First-Time Meniscal Surgeries Reveal Age-Linked Rise in Medial Tears and Sex-Based Injury Difference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gee, S.M.; Posner, M. Meniscus anatomy and basic science. Sports Med. Arthrosc. Rev. 2021, 29, e18–e23. [Google Scholar] [CrossRef] [PubMed]
- Mameri, E.S.; Dasari, S.P.; Fortier, L.M.; Verdejo, F.G.; Gursoy, S.; Yanke, A.B.; Chahla, J. Review of meniscus anatomy and biomechanics. Curr. Rev. Musculoskelet. Med. 2022, 15, 323–335. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosi, R.; Hewett, T.E. Meniscus-related videos on TikTok are widely viewed and shared but the educational quality for patients is poor. Arthrosc. Sports Med. Rehabil. 2024, 6, 100927. [Google Scholar] [CrossRef]
- Raj, M.A.; Bubnis, M.A. Knee Meniscal Tears. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Paolo, S.; Grassi, A.; Lucidi, G.A.; Macchiarola, L.; Dal Fabbro, G.; Zaffagnini, S. Biomechanics of the lateral meniscus: Evidences from narrative review. Ann. Jt. 2022, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Ridley, T.J.; McCarthy, M.A.; Bollier, M.J.; Wolf, B.R.; Amendola, A. Age differences in the prevalence of isolated medial and lateral meniscal tears in surgically treated patients. Iowa Orthop. J. 2017, 37, 91–94. [Google Scholar]
- Abrams, G.D.; Frank, R.M.; Gupta, A.K.; Harris, J.D.; McCormick, F.M.; Cole, B.J.; Bach, B.R.; Verma, N.N.; Forsythe, B.; Wilson, J.K.; et al. Trends in meniscus repair and meniscectomy in the United States, 2005–2011. Am. J. Sports Med. 2013, 41, 2333–2339. [Google Scholar] [CrossRef]
- Marigi, E.M.; Davies, M.R.; Marx, R.G.; Rodeo, S.A.; Williams, R.J. Meniscus tears in elite athletes: Treatment considerations, clinical outcomes, and return to play. Curr. Rev. Musculoskelet. Med. 2024, 17, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, D.; Figueroa, M.L.; Cañas, M.; Feuereisen, A.; Figueroa, F. Meniscal lesions in multi-ligament knee injuries. Indian J. Orthop. 2024, 58, 1224–1231. [Google Scholar] [CrossRef]
- El-Hagrasy, A.M.A.; Theckayil, A.J.; Khan, M.A.; Khan, H.N.; Butt, A.J. Magnetic resonance imaging is an effective first-line non-invasive tool for meniscal tear detection: A retrospective comparative analysis with knee arthroscopy. Arthrosc. Sports Med. Rehabil. 2024, 7, 101065. [Google Scholar] [CrossRef]
- Rao, A.J.; Erickson, B.J.; Cvetanovich, G.L.; Yanke, A.B.; Bach, B.R., Jr.; Cole, B.J. The meniscus-deficient knee: Biomechanics, evaluation, and treatment options. Orthop. J. Sports Med. 2015, 3, 2325967115611386. [Google Scholar] [CrossRef]
- Sedgwick, M.J.; Saunders, C.; Getgood, A.M. Systematic review and meta-analysis of clinical outcomes following meniscus repair in patients 40 years and older. Orthop. J. Sports Med. 2024, 12, 23259671241258974. [Google Scholar] [CrossRef] [PubMed]
- Thamer, S.B.; Resnick, C.T.; Werth, P.M.; Jevsevar, D.S. The relationship between the timing of knee osteoarthritis diagnoses and arthroscopic partial meniscectomy. J. Am. Acad. Orthop. Surg. 2023, 31, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Sari, A.; Günaydin, B.; Dinçel, Y.M. Meniscus tears and review of the literature. In Meniscus of the Knee-Function, Pathology and Management; Abdulwahab, T., Almqvist, K., Eds.; IntechOpen: Rijeka, Croatia, 2018; pp. 1–10. [Google Scholar]
