Microwave-Assisted Green Synthesis of Au-Ag Alloy Nanoparticles Using Melaleuca quinquenervia Leaf Extract and Their Pharmacological and Decontamination Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MQLE
2.3. Synthesis of Au, Ag, and Au-Ag Alloy NPs
2.4. Analysis of NP Characteristics
2.5. Assessment of Cytotoxicity and Wound Healing Capacity
2.6. Assessment of Antioxidant Activity
2.7. Assessment of Antimicrobial Activity
2.8. Assessment of Anti-Inflammatory Activity
2.9. Assessment of Catalytic Activity
3. Results and Discussion
3.1. Reduction Reaction of Metal Ions
3.2. Characteristics of NP Powder
3.3. Cytotoxic Effects of Au-Ag Alloy NPs
3.4. Antioxidant Activity of Various NPs
3.5. Antimicrobial Activity of Various NPs
3.6. Anti-Inflammatory Activity of Au-Ag Alloy NPs
3.7. Wound Healing Capacity of Au-Ag Alloy NPs
3.8. Catalytic Activity of Various NPs for Dyes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AbdelRahim, K.; Mahmoud, S.Y.; Ali, A.M.; Almaary, K.S.; Mustafa, A.E.; Husseiny, S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi. J. Biol. Sci. 2017, 24, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Adamska, E.; Grobelna, B. Medical applications of silver and gold nanoparticles and core-shell nanostructures based on silver or gold core: Recent progress and innovations. ChemMedChem 2024, 19, e202300672. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 2016, 101, 1–11. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Gupta, I.R.; Birla, S.S.; Yadav, A.P.; Abd-Elsalam, K.A. Potential role of biological systems in formation of nanoparticles: Mechanism of synthesis and biomedical applications. Curr. Nanosci. 2013, 9, 576–587. [Google Scholar] [CrossRef]
- Ditta, S.A.; Yaqub, A.; Tanvir, F.; Rashid, M.; Ullah, R.; Zubair, M.; Ali, S.; Anjum, K.M. Gold nanoparticles capped with L-glycine, L-cystine, and L-tyrosine: Toxicity profiling and antioxidant potential. J. Mater. Sci. 2023, 58, 2814–2837. [Google Scholar] [CrossRef]
- Khan, F.; Shariq, M.; Asif, M.; Siddiqui, M.A.; Malan, P.; Ahmad, F. Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials 2022, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.K.; Leu, J.Y.; Lai, Y.L.; Chang, Y.C.; Chung, Y.C.; Liu, H.W. Application of microwave-assisted water extraction (MAWE) to fully realize various physiological activities of Melaleuca quinquenervia leaf extract. Plants 2024, 13, 3362. [Google Scholar] [CrossRef]
- Madkour, L.H. Ecofriendly green biosynthesized of metallic nanoparticles: Bio-reduction mechanism, characterization and pharmaceutical applications in biotechnology industry. Glob. Drugs Therap. 2018, 3, 1–11. [Google Scholar] [CrossRef]
- Kustov, L.; Vikanova, K. Synthesis of metal nanoparticles under microwave irradiation: Get much with less energy. Metals 2023, 13, 1714. [Google Scholar] [CrossRef]
- Badrillah, N.; Susanti, D.; Kamil, T.K.T.M.; Swandiny, G.F.; Widyastuti, Y.; Zaini, E.; Taher, M. Silver nanoparticles biogenically synthesised using Maclurodendron porteri extract and their bioactivities. Heliyon 2024, 10, e25454. [Google Scholar] [CrossRef]
- Ben Haddada, M.; Gerometta, E.; Chawech, R.; Sorres, J.; Bialecki, A.; Pesnel, S.; Spadavecchia, J.; Morel, A.L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces 2020, 189, 110855. [Google Scholar] [CrossRef]
- Ningaraju, S.; Munawer, U.; Raghavendra, V.B.; Balaji, K.S.; Melappa, G.; Brindhadevi, K.; Pugazhendhi, A. Chaetomium globosum extract mediated gold nanoparticle synthesis and potent anti-inflammatory activity. Anal. Biochem. 2021, 612, 113970. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Rana, D.; Sarkar, P.; Roy, S.; Kumar, A.; Naskar, J.; Kole, R.K. Ecological safety with multifunctional applications of biogenic mono and bimetallic (Au-Ag) alloy nanoparticles. Chemosphere 2022, 288 Pt 2, 132585. [Google Scholar] [CrossRef] [PubMed]
- Almatroudi, A. Unlocking the potential of silver nanoparticles: From synthesis to versatile bio-applications. Pharmaceutics 2024, 16, 1232. [Google Scholar] [CrossRef]
