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Abstract: In this paper, we consider motion-planning for multiple unmanned aerial vehicles (UAVs) 

that oversee cooperative target tracking in realistic communication environments. We present a 

novel multi-UAVs cooperative target tracking algorithm based on co-optimization of 

communication and sensing strategy, which can generate information-gathering trajectories 

considering the multi-hops communication reliability. Firstly, a packet-erasure channel model is 

used to describe the realistic wireless communication links, in which the probability of a successful 

information transmission is modeled as a function of the signal-to-noise ratio (SNR). Secondly, the 

Fisher information matrix (FIM) is used to quantify the information gained in target tracking. 

Thirdly, a scalar metric is used for trajectories panning over a finite time horizon. This scalar metric 

is a utility function of the expected information gain and the probability of a successful information 

transmission. With the combining of the sensing and communication into a utility function, the co-

optimization of communication and sensing is reflected in the tradeoffs between maximizing 

information gained and improving communication reliability. The results of comparison 

simulations show that the proposed algorithm effectively improved estimation performance 

compared to the method that does not consider communication reliability. 

Keywords: multi-UAVs; cooperative target tracking; information filter; radio frequency 

communication; Fisher information matrix; receding horizon optimizing 

 

1. Introduction 

Recently, multiple unmanned aerial vehicles (UAVs) have received increasing attention for their 

accomplishments in both military and civil applications. Tracking of a moving ground target is one 

of the important applications of UAVs, with the aim of increasing the overall knowledge of the 

target’s state (position, velocity, etc.) and taking proactive measures. The goal of cooperative target 

tracking is to control multiple UAVs to keep tracking a moving target and obtain more accurate target 

state estimates. 

In cooperative target tracking missions two or more UAVs track the same target. Under such a 

mission two main technical issues arise [1]: (1) Target motion estimation; each UAV has a local 

estimation of the target state (position and velocity). To obtain a more accurate target state estimate, 

it is necessary to develop global estimation strategies by fusing the local estimates from UAVs in an 

efficient manner; (2) Observer trajectory optimization; by developing cooperative control methods, 

UAVs can move in such a way as to minimize the error and uncertainty of the target state estimation. 

Extensive studies have been carried out on these two key issues. 
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Target-motion estimation has been a major problem in the field of target tracking and has 

received great attention. In target tracking applications, sensors (such as camera, radar, and sonar, 

etc.) installed on the UAVs can obtain measurements, such as the relative range and azimuth of the 

target with respect to the position of the airborne UAV. According to the measurement data, the UAV 

can obtain a target state estimate which generally is suboptimal given the local information. 

Fortunately, the communication capabilities of the UAVs enable sending their measurement data to 

a fusion center (e.g., base station), which leads to a global optimal estimate. Most of existing 

estimation and fusion methods are based on the information filter (IF), which is the information form 

of the Kalman filter (KF). For the IF, the information vector and matrix are employed instead of the 

mean and covariance used in the standard KF to represent the Gaussian distribution [2–4]. In this 

way, the IF has advantages to handle sensor fusion tasks and unknown prior covariance conditions. 

Thus, IF is more widely used than KF in the estimation and fusion problems for multiple sensors 

[5,6]. Ridley [7] provides a decentralized airborne data fusion method based on the IF for ground 

targets tracking. Casbeer [8] presented a new information consensus filter (ICF) for distributed 

dynamic-state estimation, in which estimation is handled by the traditional information filter, while 

the communication of measurements is handled by a consensus filter. Additionally, the unscented 

information filter (UIF) has been proposed for distributed estimation with nonlinear dynamics. Lin [9] 

presented an adaptive consensus-based distributed UIF for mobile sensor networks with 

communication delays. These studies show that the IF and its extensions can effectively solve the 

problem of data fusion from different sensor platforms. 

The observer trajectory optimization problem focuses on determining the trajectories of multiple 

UAVs (note, the UAVs are the observers) such that the target state estimation error is minimized. 

This issue is concerned with the cooperative control of the movements of multiple UAVs to guarantee 

the optimal observer trajectory for target motion estimation. Different earlier studies have developed 

observer trajectory planning approaches, including the gradient-based control law [10,11], Lyapunov 

vector fields (LVF) [12,13], and receding horizon optimization (RHO) [14,15], among others. In 

References [10,11], an optimal sensing strategy was given by minimizing the determinant of the 

estimation error covariance matrix, and a gradient-based control law was derived for each sensor 

platform to reach a local optimum. However, kinematic constraints of the platform were not 

considered, and this gradient-based control strategy was easily trapped in local optimal solutions. 

Frew [12] introduced Lyapunov guidance vector fields in an approach that maintains a prescribed 

standoff radius. Additionally, Oh [13] proposed a coordinated standoff tracking method for groups 

of moving targets using multiple UAVs. The vector field guidance approach was applied to track a 

group of targets for a single UAV by defining a variable standoff orbit, to be followed, which keeps 

all targets within the field-of-view of the UAV. However, their study neglected the accuracy of target 

motion estimation in the tracking process. 

Target motion estimation is a dynamic process and as a result, the performance of the estimation 

depends on the trajectory of the sensor platform. To generate observer trajectories that improve the 

performance of the target-motion estimation, several observer trajectory planning methods that are 

based on receding horizon optimizing have been proposed. For example, Ponda [14] presented an 

information theoretic approach for vehicle trajectory optimization in the 3D bearings-only target 

localization problem. The trace of the Fisher information matrix (FIM) was used as the quality metric 

for assessing the estimation performance and gave a framework for the choice of vehicle trajectories 

that increased the information provided by the measurements to improve the accuracy of the 

estimation. In Reference [15], a receding horizon control scheme for trajectory planning in target 

tracking was presented for the problem of cooperative persistent target tracking in an urban 

environment. In that study, the tracking objective was to maximize the information contribution from 

each UAV. 

In cooperative target tracking missions, each UAV must process the measurement results 

received from others to improve its estimate, and thus communication plays a key role in target 

tracking. However, most of current researches assume ideal or non-realistic communication and 

consider only sensing objectives. For instance, it is common to assume either perfect links or links 
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that are perfect within a certain radius, a significant over-simplification of communication links. 

Wireless transmission is degraded by several factors such as path loss, shadowing, fading, and noise. 

Therefore, considering the impact of communication on estimation and control is an emerging area 

of research [16]. Reference [17] investigated how to use the UAVs to build up a communication 

network rapidly in a disaster environment. The deployment of the UAVs is optimized such that a 

line-of-sight situation is achieved as well as a minimum required signal-to-noise ratio being ensured 

at the receivers. However, the scenario in this literature is static, and the method is cannot be directly 

applied to the moving target tracking scenario that is considered in this paper. The problem of 

integrating communication and sensing together for information gathering tasks is treated in 

Reference [18]. The approach of [18] optimizes information metric over a finite horizon which 

accounts for the qualities of communication links between the UAVs. In the scenario, once the range 

is too large for direct communication to the base station, some UAVs act as communication relays to 

maintain connectivity and further improve performance. Therefore, the UAVs automatically 

establish fixed multi-hop chains to get the measurements back to the base station. In this the fixed 

communication topology, the formation of the UAVs is rigid [19]. The rigid formation has higher 

stability, because the only permissible smooth motions are translations or rotations of the entire 

formation. However, due to the fixed communication topology, the algorithms do not produce 

efficient results in the dynamic scenario of moving target tracking. 