- Robinson, S.; Nixon, M.; Hakkalamani, S.; Parkinson, R. Meniscal tears: Epidemiology and correlation between clinical and arthroscopic findings. Orthop. Proc. 2011, 93-B (Suppl. II), 161. [Google Scholar]
- Snoeker, B.A.; Bakker, E.W.; Kegel, C.A.; Lucas, C. Risk factors for meniscal tears: A systematic review including meta-analysis. J. Orthop. Sports Phys. Ther. 2013, 43, 352–367. [Google Scholar] [CrossRef]
- Pike, A.N.; Patzkowski, J.C.; Bottoni, C.R. Meniscal and chondral pathology associated with anterior cruciate ligament injuries. JAAOS-J. Am. Acad. Orthop. Surg. 2019, 27, 75–84. [Google Scholar] [CrossRef]
- Man, G.S.; Mologhianu, G. Osteoarthritis pathogenesis—A complex process that involves the entire joint. J. Med. Life 2014, 7, 37. [Google Scholar]
- Olivotto, E.; Belluzzi, E.; Pozzuoli, A.; Cigolotti, A.; Scioni, M.; Goldring, S.R.; Goldring, M.B.; Ruggieri, P.; Ramonda, R.; Grigolo, B.; et al. Do synovial inflammation and meniscal degeneration impact clinical outcomes of patients undergoing arthroscopic partial meniscectomy? A histological study. Int. J. Mol. Sci. 2022, 23, 3903. [Google Scholar] [CrossRef]
- Alomar, A.Z.; Al Jedia, K.M.; Shadid, A.M.; Almaawi, A.; Sinha, S.; Khan, R.; Ahmad, A.; Maheshwari, A.; Jain, S.; Kumar, A.; et al. Concurrent research around meniscus: A bibliometric analysis and review of the top fifty cited papers. Indian J. Orthop. 2022, 56, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Kambhampati, S.B.S.; D’Ambrosi, R.; Vishwanathan, K.; Vaish, A.; Vaishya, R. Trends in meniscus-related publications in pubmed since 1928: A bibliometric study. Orthop. J. Sports Med. 2024, 12, 23259671231226326. [Google Scholar] [CrossRef]
- Englund, M. Degenerative meniscus lesions, cartilage degeneration, and osteoarthritis of the knee. In Surgery of the Meniscus; Hulet, C., Pereira, H., Peretti, G., Denti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 79–91. [Google Scholar] [CrossRef]
- Schippers, P.; Buschmann, V.; Wunderlich, F.; Afghanyar, Y.; Fischer, S.; Wegner, E.; Drees, P.; Gercek, E.; Eckhard, L. Bucket-handle meniscal tears might not be an urgency: The time to meniscus repair does not seem to affect the mid-term outcome—A retrospective study of sixty tears with a mean follow-up of 6 years. J. Clin. Med. 2024, 13, 3048. [Google Scholar] [CrossRef]
- Scarlat, M.M.; Hernigou, P.; Mavrogenis, A.F. The disparity is a more significant challenge for orthopaedic surgeons than the planet’s population growth. Int. Orthop. 2024, 48, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Popețiu, R.O.; Donath-Miklos, I.; Borta, S.M.; Rus, L.A.; Vîlcea, A.; Nica, D.V.; Pușchiță, M. Serum YKL-40 levels, leukocyte profiles, and acute exacerbations of advanced COPD. J. Clin. Med. 2023, 12, 6106. [Google Scholar] [CrossRef]
