a | 1 | 34 | 68 | 101 | |
T2b | 2 | 35 | 69 | 102 | |
T2c-T3 | 3 | 36 | 70 | 103 | |
Gleason score ≤ 6 and PSA > 10 and PSA ≤ 20 | T1 | 13 | 46 | 80 | 113 |
T2a | 14 | 47 | 81 | 114 | |
T2b | 15 | 48 | 82 | 115 | |
T2c-T3 | 16 | 49 | 83 | 116 | |
Gleason score = 7 (3 + 4) | T1 | 26 | 59 | 93 | 126 |
T2a | 27 | 60 | 94 | 127 | |
T2b | 28 | 61 | 95 | 128 | |
T2c-T3 | 29 | 62 | 96 | 129 | |
Gleason score = 7 (4 + 3) | T1 | 40 | 73 | 107 | 140 |
T2a | 41 | 74 | 108 | 141 | |
T2b | 42 | 75 | 109 | 142 | |
T2c-T3 | 43 | 76 | 110 | 143 | |
Gleason score ≥ 8 or PSA > 20 | T1 | 53 | 86 | 120 | 153 |
T2a | 54 | 87 | 121 | 154 | |
T2b | 55 | 88 | 122 | 155 | |
T2c-T3 | 56 | 89 | 123 | 156 |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSantis, C.E.; Siegel, R.L.; Sauer, A.G.; Miller, K.D.; Fedewa, S.A.; Alcaraz, K.I.; Jemal, A. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J. Clin. 2016, 66, 290–308. [Google Scholar] [CrossRef] [PubMed]
- Kurup, G. Cyberknife: A new paradigm in radiotherapy. J. Med. Phys. Assoc. Med. Phys. India 2010, 35, 63. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.N.; Suy, S.; Uhm, S.; Oermann, E.K.; Ju, A.W.; Chen, V.; Hanscom, H.N.; Laing, S.; Kim, J.S.; Lei, S.; et al. Stereotactic body radiation therapy (sbrt) for clinically localized prostate cancer: The georgetown university experience. Radiat. Oncol. 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Townsend, N.C.; Huth, B.J.; Ding, W.; Garber, B.; Mooreville, M.; Arrigo, S.; Lamond, J.; Brady, L.W. Acute toxicity after cyberknife-delivered hypofractionated radiotherapy for treatment of prostate cancer. Am. J. Clin. Oncol. 2011, 34, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.E.; King, C.R. Stereotactic body radiotherapy for low-risk prostate cancer: Five-year outcomes. Radiat. Oncol. 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.J.; Ashley, R.; Santoro, M.; Diblasio, F. Stereotactic body radiation therapy for low-and low-intermediate-risk prostate cancer: Is there a dose effect? Front. Oncol. 2011, 1, 49. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-K.; Cho, C.K.; Choi, C.W.; Yoo, S.; Kim, M.-S.; Yang, K.; Yoo, H.; Kim, J.H.; Seo, Y.S.; Lee, D.H.; et al. Image-guided stereotactic body radiation therapy for localized prostate cancer. Tumori 2011, 97, 43–48. [Google Scholar] [CrossRef] [PubMed]
- D‘amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Rouprêt, M.; Hupertan, V.; Comperat, E.; Drouin, S.J.; Phé, V.; Xylinas, E.; Demanse, D.; Sibony, M.; Richard, F.; Cussenot, O. Cross-cultural validation of a prognostic tool: Example of the kattan preoperative nomogram as a predictor of prostate cancer recurrence after radical prostatectomy. BJU Int. 2009, 104, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Cooperberg, M.R.; Broering, J.M.; Carroll, P.R. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J. Natl. Cancer Inst. 2009, 101, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, D.; Jereczek-Fossa, B.A.; Krengli, M.; Garibaldi, E.; Tessa, M.; Moro, G.; Girelli, G.; Gabriele, P. Beyond d’amico risk classes for predicting recurrence after external beam radiotherapy for prostate cancer: The candiolo classifier. Radiat. Oncol. 2016, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Rho, M.J.; Dritschilo, A.; Choi, I.Y.; Mun, S.K. Prostate clinical outlook visualization system for patients and clinicians considering cyberknife treatment—A personalized approach. Appl. Sci. 2018, 8, 471. [Google Scholar] [CrossRef]
- Mohler, J.; Armstrong, A.; Bahson, R. National Comprehensive Cancer Network Guidelines: Prostate Cancer Version 1, 2016. J. Natl. Compr. Cancer Netw. 2016, 14, 19–30. [Google Scholar] [CrossRef]