From these earlier studies it is clear that the motion decisions of each UAV should consider both 

the information gained through its sensor as well as communication with fusion center. This creates 

a multi-objective optimization problem where communication and sensing are both optimized such 

that each UAV chooses a trajectory that gives the best balance between its communication and 

sensing. A trajectory only maximizing sensing capabilities may not guarantee effective 

communication performance, while a trajectory that optimizes communication may result in poor 

sensing. Thus, the co-optimization of communication and sensing is reflected in the tradeoffs between 

maximizing information gained and improving communication reliability. 

In this paper, we study the problem of multiple UAVs cooperative tracking a moving target. The 

main contribution of this paper is to develop a motion planning algorithm in which communication 

and sensing are both optimized. Our novel motion planning approach properly integrates the 

communication and sensing objectives to accomplish the target tracking mission of multiple UAVs, 

while maintaining proper connectivity to the remote base station. 

The structure of this paper is organized as follows. In Section 2, the mission scenario and the 

problem formulation is provided. Section 3 discusses the extended information filter (EIF) and the 

sensor fusion algorithms for moving target tracking in realistic communication environment. This 

section also introduces the Fisher Information Matrix (FIM), which is the inverse of Cramer-Rao 

Lower Bound (CRLB), as a tool to measure estimation performance. By identifying the measure of 

estimation performance, an observer trajectory quality metric is developed which can be used to 

determine the optimal trajectories of the UAVs for tracking a moving target. This trajectory quality 

metric combines the communication and sensing into a utility function. In Section 4, we propose our 

motion planning algorithm based on co-optimization of communication and sensing. The motion 

planning is performed in a distributed fashion, i.e., each UAV solves local rolling time domain 

optimization problem and obtains its own trajectory. We present our simulation and experimental 

results in Section 5, followed by summary and conclusions in Section 6. 

2. Problem Formulation and Model 

Consider a fixed remote base station which uses N homogeneous UAVs for tracking a moving 

ground target, as shown in Figure 1. Each UAV is identified by a unique identity number Ai, i = 1, 2, …, 

N, and is equipped with a moving target indicator radar (MTIR) to localize the position of the target by 

measuring the relative distance and azimuth with respect to the UAV’s own position. With the MTIR 

measurement, each UAV executes the filter algorithm and obtains its local estimation of the target 

state (position and velocity). However, since a single local estimate is suboptimal, each UAV sends 

its local estimate to the remote base station for fusion which enhances the tracking accuracy. After 
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the base station receives all the UAVs’ local estimates via the communication links, a global optimal 

estimate of the target state is obtained with the fusion algorithm. The overall goal is for the station to 

constantly have a good global estimate of the target state. However, the communication links 

between the UAVs and the base station are affected by path loss, shadowing, fading, and noise, which 

can drastically degrade the quality of the received information. 

In this paper, we employ a packet-erasure channel model to describe the realistic wireless 

communication links. That is to say, the base station will drop all the packets with a received signal-

to-noise ratio (SNR) below a predefined threshold. Please note that in practice, more distance between 

two communication nodes results in a lower received SNR. In this case, these two communication 

nodes might be regarded as disconnected. Thus, for a UAV that is far away from the base station, it 

fails to communicate with the base station directly. To ensure that the UAV can send its local 

estimation results to the remote base station, some other UAVs act as communication relays to 

maintain connectivity. The quality of the links should be considered in motion-planning such that 

the UAVs intelligently move to locations that maximize both the information gain and the successful 

transmission probabilities in communication links with the base station. 

 

Figure 1. The scenario where a fixed base station utilizes multi-UAVs for tracking a ground moving 

target. 

2.1. UAV Dynamical Model 

For simplicity, it is assumed that each UAV is equipped with a low-level flight control system 

[20–23] that holds constant altitude and speed. A general flight control system—which includes the 

attitude angles (roll, pitch, and yaw) controller and fast loop attitude angle rates controller—can 

follow the guidance inputs to generate control surface deflections. In general, the guidance inputs 

include the speed (v), the vertical flight path angle (γ) and the horizontal flight path angle (χ). In this 

paper, we assume that the UAVs move on a fixed altitude with a constant cruising speed. Thus, we 

only need to designate the horizontal flight path angle (χc), which is the sole guidance input to this 

low-level flight control system. The two-dimension motion of a UAV in a horizontal plane is thus 

described by: 
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where xi = [xi, yi, vi, χi]T denotes the x and y components of the planar position, the speed, and the 

horizontal flight path angle of UAV Ai, respectively. Additionally, αχ is the control gain, and ui = χic 

is the desired horizontal flight path angle of Ai, which is the guidance input for the low-level flight 
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control system of the UAV. i  is the turning rate, which is constrained by the following dynamic 

limits: 

max maxi  −    (2) 

The continuous UAV model in Equation (1) can be discretized by Euler integration method: 

xi(k + 1) = fu(xi(k), ui(k)) = xi(k) + Tsf(xi(k), ui(k)) (3) 

where Ts is the discrete sampling time. 

2.2. Target Dynamical Model 

Due to the ground target move with much lower speeds than UAVs, we use a constant-velocity 

target model in this paper. This constant-velocity target model regards the target acceleration as a 

zero-mean Gaussian acceleration noise. Therefore, we define xt(k) = [xt(k), vtx(k), yt(k), vty (k)]T, with 

pt(k) = [xt(k), yt(k)]T and vt (k) = [vtx(k), vty (k)]T to denote the target position and velocity at time k, 

respectively. The discrete model of the moving target is thus expressed by: 

t t t t( 1) ( ( ), ( )) ( ) ( ) ( ) ( )k k k k k k k+ = = +x f x w F x G w  (4) 

where w(k)~N(0, Q(k)) represents the dynamic acceleration noise. The covariance matrix of the 

process noise w(k) is Q(k) = diag(δx2(k), δy2(k)). δx(k) and δy(k) are the standard deviations related to 

target acceleration toward x and y axes. The state transition matrix F(k) and the process noise input 

matrix G(k) are expressed as: 
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2.3. Sensor Model 

In this paper, each UAV is equipped with a moving target indicator radar (MTIR) to localize the 

position of the target. In the MTIR, the sensor measurement zi(k) is composed of the relative range, 

ir (k), and azimuth, i (k), of the target with respect to the position of the airborne UAV. Using the 

target position xt(k) and the UAV position xi(k), the sensor measurement is defined via: 
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In Equation (6), υi(k)~N(0, Ri(k)) is the measurement noise, and its covariance matrix Ri(k) = 

diag(δr2(k), δθ2(k)); δr(k) and δθ(k) are the standard deviations of range and azimuth, respectively. Let 

the matrix Hi(k)·be the Jacobian of the nonlinear function hi(k, xi(k), xt(k)) with respect to the target 

state xt(k): 
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Thus, Equation (6) can be rewritten in terms of the following linear equation: 

t( ) ( ) ( ) ( )i i ik k k k=  +z H x   (8) 
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2.4. Communication Model 

We use a packet-erasure channel model to describe the realistic wireless communication links, 

in which the receiver drops all the packets with a received SNR below a predefined threshold. The 

received signal-to-noise ratio (SNR) Γij at node j from a transmitting node i is given by: 

i ij

ij

j

PG

N
 =

 
(9) 

where Pi > 0 is the power delivered to the transmitting antenna of node i; Nj > 0 is the average noise 

power when node j operating as a receiver, and Gij is the channel gain. Using the Rayleigh model, Gij 

can be expressed as: 

2
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C h
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=  (10) 

where Cij is a constant in which the antenna gains and shadowing are considered. hij represents the 

multi-paths fading. The distance between nodes i and j is dij. α is the propagation loss factor. 