- Ellis, P.D. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results; Cambridge University Press: Cambridge, UK, 2010; pp. 31–86. [Google Scholar]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Tandogan, R.N.; Taşer, Ö.; Kayaalp, A.; Taşkıran, E.; Pınar, H.; Alparslan, B.; Alturfan, A. Analysis of meniscal and chondral lesions accompanying anterior cruciate ligament tears: Relationship with age, time from injury, and level of sport. Knee Surg. Sports Traumatol. Arthrosc. 2004, 12, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Bai, J.; Zhang, J.; Chen, J.; Hao, Y.; Bai, J.; Xiang, C. Regional disparities, age-related changes and sex-related differences in knee osteoarthritis. BMC Musculoskelet. Disord. 2024, 25, 66. [Google Scholar] [CrossRef]
- Kręcisz, K.; Bączkowicz, D.; Kawala-Sterniuk, A. Using nonlinear vibroarthrographic parameters for age-related changes assessment in knee arthrokinematics. Sensors 2022, 22, 5549. [Google Scholar] [CrossRef]
- Hovhannisyan, A.; Allahverdyan, A.E. Resolution of Simpson’s paradox via the common cause principle. arXiv 2024, arXiv:2403.00957. [Google Scholar]
- Nica, D.V.; Bordean, D.M.; Pet, I.; Pet, E.; Alda, S.; Gergen, I. A novel exploratory chemometric approach to environmental monitoring by combining Block Clustering with Partial Least Square (PLS) analysis. Chem. Cent. J. 2013, 7, 145. [Google Scholar] [CrossRef]
- Bakeman, R.; McArthur, D.; Quera, V. Detecting group differences in sequential association using sampled permutations: Log odds, Kappa, and Phi compared. Behav. Res. Methods Instrum. Comput. 1996, 28, 446–457. [Google Scholar] [CrossRef]
- Ralles, S.; Agel, J.; Obermeier, M.; Tompkins, M. Incidence of secondary intra-articular injuries with time to anterior cruciate ligament reconstruction. Am. J. Sports Med. 2015, 43, 1373–1379. [Google Scholar] [CrossRef]
- Stein, G.; Koebke, J.; Faymonville, C.; Dargel, J.; Müller, L.P.; Schiffer, G. The relationship between the medial collateral ligament and the medial meniscus: A topographical and biomechanical study. Surg. Radiol. Anat. 2011, 33, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Waldman, S.D. Atlas of Common Pain Syndromes, 5th ed.; Elsevier Science: Amsterdam, The Netherlands, 2024; pp. 554–559. [Google Scholar]
- Markatos, K.; Tzagkarakis, G.; Kaseta, M.K.; Efstathopoulos, N.; Mystidis, P.; Korres, D. The anatomy of the medial collateral ligament of the knee and its significance in joint stability. Ital. J. Anat. Embryol. 2016, 121, 198–204. [Google Scholar] [CrossRef]
- Ahmed, I.; Radhakrishnan, A.; Khatri, C.; Staniszewska, S.; Hutchinson, C.; Parsons, N.; Metcalfe, A. Meniscal tears are more common than previously identified, however, less than a quarter of people with a tear undergo arthroscopy. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3892–3898. [Google Scholar] [CrossRef]
- Metcalf, M.H.; Barrett, G.R. Prospective evaluation of 1485 meniscal tear patterns in patients with stable knees. Am. J. Sports Med. 2004, 32, 675–680. [Google Scholar] [CrossRef]
- Ventura, M.; Seabra, P.; Oliveira, J.; Sousa, P.; Quesado, M.; Sousa, H.; Pereira, R.; Costa, A.; Carvalho, P. Meniscal injuries in patients aged 40 years or older: A comparative study between meniscal repair and partial meniscectomy. Cureus 2023, 15, e33270. [Google Scholar] [CrossRef]