- Kim, J.K.; Rho, M.J.; Lee, J.S.; Park, Y.H.; Lee, J.Y.; Choi, I.Y. Improved prediction of the pathologic stage of patient with prostate cancer using the cart–pso optimization analysis in the korean population. Technol. Cancer Res. Treat. 2016. [Google Scholar] [CrossRef]
- Katz, A.J.; Santoro, M.; Diblasio, F.; Ashley, R. Stereotactic body radiotherapy for localized prostate cancer: Disease control and quality of life at 6 years. Radiat. Oncol. 2013, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, H.; Yang, B.; Chen, Y.; Zhou, X. Early stage internet traffic identification using data gravitation based classification. In Proceedings of the 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, 8–12 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 504–511. [Google Scholar]
- Valentini, V.; Van Stiphout, R.G.; Lammering, G.; Gambacorta, M.A.; Barba, M.C.; Bebenek, M.; Bonnetain, F.; Bosset, J.F.; Bujko, K.; Cionini, L.; et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J. Clin. Oncol. 2011, 29, 3163–3172. [Google Scholar] [CrossRef] [PubMed]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: The American urological association prostate guidelines for localized prostate cancer update panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar] [PubMed]
- Cox, J.D.; Grignon, D.J.; Kaplan, R.S.; Parsons, J.T.; Schellhammer, P.F.; Zagars, G.; Zietman, A.; Shipley, W. Consensus statement: Guidelines for psa following radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 1035–1041. [Google Scholar]
- Thompson, A.; Keyes, M.; Pickles, T.; Palma, D.; Moravan, V.; Spadinger, I.; Lapointe, V.; Morris, W.J. Evaluating the phoenix definition of biochemical failure after 125 i prostate brachytherapy: Can psa kinetics distinguish psa failures from psa bounces? Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Paller, C.J.; Antonarakis, E.S. Management of biochemically recurrent prostate cancer after local therapy: Evolving standards of care and new directions. Clin. Adv. Hematol. Oncol. HO 2013, 11, 14. [Google Scholar]
- Kupelian, P.A.; Mahadevan, A.; Reddy, C.A.; Reuther, A.M.; Klein, E.A. Use of different definitions of biochemical failure after external beam radiotherapy changes conclusions about relative treatment efficacy for localized prostate cancer. Urology 2006, 68, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. The R Project for Statistical Computing. 2014. Available online: www. R-project.org/ (accessed on 8 October 2014).
- Kattan, M.W.; Wheeler, T.M.; Scardino, P.T. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol. 1999, 17, 1499. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. JAMA 1982, 247, 2543–2546. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Freeman, D.; Aronovitz, J.; Fuller, D.; Bolzicco, G.; Meier, R.; Collins, S.; Wang, J.; Steinberg, M.; King, C. Five-year biochemical control rates for stereotactic body radiation therapy for organ-confined prostate cancer: A multi-institutional pooled analysis. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, S147–S148. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Sengupta, S.; Slezak, J.M.; Bergstralh, E.J.; Leibovich, B.C.; Myers, R.P.; Zincke, H.; Blute, M.L. Impact of patient age at treatment on outcome following radical retropubic prostatectomy for prostate cancer. J. Urol. 2006, 175, 952–957. [Google Scholar] [CrossRef]
- Lubeck, D.P.; Litwin, M.S.; Henning, J.M.; Stier, D.M.; Mazonson, P.; Fisk, R.; Carroll, P.R. The capsure database: A methodology for clinical practice and research in prostate cancer. Urology 1996, 48, 773–777. [Google Scholar] [CrossRef]
- Abramowitz, M.C.; Li, T.; Buyyounouski, M.K.; Ross, E.; Uzzo, R.G.; Pollack, A.; Horwitz, E.M. The phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer 2008, 112, 55–60. [Google Scholar] [CrossRef] [PubMed]