Maintaining a successful transmission with an acceptably small packet loss requires a sufficiently 

high received SNR. In this paper, the required SNR threshold that to obtain minimal link quality is γ. 

Therefore, if we assume that the channel has fast Rayleigh fading [24], the probability of a successful 

transmission between nodes i and j is given by: 
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Equation (11) describes a realistic wireless communication model. Please note that a larger 

distance between nodes i and j results in a lower received SNR. If Γij < γ, the packet from node i will 

be dropped by node j, and thus nodes i and j are regarded as disconnected. If Γij ≥ γ, the packet from 

node i will be successfully received by node j, and thus nodes i and j are regarded as connected. The 

relationship between Prij and the distance dij is shown in Figure 2; for the parameters listed in Table 1. 

 

Figure 2. The probability of a successful transmission vs. distance, as determined by Equation (11) for 

the parameters listed in Table 1. 

Table 1. The parameters of the realistic wireless communication model. 
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To compute the highest successful transmission probability between the source and desired 

destination, we should examine all possible multi-hop routes. If the successful transmission of the 

packet in each hop is independent, the successful transmission probability in a given multi-hop route 

(routek) is given by: 

( , ) route

(route )
k

ij

r k r

i j

P P


= 
 

(12)) 

The specific route will be chosen by the routing algorithm. In this paper, the packet routing 

algorithm will always choose the route with the highest successful transmission probability. 

Remark 1. In addition to the Rayleigh fading model used in our algorithm, other fading models can also be 

employed in a similar way. In practice, the distribution of the channels can be collected and employed within 

the framework of this paper in a straightforward way. In future work, we will design other communication 

fading models, such as Rician fading, and integrate them into the framework of co-optimization of 

communication and sensing. 

3. Target State Estimation and Observer Trajectory Quality Metric 

3.1. Target State Estimation 

Considering the advantage of using information filter in multiple sensor estimation and fusion 

problems, the estimation of target state is performed by using the EIF. The EIF is the information 

form of EKF. The EKF generates the target state estimation, tx̂ (k|k), at time k, together with a 

corresponding estimate covariance P(k|k). The EIF is obtained by re-writing the target state estimate 

and covariance in terms of the information vector ŷ  and information matrix Y. 

ŷ  = P−1
tx̂ , Y = (P)−1 (13) 

Considering the advantage of using information filter in multiple sensor estimation and fusion 

problems, the estimation of target state is performed by using the EIF. The EIF is the information 

form of EKF. The EKF generates the target state estimation, tx̂ (k|k), at time k, together with a 

corresponding estimate covariance P(k|k). The EIF is obtained by re-writing the target state estimate 

and covariance in terms of the information vector ŷ  and information matrix Y. 

ŷ = P−1
tx̂ , Y = (P)−1 (14) 

At time k, each UAV Ai runs the following EIF algorithm. 

• Prediction phase 
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• Measurement update 
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where ˆ
iy  and Yi represent the information state vector and information matrix of the UAV Ai, 

respectively. At the time k, Ai obtains measurement zi,k, and performs the associated information state 

and matrix updates 

1

, , , , , t , , | 1 , t, , | 1
ˆ ˆ( , , )T

i k i k i k i k i i k i k k i k i k kk−

− −
 = − + i H R z h x x H x  (21) 

1

, , , ,

T

i k i k i k i k

−=I H R H  (22) 

Since its local estimation is not perfect, each UAV must send its estimate estimation to the base 

station to obtain the global optimal estimate, thus enhancing the tracking accuracy of the UAVs. The 

base station obtains the global optimal estimate by using following fusion algorithm: 

B, | B, | 1 , ,

1

ˆ ˆ
N

k k k k i k i k

i

−

=

= + y y i  (23) 

B, | B, | 1 , ,

1

N

k k k k i k i k

i

−

=

= + Y Y I  (24) 

where Bŷ  and YB represent the information state vector and information matrix of the base station, 

respectively. In Equations (23) and (24), we use ξi,k to indicate whether UAV Ai has sent its own 

estimation to the base station successfully. ξi,k is a random variable taking on either 0 or 1 from the 

following Bernoulli distribution 

, , , ,( 1) ; ( 0) 1i k i k i k i kP P   = = = = −  (25) 

where βi,k indicates the probability of the packet successfully getting through from Ai to the base 

station. βi,k can be calculated by Equations (11) or (12). 

Hence, the global optimal estimate of the target state determined by the base station is: 

1

t, | B, | B, |
ˆ ˆ( )k k k k k k

−= x Y y  (26) 

3.2. Observer Trajectory Quality Metric 

A metric is defined in this section which can be used to determine the optimal trajectories of the 

UAVs for tracking a moving target. In practice, the performance of target-motion estimation depends 

on the trajectories of the UAVs. That is, the performance of target-motion estimate is a function of the 

specific observer trajectory, and therefore some trajectories lead to better performance (accuracy, 

effectiveness, etc.) than others. The goal of the cooperative target tracking mission is to enhance the 

global estimate performance by determining optimal or near-optimal observer trajectories. To 

generate good trajectories, it is necessary to define the notion of quality metric for the global estimate 

of target state. Therefore, the problem of identifying the best trajectory-quality metric is the problem 

of determining the best description of estimation performance. 

According to the Cramer–Rao lower bound (CRLB) theorem, the estimation error covariance 

represents the uncertainty associated with the accuracy of the estimation results, which should be 

minimized. The CRLB provides a lower bound for the error covariance and any unbiased estimator 

that achieves this lower bound is considered efficient. Specifically: 

T 1

t, t, t, t,
ˆ ˆE[( )( ) ]k k k k k k k

−= − −  =P x x x x C Y  (27) 

where xt,k is the target state to be estimated, t,
ˆ

kx  is the unbiased estimate of xt,k given the 

measurements zk, and Pk represents the covariance of the estimation error. The CRLB on Pk is denoted 

by Ck and its inverse Yk = (Ck)−1 is the Fisher information matrix (FIM). 
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CRLB provides a lower bound on the achievable covariance of the estimator. It means 

minimizing the covariance of the estimation can be achieved by minimizing CRLB. Minimizing the 

covariance of the estimation will reduce the uncertainty of the estimation results, and then improve 

the estimator performance. Since the CRLB and the FIM are inversely related, maximizing the FIM 

will improve the estimator performance and reduce uncertainty. Thus, the optimal sensing trajectory 

can be generated by maximizing the FIM. 