- Tsujii, A.; Nakamura, N.; Horibe, S. Age-related changes in the knee meniscus. Knee 2017, 24, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Radin, E.L. Mechanically induced periarticular and neuromuscular problems. In Mechanics of Human Joints. Physiology: Pathophysiology, and Treatment; Wright, V., Radin, E.L., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 355–370. [Google Scholar]
- Krych, A.J.; Bernard, C.D.; Kennedy, N.I.; Tagliero, A.J.; Camp, C.L.; Levy, B.A.; Stuart, M.J. Medial versus lateral meniscus root tears: Is there a difference in injury presentation, treatment decisions, and surgical repair outcomes? Arthroscopy 2020, 36, 1135–1141. [Google Scholar] [CrossRef]
- Chhadia, A.M.; Inacio, M.C.; Maletis, G.B.; Csintalan, R.P.; Davis, B.R.; Funahashi, T.T. Are meniscus and cartilage injuries related to time to anterior cruciate ligament reconstruction? Am. J. Sports Med. 2011, 39, 1894–1899. [Google Scholar] [CrossRef]
- Jackson, T.; Fabricant, P.D.; Beck, N.; Storey, E.; Patel, N.M.; Ganley, T.J. Epidemiology, injury patterns, and treatment of meniscal tears in pediatric patients: A 16-year experience of a single center. Orthop. J. Sports Med. 2019, 7, 2325967119890325. [Google Scholar] [CrossRef]
- Rohde, M.S.; Shea, K.G.; Dawson, T.; Heyworth, B.E.; Milewski, M.D.; Edmonds, E.W.; Adsit, E.; Wilson, P.L.; SCORE Group; Albright, J.; et al. Age, sex, and BMI differences related to repairable meniscal tears in pediatric and adolescent patients. Am. J. Sports Med. 2023, 51, 389–397. [Google Scholar] [CrossRef]
- Pruneski, J.A.; Heyworth, B.E.; Kocher, M.S.; Tavabi, N.; Milewski, M.D.; Kramer, D.E.; Christino, M.A.; Yen, Y.-M.; Micheli, L.J.; Murray, M.M.; et al. Prevalence and predictors of concomitant meniscal and ligamentous injuries associated with ACL surgery: An analysis of 20 years of ACL reconstruction at a tertiary care children’s hospital. Am. J. Sports Med. 2024, 52, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Perkins, C.A.; Christino, M.A.; Busch, M.T.; Egger, M.; Murata, A.; Kelleman, A.; Willimon, S.C. Rates of concomitant meniscal tears in pediatric patients with anterior cruciate ligament injuries increase with age and body mass index. Orthop. J. Sports Med. 2021, 9, 2325967120986565. [Google Scholar] [CrossRef]
- Adouni, M.; Aydelik, H.; Faisal, T.R.; Hajji, R. The effect of body weight on the knee joint biomechanics based on a subject-specific finite element-musculoskeletal approach. Sci. Rep. 2024, 14, 13777. [Google Scholar] [CrossRef] [PubMed]
- Krych, A.J.; Saris, D.B.; Stuart, M.J.; Hacken, B. Cartilage injury in the knee: Assessment and treatment options. JAAOS-J. Am. Acad. Orthop. Surg. 2020, 28, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liang, J.; Zeng, F.; Lin, B.; Liu, C.; Huang, S.; Liu, Q. Anatomic characteristics of the knee influence the risk of suffering an isolated meniscal injury and the risk factors differ between women and men. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3751–3762. [Google Scholar] [CrossRef]