Category | N | Percent | |
---|---|---|---|
Age at diagnosis (Mean, Range) | Under 59 | 60 | 7.4 |
60–69 | 313 | 38.7 | |
70–79 | 354 | 43.8 | |
Over 80 | 82 | 10.1 | |
70.04 (44–100) | |||
T-stage | T1 (T1b, T1c) | 537 | 66.4 |
T2a | 135 | 16.7 | |
T2b | 97 | 12.0 | |
T2c + T3 | 40 | 4.9 | |
Gleason score | Low (3 + 3 or less) | 302 | 37.3 |
Favorable intermediate (7 = 3 + 4) | 292 | 36.1 | |
Unfavorable intermediate (7 = 4 + 3) | 146 | 18.0 | |
High (4 + 4 or greater) | 69 | 8.5 | |
Pretreatment PSA | ≤10.0 ng/mL | 598 | 73.9 |
>10.0 and ≤20.0 ng/mL | 170 | 21.0 | |
>20.0 ng/mL | 41 | 5.1 | |
Modified risk level | Gleason score ≤ 6 and PSA ≤ 10 ng/mL | 222 | 27.4 |
Gleason score ≤ 6 and PSA > 10 and PSA ≤ 20 | 67 | 8.3 | |
Gleason score = 7 (3 + 4) | 281 | 34.7 | |
Gleason score = 7 (4 + 3) | 142 | 17.6 | |
Gleason Score ≥ 8 or PSA > 20 | 97 | 12.0 | |
BCR | No BCR | 791 | 97.8 |
BCR | 18 | 2.2 | |
Follow-up periods | Median | 574 days | |
Mean | 758 days | ||
Maximum | 2227 days | ||
Total | 809 | 100 |
Variables | HR | 95.0% CI | p |
---|---|---|---|
Age at diagnosis | 2.62 | 1.326–5.166 | 0.006 ** |
T-stage | 1.03 | 0.643–1.641 | 0.910 |
Modified risk level | 1.47 | 0.997–2.154 | 0.052 |
Variables | Score | |
---|---|---|
Age at diagnosis | Under 59 | 0 |
60–69 | 33 | |
70–79 | 67 | |
Over 80 | 100 | |
T-stage | T1 (T1b, T1c) | 0 |
T2a | 1 | |
T2b | 2 | |
T2c-T3 | 3 | |
Modified risk level | Gleason score ≤ 6 and PSA ≤ 10 ng/mL | 0 |
Gleason score ≤ 6 and PSA > 10 and PSA ≤ 20 | 13 | |
Gleason score = 7 (3 + 4) | 26 | |
Gleason score = 7 (4 + 3) | 40 | |
Gleason score ≥ 8 or PSA > 20 | 53 |
No. | Risk Assessments | Predictor Variables | Treatments | Outcome | Samples | Performance (c-Index) |
---|---|---|---|---|---|---|
1 | PCO Classifier Application | Age, Clinical stage, A modified risk level (Gleason score + pretreatment PSA) | Stereotactic body radiation therapy | Biochemical recurrence | 809 | 0.75 a, 0.67 b |
2 | D’Amico | PSA, Gleason scores, Clinical stage | Radical Prostatectomy, External Beam Radiation Therapy, Interstitial Radiation Therapy | PSA failure | 1872 | 0.62 a, 0.63 b |
3 | Kattan-nomogram | PSA, Gleason scores, Clinical stage | Radical prostatectomy | PSA recurrence | 996 | 0.64 a, 0.64 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, S.K.; Park, J.; Dritschilo, A.; Collins, S.P.; Suy, S.; Choi, I.Y.; Rho, M.J. The Prostate Clinical Outlook (PCO) Classifier Application for Predicting Biochemical Recurrences in Patients Treated by Stereotactic Body Radiation Therapy (SBRT). Appl. Sci. 2018, 8, 1620. https://doi.org/10.3390/app8091620
Mun SK, Park J, Dritschilo A, Collins SP, Suy S, Choi IY, Rho MJ. The Prostate Clinical Outlook (PCO) Classifier Application for Predicting Biochemical Recurrences in Patients Treated by Stereotactic Body Radiation Therapy (SBRT). Applied Sciences. 2018; 8(9):1620. https://doi.org/10.3390/app8091620
Chicago/Turabian StyleMun, Seong K., Jihwan Park, Anatoly Dritschilo, Sean P. Collins, Simeng Suy, In Young Choi, and Mi Jung Rho. 2018. "The Prostate Clinical Outlook (PCO) Classifier Application for Predicting Biochemical Recurrences in Patients Treated by Stereotactic Body Radiation Therapy (SBRT)" Applied Sciences 8, no. 9: 1620. https://doi.org/10.3390/app8091620
APA StyleMun, S. K., Park, J., Dritschilo, A., Collins, S. P., Suy, S., Choi, I. Y., & Rho, M. J. (2018). The Prostate Clinical Outlook (PCO) Classifier Application for Predicting Biochemical Recurrences in Patients Treated by Stereotactic Body Radiation Therapy (SBRT). Applied Sciences, 8(9), 1620. https://doi.org/10.3390/app8091620