According to References [14,18], the FIM can be predicted at future time (k + l), based on the 

current target state estimation results. Prediction of FIM, |
ˆ
k l k+Y , is computed via the following 

recursive form 

1 T T 1

| 1 1| 1 1 1 1 |
ˆ ˆ ˆ( )k l k k l k l k k l k l k l k l k l k

− −

+ + − + − + − + − + − + − += + +Y F Y F G Q G I  (28) 

where the recursive equation starts with ˆ
kY  = Yk|k. The matrix 

|
ˆ

k l k+I  is the prediction of the 

information gain matrix, which is regarded as the expected measurement contribution to the FIM 

from all the UAVs. On one hand, 
|

ˆ
k l k+I  is dependent on the planned trajectories of all the UAVs. On 

the other hand, 
|

ˆ
k l k+I  is also dependent on the probabilities of the measurement packets being 

successfully received by the base station. At time k, the information gain from Ai can be defined as 

T 1

, , , , ,i k i k i k i k i k −= I H R H  (29) 

where χi,k~Bern(βi,k) is a random Bernoulli variable (either 0 or 1). βi,k, which is determined by the 

packet-erasure channel model, indicates the probability of the packet successfully getting through 

from Ai to the base station. If the measurement packet from Ai is dropped by the base station, the 

information gain from Ai is Ii,k = 0. If the measurement packet can be transmitted from Ai to the base 

station successfully, the information gain from Ai is T 1

, , , ,i k i k i k i k

−=I H R H . 

For planning purposes, we need the value of the information gain in the future times (k + l), thus 

the expectation must be used. At future times (k + l), the prediction of the information gain matrix 

|
ˆ

k l k+I  is defined as 

T 1

| , , , ,

1

ˆ ˆ ˆ
N

k l k i k l i k l i k l i k l

i

 −

+ + + + +

=

= I H R H  (30) 

t , |ˆ, , | t , |
ˆ ˆ( , )

k l ki k l i i k l k k l k++ + +=
x

H h x x  (31) 

In Equation (30), , |i k l k+x  is the state of Ai at future time (k + l), and which is defined as trajectory 

of Ai. t, |
ˆ

k l k+x  are the predictions of target state, which are computed as follows: 

t, + | t t, + 1| 1 t, + 1|  ,  ˆ ˆ ˆ( ) k lk l k k l k k l k+ −− −= =0x f x F x  (32) 

In general, maximizing the FIM involves maximizing a matrix, which is difficult. Thus, it is 

necessary to find a scalar function based on the FIM to serve as an objective function in the observer 

trajectory optimization problem. Three common choices for scalar functions are the determinant (D-

optimality criterion), the trace (A-optimality criterion), and the maximum eigenvalue (E-optimality 

criterion) of the FIM [14]. In this paper, the trace of the FIM, which is equal to the sum of its 

eigenvalues, was chosen as the desired scalar function. The eigenvalues of the FIM are related to the 

uncertainty hyper-ellipsoid of the target estimation, which depicts the distribution of the estimate 

error. More specifically, the sizes of the semi-axes of this hyper-ellipsoid are given by the reciprocal 

square of the eigenvalues. Therefore, maximizing the trace of the FIM leads to a smaller uncertainty 

hyper-ellipsoid; a more accurate estimation. 

Thus, from Equations (28) and (30), the observer trajectory quality metric is defined as: 
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1 T T 1 T 1

1 1| 1 1 1 1 , , , ,

1

ˆ ˆ ˆtr ( )
N

k l k l k l k k l k l k l k l i k l i k l i k l i k l

i

J − − −

+ + − + − + − + − + − + − + + + +

=

 
= + +  

 
F Y F G Q G H R H  (33) 

According to Equation (33), the observer-trajectory quality metric combines the sensing and 

communication channels into a utility function. This quantity metric is used to optimize the 

trajectories of the UAVs, so that the UAVs intelligently move to the locations that maximize both the 

information gains and the successful transmission probabilities in communication links with the base 

station. 

4. Motion Planning Algorithm Based on Co-Optimization of Communication and Sensing 

If the exact position and velocity of the target are known, optimal observer trajectories can be 

accurately designed. However, the target state is not known in advance, so the trajectory generator 

must continually re-plan the trajectory based on the results of the target state estimation. Hence, the 

multiple UAV cooperative target tracking problem is a real-time dynamic optimization problem. We 

use the combined communication and sensing utility function to plan optimal trajectories for the 

UAVs in the framework of receding horizon optimization. 

4.1. Receding Horizon Optimizing Model for Multi-UAVs Cooperative Target Tracking 

The receding horizon optimization model for multiple UAV cooperative target tracking at time 

k is: 

( )
P P

p |

1 1

ˆ[ 1: ] arg max arg max tr( )
T T

k l k l k l k l k

l l

k k T J 

+ + + +

= =

   
+ + = =    

   
 

u u
u Y  (34) 

subject to 

t t t( 1) ( ( ), ( ))k k k+ =x f x w  (35) 

u( 1) ( ( ), ( ))i i ik k k+ =x f x u  (36) 

t( ) ( , ( ), ( )) ( )i i i ik k k k k= +z h x x   (37) 

2 2

safe( ) ( ) ,i j i jx x y y d i j− + −    (38) 

where u[k + 1: k + TP] = {u1[k + 1: k + TP], u2[k + 1: k + TP], …, uN[k + 1: k+TP]} denotes the vector of control 

inputs to all the UAVs over the time horizon [k + 1: k + TP]. According to the UAV dynamic model, 

which is described by Equation (1), the control input u is the desired horizontal flight path angle (χc) 

of the aircraft. In this receding horizon optimization model, the purpose is to maximize the weighted 

sum of the trace of ˆ
|k l k+Y  over the time horizon [k + 1: k + TP], and l = 1, 2, …, TP. The weight factors 

are given by λ(k + l). Equations (35)–(37) denote the target dynamical model, the UAV dynamical 

model, and the sensor model, respectively. Equation (38) ensures collision avoidance between the 

UAVs, where dsafe is the safety distance for collision avoidance. 

For maximizing the weighting sum of the trace of ˆ
|k l k+Y  over the time horizon [k + 1: k + TP], an 

approximate solution is to maximize the trace of ˆ
|k l k+Y  at time (k + l). Thus, Equation (34) becomes 

   *

|
( ) ( )

ˆ( ) arg max arg max tr( )k l k l k
k l k l

k l J + +
+ +

+ = =
u u

u Y  (39) 
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|

|

1 T T 1 T 1

| 1 1| 1 1 1 1 , , , ,

1
ˆ

ˆ

ˆ ˆ ˆ ˆ( )

k l k

k l k

N

k l k k l k l k k l k l k l k l i k l i k l i k l i k l

i


−
+

+

− − −

+ + − + − + − + − + − + − + + + +

=

= + + 
Y

I

Y F Y F G Q G H R H  
(40) 

It can be seen from Equation (39) that we need to compute u*(k + l) = {ψ1*(k + l), ψ2*(k + l), …, ψN*(k 

+ l)}, which are the control inputs for all of the UAVs at time (k + l) in order to maximize the trace of 

ˆ
|k l k+Y  at time (k + l). From Equation (40), the information matrix ˆ

|k l k+Y  is determined by a sum of two 

terms ˆ
|k l k

−
+Y  and ˆ

|k l k+I . The first term in Equation (40), ˆ
|k l k

−
+Y , represents the prediction of prior 

information obtained by propagating the corresponding EIF one step ahead, which is independent 

of the measurement results. The second term in Equation (40), ˆ
|k l k+I  represents the information 

gain contained in the measurements of all the UAVs. ˆ
|k l k

−
+Y  is not related to u*(k + l), so ˆ

|k l k
−
+Y  can be 

ignored, and the objective function Jk+l in Equation (39) can be reduced to: 

commnication sensing

T 1 T 1

, , , , , , , ,

1 1

T 1

, , , ,

1 1

ˆ ˆ ˆ ˆtr( ) tr( )

ˆ ˆtr( )

k l k l

N N

k l i k l i k l i k l i k l i k l i k l i k l i k l

i i

N N

i k l i k l i k l i k l

i i

J J

J  



+ +

− −

+ + + + + + + + +

= =

−

+ + + +

= =

 =  = 
 

   
    
   

 

 

H R H H R H

H R H
 (41) 

In Equation (41), the objective function 
k lJ +

 contains communication optimization item 

commnnication

k lJ +
 and sensing optimization item sensing

k lJ +
. Therefore, the co-optimization of communication 

and sensing is reflected in the tradeoffs between communication reliability and sensing utility, aims 

to maximize the overall information gain delivered to the base station. 