- Kaushal, S.G.; Barnett, S.C.; Hosseinzadeh, S.; Perrone, G.S.; Kiapour, A.M. Changes in functional meniscal morphology during skeletal growth and maturation. Orthop. J. Sports Med. 2024, 12, 23259671241237810. [Google Scholar] [CrossRef]
- Sieroń, D.; Jabłońska, I.; Niemiec, P.; Lukoszek, D.; Szyluk, K.; Platzek, I.; Meusburger, H.; Delimpasis, G.; Christe, A. Relationship between Outerbridge Scale and chondropathy femorotibial joint in relation to gender and age—The use of 1.5T and 3.0T MRI Scanners. Medicina 2022, 58, 1634. [Google Scholar] [CrossRef]
- Krieger, E.A.G.; Karam, F.C.; Soder, R.B.; Silva, J.L.B.D. Prevalence of patellar chondropathy on 3.0 T magnetic resonance imaging. Radiol. Bras. 2020, 53, 375–380. [Google Scholar] [CrossRef]
- Hall, M.; Bryant, A.L.; Wrigley, T.V.; Pratt, C.; Crossley, K.M.; Whitehead, T.S.; Morris, H.G.; Clark, R.A.; Perraton, L.G. Does meniscal pathology alter gait knee biomechanics and strength post-ACL reconstruction? Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1501–1509. [Google Scholar] [CrossRef]
- Bhan, M. Meniscal tears: Current understanding, diagnosis, and management. Cureus 2020, 12, e8590. [Google Scholar] [CrossRef]
- Jørgensen, A.E.M.; Kjær, M.; Heinemeier, K.M. The effect of aging and mechanical loading on the metabolism of articular cartilage. J. Rheumatol. 2017, 44, 410–417. [Google Scholar] [CrossRef]
- Bacil, E.D.A.; Mazzardo Júnior, O.; Rech, C.R.; Legnani, R.F.D.S.; Campos, W.D. Physical activity and biological maturation: A systematic review. Rev. Paul. Pediatr. 2015, 33, 114–121. [Google Scholar] [CrossRef]
- Sah, R.L. The biomechanical faces of articular cartilage in growth, aging, and osteoarthritis. In The Many Faces of Osteoarthritis; Hascall, V.C., Kuettner, K.E., Eds.; Birkhäuser: Basel, Switzerland, 2002; pp. 409–422. [Google Scholar]
- Welton, K.L.; Logterman, S.; Bartley, J.H.; Vidal, A.F.; McCarty, E.C. Knee cartilage repair and restoration: Common problems and solutions. Clin. Sports Med. 2018, 37, 307–330. [Google Scholar] [CrossRef]
- Battistelli, M.; Favero, M.; Burini, D.; Trisolino, G.; Dallari, D.; De Franceschi, L.; Goldring, S.R.; Goldring, M.B.; Belluzzi, E.; Filardo, G.; et al. Morphological and ultrastructural analysis of normal, injured and osteoarthritic human knee menisci. Eur. J. Histochem. 2019, 63, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, I.A.; Waarsing, J.H.; Schiphof, D.; Van Meurs, J.B.; Bierma-Zeinstra, S.M. Towards sex-specific osteoarthritis risk models: Evaluation of risk factors for knee osteoarthritis in males and females. Rheumatology 2022, 61, 648–657. [Google Scholar] [CrossRef]
- Boyan, B.D.; Hart, D.A.; Enoka, R.M.; Nicolella, D.P.; Resnick, E.; Berkley, K.J.; Sluka, K.A.; Kwoh, C.K.; Tosi, L.L.; O’Connor, M.I.; et al. Hormonal modulation of connective tissue homeostasis and sex differences in risk for osteoarthritis of the knee. Biol. Sex Differ. 2013, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, S.M.; Rakel, B.A.; Cooper, N.A.; Angstrom, W.L.; Sluka, K.A. Women with knee osteoarthritis have more pain and poorer function than men, but similar physical activity prior to total knee replacement. Biol. Sex Differ. 2011, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Krych, A.J.; Sousa, P.L.; King, A.H.; Engasser, W.M.; Stuart, M.J.; Levy, B.A. Meniscal tears and articular cartilage damage in the dislocated knee. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3019–3025. [Google Scholar] [CrossRef]