In the framework of distributed receding horizon optimization, as shown in Figure 3, at time k, 

each UAV Ai receives the planned control inputs ( )i k−U  and the trajectories ( )i k−X  from the other 

UAVs. Then Ai optimizes its control inputs ( )i kU  and plans its own trajectory ( )i kX  based on the 

estimates of the target state and the future state predictions of the other UAVs. Ai also can share the 

optimal control inputs ( )i kU  and the planned trajectory ( )i kX  with the other UAVs. Thus, the 

distribution optimization is performed in a specific order [25]. For example, An plans its trajectory 

based on the trajectories of the previous (n − 1) aircrafts (A1~An−1) and then sends its trajectory to 

aircraft An+1. 
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*
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i
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Figure 3. Sketch of the distributed decision-making model for multiple UAV cooperative target 

tracking. 

UAV Ai computes its own trajectory by solving the following local optimization problem: 
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( )
P

* T 1

p , , , ,

1

ˆ ˆ[ 1: ] arg max tr
i

T

i k+l i k l i k l i k l i k l

l

k k T   −

+ + + +

=

 
+ + =   

 


u
u H R H  (42) 

with the constraints of Equations (35)–(37). 

4.2. Communication Topology Optimization Based on a Minimum Weighted Spanning Tree 

In this paper, the packet routing algorithm always chooses the route with the highest successful 

transmission probability. To find such a route, we define the weight of each link as: 

, ,ln( )m n m n

rPW = −  (43) 

where smaller weight, indicates a higher the probability of successful transmission. For UAV Ai, the 

problem of finding the route with the highest successful transmission probability can be represented 

via solving: 

,,
,

* ,

, ,
routeroute

( , ) route

route arg max arg min
i ki k

i k

m n

i k i k

m n

W


 
= =  

  
  (44) 

which can be solved by Dijkstra algorithm. 

For the entire multiple UAV system, to ensure that all the UAVs and the base station relate to 

the highest successful transmission probabilities, the concept of the minimum weighted spanning 

tree (MST) [26] from graph theory is used to determine the topology of the communication network. 

Figure 4 shows an example communication topology and its minimum weighted spanning tree. The 

base station is the root node that directly or indirectly connects to all the other nodes (the UAVs). The 

MST must connect all nodes with the condition that the sum of the weights is minimized. Thus, the 

overall probability of a message “floating” in the MST network is maximized. 
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Figure 4. Example of a communication topology and its corresponding minimum weighted spanning 

tree. 

At each time k, the MST can be constructed according to the positions of UAVs and the base 

station. Based on such MST communication topology, Dijkstra algorithm is used to find the route 

with the highest successful transmission probability between each UAV Ai and the base station. The 

MST communication topology determines the planning hierarchy, which is the order of the 

optimization calculation in the distributed frame. All UAVs are sorted in the ascending order of their 

total hops numbers of the optimal transmission route to the base station. If the total hops are the 

same, they are arranged in ascending order of their identity numbers. This sorted result is the 

planning hierarchy, in which each UAV plans its trajectory based on the planned results of the 
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aircrafts which are higher in the hierarchy and sent the planned results to the aircrafts which are 

lower in the hierarchy. For example, in Figure 4, A1 acts a relay for A2, thus the successful transmission 

probability between A2 and the base station can be represented as β2,k+l = β2→1,k+l · β1,k+l. Where β1,k+l 

denotes the transmission probability between A1 and the base station, and β2→1,k+l denotes the 

transmission probability between A2 and A1. It can be seen that A1 computes its own trajectory by 

itself, while A2 computes the trajectory based on the planned results of A1. 

4.3. Cooperative Target Tracking Algorithm Based on Co-Optimization of Communication and Sensing 

The block diagram in Figure 5 summarizes the cooperative target tracking algorithm based on 

the co-optimization of communication and sensing. At each time k, first, according the positions of 

UAVs and the base station, the weighted minimum spanning tree strategy is used to optimize the 

communication network topology. Based on the MST communication topology, the Dijkstra 

algorithm is used to find the route with the highest successful transmission probability between each 

UAV Ai and the base station. Next, all the UAVs are sorted in the ascending order of the total number 

of hops to the base station as described in the previous section. The UAVs successively perform the 

local optimization calculation according to the sorted results. Next, each UAV Ai uses an EIF to obtain 

the local estimation results t, , |
ˆ

i k kx  of the target state. The local information terms ii,k and Ii,k, which 

are generated based on the measurement zi,k of the target, are summed at the base station to produce 

a global estimation. Ai then computes its own trajectory based on the planned results of Aj, which is 

the relay of Ai in the current MST communication topology. In distributed fashion, each UAV Ai 

solves the local optimization problem in Equation (42) to obtain the optimal control sequence u*i, k 

during a planning time horizon TP. Finally, the control input in the sequence is implemented, Ai 

changes its flight state xi,k, and obtains a new measurement zi,k of the target restarting the cycle. 
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Communication performance

Collision avoidance
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Dynamics

u*
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t
ˆ ( | )k kx

xt,k

 

Figure 5. Processing diagram for multi-UAVs cooperative target tracking algorithm. 

Remark 2. Our algorithm uses the concept of the MST to optimize the communication network topology 

according to the positions of the UAVs and the base station. The MST communication topology determines the 

planning hierarchy, which determines the order of the optimization calculation in the distributed framework. 

In this way, our algorithm can effectively adapt to a dynamic environment such as moving targets and the non-

static spatial distribution of the UAVs. Thus, in the dynamic scenario of tracking a moving target, our 

algorithm can produce a more efficient target state estimate than the algorithm in Reference [18]. However, 

there is a limitation in our algorithm, which also exists in Reference [18]; the scalability of the planning 

approach. As trajectory optimization is performed sequentially, each UAV plans its own trajectory based on the 

planned results of other UAVs. For large networks, exchanging the planned trajectories between the UAVs 
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requires many communications. However, due to the bandwidth limitation of realistic wireless communication 

links, it is hard to receive all the required information within one sampling time. In addition, as the number of 

UAVs increases, solving the optimization problem in Equation (42) becomes difficult in real time. In future 

work, we will design a planning algorithm with low computational complexity. 

5. The Simulation Validation and Results Analysis 

5.1. Comparative Simulations for Communication Optimization 

In Scenario 1, a single moving target T is continuously tracked by two UAVs, A1 and A2. The 

detailed initial settings of the UAVs are listed in Table 1. The ground speed of the UAVs is vi = 50 m/s, 

and their maximum turning rate is ωmax = 30 deg/s. The target motion is modeled by Equation (4), its 

initial position is (−800, 0) m, its initial movement direction is −20 deg, and its noise is characterized 

by δx = δy = 0.1 m/s2. The standard deviations in the sensor model are δr = 2 m and δθ = 0.05 rad. The 

position of the base station B is (−500, −800) m. The communication model is shown in Figure 2 and 

the relevant parameters in Table 1. The simulating time of each simulation is 100 s, with a time step 

of Ts = 1 s. Finally, the planning time horizon is set at TP = 3 s and the safety distance for collision 

avoidance is dsafe = 100 m. 

Table 1. The initial settings of two UAVs in Scenario 1. 

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(°) 

A1 (−400, −700) 45 

A2 (−800, 200) 0 

To verify the effectiveness of cooperative target tracking algorithm based on co-optimization of 

communication and sensing, the two groups of experiments are carried out. 

• Group A: with communication optimization; and 

• Group B: without communication optimization. 

5.1.1. Group A: With Communication Optimization 

Figures 6–8 show the trajectories at 30 s, 64 s, and 100 s, respectively. In these figures, the 

communication links are denoted by cyan thin dashed lines. The numbers represent the successful 

transmission probabilities of the links. The arrows denote the movement directions of the UAVs. It 

can be seen from Figure 6, that at the beginning of the simulation (t = 30 s), A1 is closer to the base 

station and A2 is farther away from the base station, thus A1 orbits near the base station to act as a 

relay for maintaining connectivity between A2 and the base station B. At this time, A2 is tracking target 

T, and sending its local estimation results back to base station B through the relay A1. With the 

movement of the target, the distance between the target T and the base station B gradually is reduced. 

Since A1 is orbiting near the base station, the distance between T and A1 also gradually is decreased 

causing A1 to gradually move up and track the target T. When t = 64 s, as shown in Figure 7, the 

topology of the communication network is changed and A2 acts as a relay for A1. As the target moves 

away from the base station, for example at t = 100 s as shown in Figure 8, A2 moves near the base 

station to continuously act as the relay for A1, and A1 orbits near the target T to track it. 

javascript:;
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Figure 6. Trajectories of UAVs and target at t = 30 s (Group A in Scenario 1). 

 

Figure 7. Trajectories of UAVs and target at t = 64 s (Group A in Scenario 1). 

 

Figure 8. Trajectories of UAVs and target at t = 100 s (Group A in Scenario 1). 

Figure 9 shows that the successful transmission probabilities of A1 and A2. It can be seen that A1 

acts as the relay for A2 during the time period [0, 64) s, and A2 acts as the relay for A1 during the time 

period [64, 100] s. In addition, it can be seen that, when communication optimization is considered, 

the average transmission probabilities of A1 and A2 to base station are 0.9076 and 0.8504, respectively. 

However, if A1 and A2 communicate with the base station directly without any relay, their average 

transmission probabilities are 0.8627 and 0.7730, respectively. Thus, the communication 

performances of A1 and A2 are improved by our algorithm with considering the communication 

optimization. 
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Figure 1. The probabilities of successful transmission of A1 and A2 to base station (Group A in  

Scenario 1). 

The track of the FIM of A1, A2 and base station is shown in Figure 10. Due to considering 

communication optimization, the probabilities of a successful transmission of A1 and A2 to the base 

station are almost larger than 0.7 in Group A. Thus, A1 and A2 can transmit their measurement packets 

back to the base station, which can significantly enhance the global estimate performance and then 

improve the effectiveness of multi-UAVs cooperative target tracking. 

 

Figure 10. The track of FIM of A1, A2 and base station (Group A in Scenario 1). 

Figure 11 shows the distance between A1, A2. The distance is always larger than the safety 

distance (dsafe = 100 m), thus the safety of the UAVs is guaranteed. 

 

Figure 11. The distance between the UAVs during the simulation process (Group A in Scenario 1). 
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5.1.2. Group B: Without Communication Optimization 

Figures 12–14 show the trajectories at 30 s, 64 s and 100 s, respectively for UAVs without 

communication optimization. The algorithm without communication optimization only focus on 

sensing optimization item 
sensing

k lJ + , and thus guides both A1 and A2 toward the target to maximize the 

information gain. However, with A1 and A2 flying away from the base station, a significant amount 

of measurement packets is dropped by the base station. This conclusion is confirmed in Figure 5. As 

shown in Figure 5, in Group B, the average transmission probabilities of A1 and A2 are only 0.6717 

and 0.6276, respectively. It means that, in Group B, there are more packets from A1 and A2 are dropped 

(not received) by the base station than in Group A. The measurements contained in the dropped 

packets will not be incorporated into the global estimate result of the target state. As shown in Figure 

6, the track of the FIM at the base station shows zero growth and a small downtrend over a long time 

(20 s~100 s). Figure 7 shows the distance between A1, A2. The distance is always larger than the safety 

distance (dsafe = 100 m), and thus the safety of the UAVs is guaranteed. 

 

Figure 2. Trajectories of UAVs and target at t = 30 s (Group B in Scenario 1). 

 

Figure 3. Trajectories of UAVs and target at t = 64 s (Group B in Scenario 1). 

 

Figure 4. Trajectories of UAVs and target at t = 100 s (Group B in Scenario 1). 
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Figure 5. The probabilities of successful transmission of A1 and A2 to base station (Group B in Scenario 

1). 

 

Figure 6. The trace of the FIM for A1, A2 and base station (Group B in Scenario 1). 

 

Figure 7. The distance between the UAVs during the simulation process (Group B in Scenario 1). 
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Table 2. Comparison of the average estimate errors, the average transmission probabilities, and the 

average trace of the FIM in Scenario 1 (Group A vs. Group B). 

Item Group Base Station A1 A2 

Average estimation error for position (m) 
A 1.2778 3.4806 1.9570 

B 1.6287 2.4619 1.9565 

Average estimation error for speed (m/s) 
A 0.2100 0.3110 0.2714 

B 0.2451 0.2931 0.2493 

Average estimation error for direction (°) 
A 1.2098 1.5951 1.3775 

B 1.2133 1.5253 1.3121 

Average transmission probability 
A - 0.8858 0.8056 

B - 0.7359 0.6203 

Average trace of the FIM 
A 72.4468 50.5545 55.9077 

B 46.2311 52.0081 60.4408 

• For the base station, the average errors in the estimation of the target state (position, speed, 

movement direction) in Group A are less than in Group B, and the average trace of the FIM in 

Group A is larger than in Group B. Thus, when communication optimization is considered, the 

global estimate results for the target state are more accurate and more effective. This is because 

our algorithm maximizes the information gain while considering communication reliability. The 

remote UAVs can successfully transmit their measurement packets back to the base station with 

other UAVs acting as communication relays. These measurements are used to improve the 

accuracy and effectiveness of the global estimate results. 

• For A1 and A2, their target state estimate results in Group B are better than in Group A in terms 

of the average errors and the average trace of the FIM. The reason is that, in Group B, the 

algorithm only focuses on sensing optimization, and guides both A1 and A2 toward the target to 

maximize the information gain. However, A1 and A2 are outside the range for direct 

communication to the base station, and then the measurements obtained from A1 and A2 do not 

contribute to the global estimate results of the target state. 

• In Group A, A2 has lower average estimate errors and larger the average trace of the FIM than 

A1. It implies that A2 has better sensing performance than A1. This is because A1 acts as a relay 

for A2 in a long time. To establish a multi-hops chain to get the measurement packets from A2 

back to the base station, A1 orbits near the base station, and hence cannot get better sensing 

information from the target. These results illustrate how the proposed algorithm implements 

tradeoffs between communication performance and sensing utility. 