- Spyropoulou, A.; Karamesinis, K.; Basdra, E.K. Mechanotransduction pathways in bone pathobiology. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2015, 1852, 1700–1708. [Google Scholar] [CrossRef]
Age | ||
---|---|---|
Variable | O.R. | p Value |
MMD | 1.04 (1.01–1.07) | <0.001 *** |
LMD | 0.99 (0.92–1.09) | 0.436 |
KAC | 1.03 (1.00–1.05) | 0.002 ** |
Sex | ||
Variable | O.R. | p Value |
MMD | 1.01 (0.67–1.51) | 0.979 |
LMD | 0.54 (0.31–0.96) | 0.035 * |
KAC | 1.71 (0.96–3.04) | 0.065 |
Age × Sex Interaction | ||
Variable | O.R. | p Value |
MMD | 1.01 (0.79–1.04) | 0.646 |
LMD | 0.99 (0.95–1.03) | 0.614 |
KAC | 1.01 (0.96–1.05) | 0.673 |
Age Range (years) | Individuals (number) | Male | Female | |
---|---|---|---|---|
Q1 (0–25%) | 1–22 | 129 | 88 (68.22) | 41 (31.78) |
Q2 (26–50%) | 23–32 | 127 | 93 (73.23) | 34 (26.77) |
Q3 (51–75%) | 33–42 | 115 | 72 (62.61) | 43 (37.79) |
Q4 (76–100%) | 43–75 | 117 | 84 (71.79) | 33 (28.21) |
Quartile | With Damage | Without Damage | p Value |
---|---|---|---|
Medial meniscus | <0.001 *** | ||
Q1 | 30 (23.62) | 99 (76.74) | |
Q2 | 43 (33.86) | 84 (66.14) | 0.008 ** |
Q3 | 50 (43.48) | 65 (56.52) | <0.001 *** |
Q4 | 60 (51.28) | 57 (48.72) | <0.001 *** |
Lateral meniscus | |||
Q1 | 22 (17.05) | 107 (82.95) | 0.761 |
Q2 | 25 (19.69) | 102 (80.31) | |
Q3 | 22 (18.26) | 94 (81.74) | |
Q4 | 19 (16.24) | 198 (83.76) | |
Knee chondropathy | <0.001 *** | ||
Q1 | 97 (36.43) | 81 (63.57) | |
Q2 | 104 (81.89) | 23 (18.11) | <0.001 *** |
Q3 | 92 (84.35) | 18 (15.65) | <0.001 *** |
Q4 | 106 (90.6) | 11 (9.4) | <0.001 *** |
Variable | LMD | KAD |
---|---|---|
Q1 | ||
MMD | 0.42 * | 0.21 |
LMD | 0.18 | |
Q2 | ||
MMD | 0.55 * | 0.38 * |
LMD | −0.12 | |
Q3 | ||
MMD | 0.50 * | 0.30 * |
LMD | 0.25 | |
Q4 | ||
MMD | 0.60 * | 0.40 * |
LMD | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florescu, S.; Minda, D.; Damian, C.G. First-Time Meniscal Surgeries Reveal Age-Linked Rise in Medial Tears and Sex-Based Injury Difference. Appl. Sci. 2025, 15, 5095. https://doi.org/10.3390/app15095095
Florescu S, Minda D, Damian CG. First-Time Meniscal Surgeries Reveal Age-Linked Rise in Medial Tears and Sex-Based Injury Difference. Applied Sciences. 2025; 15(9):5095. https://doi.org/10.3390/app15095095
Chicago/Turabian StyleFlorescu, Sorin, Daliana Minda, and Cosmin Grațian Damian. 2025. "First-Time Meniscal Surgeries Reveal Age-Linked Rise in Medial Tears and Sex-Based Injury Difference" Applied Sciences 15, no. 9: 5095. https://doi.org/10.3390/app15095095
APA StyleFlorescu, S., Minda, D., & Damian, C. G. (2025). First-Time Meniscal Surgeries Reveal Age-Linked Rise in Medial Tears and Sex-Based Injury Difference. Applied Sciences, 15(9), 5095. https://doi.org/10.3390/app15095095