5.2. The Effect of Different Communication Topology Optimization Strategies 

As mentioned above, the planning hierarchy of the UAVs is determined by the communication 

topology structure. In the proposed approach, the communication topology structure is optimized 

by the weighted minimum spanning tree strategy. However, in Reference [18], the planning 

hierarchy of the UAVs is determined according to the identity numbers of the UAVs. Since the 

identity numbers of the UAVs are pre-defined, the planning hierarchy is fixed. A Fixed planning 

hierarchy results in a fixed communication topology structure. More specifically, the UAVs 

automatically establish a fixed multi-hop chain, where the UAV Ai acts as relay for the UAV Ai+1. To 

analyze the effect of different communication topology optimization strategies on the performance 

of cooperative target tracking, the proposed method is compared with the method of Reference [18] 

by setting up the following two group experiments. 

• Group A: the minimum spanning tree topology (the proposed method); 

• Group B: fixed communication topology structure (the method of Reference [18]) 

In Scenario 2, two UAVs A1 and A2 locate a single static target T. The detailed initial settings of 

the UAVs are listed in Table 3. The position of the static target is (−800, 0) m, and the position of the 

base station B is (−500, −800) m. The other simulation conditions are identical to Scenario 1. 
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Table 3. The initial settings of the two UAVs in Scenario 2. 

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(°) 

A1 (−800, 200) 45 

A2 (−400, −700) 180 

5.2.1. Group A: The Minimum Spanning Tree Topology 

Figures 18 and 19 show the trajectories at 10 s and 100 s, respectively. The transmission 

probabilities of A1 and A2 to base station are shown in Figure 10. The trace of the FIM for A1, A2 and 

base station are shown in Figure 11. We can conclude that, due to A2 being closer to the base station 

than A1, the communication topology structure based on the weighted minimum spanning tree is {A1 

→ A2 → B}. With A2 acting as the relay of A1, A2 should to make a tradeoff between communication 

and sensing. Therefore, A2 finds the optimal location O2 = (−520.4, −557.6) m, where the information 

gain and the probability of a successful transmission with the base station are both optimal. Due to 

the dynamic constraints, A2 continue to orbit around the optimal position O2. At the same time, A1 

continue to orbit around the target T. 

 

Figure 8. Trajectories of UAVs at t = 10 s (Group A in Scenario 2). 

 

Figure 9. Trajectories of UAVs at t = 100 s (Group A in Scenario 2). 
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Figure 10. The probabilities of successful transmission of A1 and A2 to base station (Group A in 

Scenario 2). 

 

Figure 11. The trace of the FIM for A1, A2 and base station (Group A in Scenario 2). 

5.2.2. Group B: Fixed Communication Topology Structure 

Figures 22–24 show the trajectories at 10 s, 20 s and 100 s, respectively. In Group B, identical to 

Reference [18], the fixed communication topology structure is {A2 → A1 → B}. However, A1 is initially 

closer to the target and A2 is initially closer to the base station, so this fixed communication topology 

is not optimal obviously. To form and maintain this fixed topology, A1 moves toward the base station 

while A2 moves toward the target, as shown in Figure 12. 
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Figure 12. Trajectories of UAVs at t = 10 s (Group B in Scenario 2). 

 

Figure 13. Trajectories of UAVs at t = 20 s (Group B in Scenario 2). 

 

Figure 14. Trajectories of UAVs at t = 100 s (Group B in Scenario 2). 
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During the period of [0, 20] s, the trace of FIM in the base station is less than A1 and A2. This is because 

the ground station failed to receive the measurement packets from A1 and A2. 
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Figure 15. The probabilities of successful transmission of A1 and A2 to base station (Group B in 

Scenario 2). 

 

Figure 16. The track of the FIM for A1, A2 and base station (Group B in Scenario 2). 

5.2.3. Monte-Carlo Simulations for Scenario 2 

Again, we ran ten Monte Carlo simulations for Scenario 2. The statistical results are shown in 

Table 4. 

Table 4. Comparison of the average estimate errors, the average transmission probabilities, and the 

average trace of the FIM in Scenario 2 (Group A vs. Group B). 

Item Group Base Station A1 A2 

Average estimation error for position (m) 
A 0.4266 0.7203 1.1680 

B 0.5081 0.9029 0.7240 

Average transmission probability 
A - 0.7463 0.9818 

B - 0.9209 0.6051 

Average trace of the FIM 
A 27.4777 14.6744 13.0033 

B 15.5617 13.1899 14.2413 

It can be seen from Table 4 that, compared with the fixed communication topology strategy, the 

global estimate results are more accurate and more effective by using the topology optimization 

strategy. The simulation results verify the rationality and validity of the topology optimization 

strategy based on the minimum spanning tree. 

5.3. Performance of the Algorithm in a Complex Scenario 

The following experiments are presented to verify the performance of the algorithm in more 

complex scenarios. 

5.3.1. Three UAVs Tracking One Moving Target 

In Scenario 3, a moving target T is continuously tracked by three UAVs A1, A2 and A3. The 

detailed initial settings of the UAVs are listed in Table 5. The initial position of target is (−800, 600) m. 

The position of the base station B is (−500, −1000) m. The safety distance for collision avoidance is dsafe 

= 250 m. The other simulation conditions are same with Scenario 1. 

Table 5. The initial settings of three UAVs in Scenario 3. 

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(°) 

A1 (−400, −900) 10 

A2 (−800, 300) 0 
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A3 (−800, 0) 0 

The snapshots, Figures 27–29, show the trajectories and communication topology of the UAVs 

at 10 s, 50 s and 100 s, respectively. In the tracking process, the MST communication topology is {A2 

→A3 → A1 → B}. With A3 and A1 acting as the relays, A2 gets close to the target to get better 

measurements and then circles it around. A1 automatically sets itself up as a relay for A3, so it is close 

enough to the base station. A3 takes advantage of the position of A1 to fly closer to A2 and acts as the 

relay for A2. Although A2 is too far from the base station, it still can send its measurements back to 

the base station successfully. 

The communication performances of A1, A2 and A3 are shown in Figure 20. The average 

transmission probability of A2 can be improved to about 0.5. By contrast, if A2 communicates with the 

base station directly without any relay, its average transmission probability is lower than 0.1. Thus, 

the communication performance of A2 is vastly improved with A3 and A1 acting as the relays. 

 

Figure 17. Trajectories of UAVs and target at t = 10 s (Group A in Scenario 3). 

 

Figure 18. Trajectories of UAVs and target at t = 50 s (Group A in Scenario 3). 

 

Figure 19. Trajectories of UAVs and target at t = 100 s (Group A in Scenario 3). 
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Figure 20. The communication performances of A1, A2 and A3 (Scenario 3). 

The trace of the FIM is shown in Figure 21. To establish a reliable multi-hops chain between A2 

and the base station, A3 and A1 get close to the base station act as relays for A2. Hence, A3 and A1 have 

no information gathering, and their trace of FIM have no change in the long time. 

 

Figure 21. The track of FIM of A1, A2, A3 and base station (Scenario 3). 

Figure 22 shows that the safety of the UAVs is guaranteed because the minimum distance 

between UAVs is always larger than the safety distance (dsafe = 250 m). 

 

Figure 22. The minimum distance between the UAVs during the whole simulation process (Scenario 3). 
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Table 6. The average estimate errors, the average transmission probability, and the average trace of 

the FIM in Scenario 3. 

Item Base Station A1 A2 A3 

Average estimation error for position (m) 1.2454 6.2889 1.7638 4.0183 

Average estimation error for speed (m/s) 0.2338 0.4282 0.2457 0.3552 

Average estimation error for direction (°) 1.1365 1.1575 1.7017 1.4710 

Average transmission probability - 0.8485 0.4653 0.6953 

Average trace of the FIM 72.4623 41.2674 57.2770 43.1731 

It can be seen from Table 6 that, our algorithm integrates the communication and sensing 

objectives, so that the UAVs intelligently move to the locations that maximize both the information 

gained and the successful transmission probabilities in communication links with the base station. 

Thus, the base station can obtain a good estimate result of the target state. 

5.3.2. Three UAVs Localizing One Static Target 

In Scenario 4, a single moving target T is localized by three UAVs A1, A2 and A3. The detailed 

initial settings of the UAVs are listed in Table 7. The position of the static target is (−300, 600) m, and 

the position of the base station B is (0, −200) m. The safety distance for collision avoidance dsafe = 100 m. 

Table 7. The initial settings of three UAVs in Scenario 4. 

UAV Ai Position (xi, yi)/(m) Heading Angle Ψi/(°) 

A1 (100, −100) 180 

A2 (−100, 400) 180 

A3 (−300, 800) 45 

The snapshots, Figures 33 and 34 show the trajectories and communication topology of the 

whole UAVs at 10 s and 100 s, respectively. From these snapshots, we can see that, the UAVs 

automatically establish a multi-hops chain {A3 → A2 → A1 → B}. Due to A1 being close enough to the 

base station, A1 continue to orbit around the optimal position O1 = (−21.8, 44.3) m to re-transmit the 

measurement packets back to the base station. A2 takes advantage of the position of A1 to acts as the 

relay for A3. The optimal position of A2 is O2 = (−96.1, 306.8) m. A3 gets close to the target from its 

starting position and keeps orbiting around the target T for better observation. 

 

Figure 23. Trajectories of UAVs at t = 10 s (Scenario 4). 
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Figure 24. Trajectories of UAVs at t = 100 s (Scenario 4). 

The communication performances of A1, A2 and A3 are shown in Figure 25. The average 

transmission probability of A3 is 0.8894. In contrast, if A3 directly communicates with the base station 

without any relay, its average transmission probability is only 0.5215. The communication 

performance of A3 is vastly improved with A1 and A2 acting as the relays. 

 

Figure 25. The communication performances of A1, A2 and A3 (Scenario 4). 

The trace of the FIM of A1, A2 A3 and base station is shown in Figure 26 during the whole 

simulation process. A2 gets close to the target to get better measurements and send its measurements 

back to the base station by the multi-hops chain {A3 → A2 → A1 → B}. Hence, the base station has good 

estimation performance. 

 

Figure 26. The trace of FIM of A1, A2, A3 and base station (Scenario 4). 
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In Scenario 4, the average estimate error of the target position, the average transmission 

probabilities, the average trace of the FIM are shown in Table 8. 

Table 8. The average estimate errors, the average transmission probability, and the average trace of 

the FIM in Scenario 4. 

Item Base Station A1 A2 A3 

Average estimation error for position (m) 0.4535 1.2332 0.8105 0.4610 

Average transmission probability - 0.9818 0.9460 0.8894 

Average trace of the FIM 40.7112 13.0033 13.1245 14.9834 

It can be seen from Table 8 that, our algorithm can make UAVs more focus on maintaining good 

communication with base station or other UAVs in the mission process, so as to improve the 

performance of the target position estimation. 

5.4. Effect of Varying Number of UAVs on Estimation Performance 

In Scenario 5, we test the performance of the global estimation of the target state on the number 

of deployed UAVs. Using Monte Carlo simulations, we tested cases where the number of UAVs 

ranged from N = 2–10. For each case 100 independent experiments were performed. For each 

experiment, the initial positions and the initial heading angles of the UAVs, and the initial positions 

of targets are randomly generated in a 2 km × 2 km bound region. The ground speed of the UAVs is 

vi = 50 m/s, the maximum turning rate of the UAVs is ωmax = 30 deg/s. For the target, its initial position 

is (−1000, 1000) m, and its initial movement direction is −20 deg. The position of the base station B is 

(0, −1000) m. The safety distance for collision avoidance is dsafe = 200 m. The other simulation 

conditions are the same as Scenario 1. 

The average estimate errors of target position, speed and direction are shown in Figures 37–39, 

respectively. The average trace of FIM is shown in Figure 30. From Figures 37–39, we can summarize 

that, the larger number of UAVs, the smaller average estimation errors. It implies the global 

estimation results are more accurate with increasing the number of the UAVs. From Figure 30, we 

can conclude that, the larger number of UAVs, the higher average trace of FIM. It implies the global 

estimate results are more effective with increasing the number of the UAVs. Therefore, the 

performance of the global estimate of target state will be improved as the number of the UAVs 

increases. This is for two reasons. On one hand, more UAVs implies more information obtained at 

each time step, which is beneficial for improving the global estimation performance. On the other 

hand, with increasing the number of UAVs, the operational range of the UAV swarm can be extended, 

due to more UAVs being used as relays to provide measurement packets to the remote station. In this 

case, several UAVs can get close to the target for better observations while their measurement packets 

can be sent back to base station successfully. It is also beneficial for improving the global estimation 

performance. 

 

Figure 27. The average estimation error of target position for different numbers of UAVs (Scenario 5). 
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Figure 28. The average estimation error of target speed for different numbers of UAVs (Scenario 5). 

 

Figure 29. The average estimation error of target direction for different numbers of UAVs (Scenario 5). 

 

Figure 30. The average trace of the FIM for different numbers of UAVs (Scenario 5). 
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The problem of multiple UAVs cooperative tracking of a ground moving target is studied. The 

main contribution of this paper is to develop a motion planning algorithm in which communication 

and sensing are both optimized. This novel motion planning approach properly integrates the 

communication and sensing objectives to accomplish the target tracking mission of the multiple 

UAVs, while maintaining proper connectivity to the remote base station. 

The performance of target fusion and estimation not only depend on overall information 

contained in given data sets of measurement of the UAVs, but also depend on whether the UAVs 

could successfully send their measurement packets back to the base station or not. According to this 

idea, the co-optimization of communication and sensing scheme is designed. 
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On one hand, a packet-erasure channel model is applied to model the communication links. In 

this channel model, the successful transmission probability is a function of the SNR, which is 

regarded as the communication reliability. On the other hand, the FIM is used to quantify the 

information gained by observation from the UAVs in target tracking process, which is regarded as 

the sensing utility. The communication reliability and the sensing utility are combined into a single 

utility function, which is used to plan trajectories over a finite time horizon for the UAVs. To 

maximize the overall information gain delivered to the base station, each UAV must make a tradeoff 

between maximizing the information gain through sensing and improving the probability of a 

successful transmission with the base station. The results of comparison simulations show that the 

proposal approach could improve fusion and estimation performance compared to method that does 

not consider communication optimization. 

To produce efficient results in the moving target tracking scenario, the topology optimization 

strategy based on the minimum spanning tree (MST) is designed. The MST communication topology 

determines the planning hierarchy, which is the order of the optimization calculation in the 

distributed frame. Compared to the fix communication topology strategy, the results of simulations 

verify the rationality and validity of the topology optimization strategy. 
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