- Wang, G.H.; Lin, Y.M.; Kuo, J.T.; Lin, C.P.; Chang, C.F.; Hsieh, M.C.; Cheng, C.Y.; Chung, Y.C. Comparison of biofunctional activity of Asparagus cochinchinensis (Lour.) Merr. extract before and after fermentation with Aspergillus oryzae. J. Biosci. Bioeng. 2019, 127, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.H.; Ahn, S.H.; Choi, M.J.; Yang, I.J.; Shin, H.M. Puerarin improves dexamethasone-impaired wound healing in vitro and in vivo by enhancing keratinocyte proliferation and migration. Appl. Sci. 2021, 11, 9343. [Google Scholar] [CrossRef]
- Danna, C.; Bazzicalupo, M.; Ingegneri, M.; Smeriglio, A.; Trombetta, D.; Burlando, B.; Cornara, L. Anti-inflammatory and wound healing properties of leaf and rhizome extracts from the medicinal plant Peucedanum ostruthium (L.) W.D.J. Koch. Molecules 2022, 27, 4271. [Google Scholar] [CrossRef]
- Ghosh, S.; Nitnavare, R.; Dewle, A.; Tomar, G.B.; Chippalkatti, R.; More, P.; Kitture, R.; Kale, S.; Bellare, J.; Chopade, B.A. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: Anticancer and antioxidant activities. Int. J. Nanomed. 2015, 10, 7477–7490. [Google Scholar]
- Wu, L.C.; Chen, C.Y.; Cheng, C.Y.; Dai, H.; Ai, Y.; Lin, C.H.; Chung, C.Y. Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. BioMed Res. Int. 2018, 2018, 5201786. [Google Scholar] [CrossRef]
- Gupta, S.; Finelli, R.; Agarwal, A.; Henkel, R. Total antioxidant capacity: Relevance, methods and clinical implications. Andrologia 2021, 53, e13624. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (Suppl. S1), 5–16. [Google Scholar] [CrossRef] [PubMed]
- Kurita, N.; Miyaji, M.; Kurane, R.; Takahara, Y. Antifungal activity of components of essential oils. Agric. Biol. Chem. 1981, 45, 945–952. [Google Scholar]
- Rahmawati, S.I.; Indriani, D.W.; Ningsih, F.N.; Hardhiyuna, M.; Firdayani, F.; Ahmadi, P.; Rosyidah, A.; Septiana, E.; Dharmayanti, N.L.P.I.; Bayu, A.; et al. Dual anti-inflammatory activities of COX-2/5-LOX driven by kratom alkaloid extracts in lipopolysaccharide-induced RAW 264.7 cells. Sci. Rep. 2024, 14, 28993. [Google Scholar] [CrossRef] [PubMed]
- Divate, R.D.; Chung, Y.C. In vitro and in vivo assessment of anti-inflammatory and immunomodulatory activities of Xylaria nigripes mycelium. J. Funct. Foods 2017, 35, 81–89. [Google Scholar] [CrossRef]
- Choi, Y.H.; Choi, Y.S.; Kim, Y.K.; Rahman, M.S.; Pradeep, G.C.; Yoo, J.C.; Suh, J.W. A multifunctional alanine-rich anti-inflammatory peptide BCP61 showed potent inhibitory effects by inhibiting both NF-κB and MAPK expression. Inflammation 2017, 40, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Abbai, R.; Mathiyalagan, R.; Markus, J.; Kim, Y.J.; Wang, C.; Singh, P.; Ahn, S.; Farh, M.; Yang, D.C. Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. Int. J. Nanomedicine 2016, 11, 3131–3143. [Google Scholar]
- Ghosh, S.; Chacko, M.J.; Harke, A.N.; Gurav, S.P.; Joshi, K.A. Barleria prionitis Leaf mediated synthesis of silver and gold nanocatalysts. J. Nanomed. Nanotechnol. 2016, 7, 394. [Google Scholar] [CrossRef]
- Yallappa, S.; Manjanna, J.; Dhananjaya, B.L. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 236–243. [Google Scholar] [CrossRef]
- Singh, C.; Mehata, A.K.; Priya, V.; Malik, A.K.; Setia, A.; Suseela, M.N.L.; Vikas; Gokul, P.; Samridhi; Singh, S.K.; et al. Bimetallic Au–Ag nanoparticles: Advanced nanotechnology for tackling antimicrobial resistance. Molecules 2022, 27, 7059. [Google Scholar] [CrossRef]
- Okazaki, K.; Kiyama, T.; Hirahara, K.; Tanaka, N.; Kuwabata, S.; Torimoto, T. Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem. Commun. 2008, 6, 691–693. [Google Scholar] [CrossRef]
- Bakur, A.; Niu, Y.; Kuang, H. Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Express 2019, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Mei, S.; Ma, H.; Chen, X. Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity. Ultrason. Sonochem. 2022, 83, 105940. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Corrêa, A.; Contreras, L.A.; Keijok, W.J.; Barcelos, D.H.F.; Pereira, A.C.H.; Kitagawa, R.R.; Scherer, R.; de Oliveira Gomes, D.C.; da Silva, A.R.; Endringer, D.C.; et al. Virola oleifera-capped gold nanoparticles showing radical-scavenging activity and low cytotoxicity. Mater. Sci. Eng. C 2018, 91, 853–858. [Google Scholar] [CrossRef]
- Sørensen, L.K.; Khrennikov, D.E.; Gerasimov, V.S.; Ershov, A.E.; Polyutov, S.P.; Karpov, S.V.; Ågren, H. Nature of the anomalous size dependence of resonance red shifts in ultrafine plasmonic nanoparticles. J. Phys. Chem. C 2022, 126, 16804–16814. [Google Scholar] [CrossRef]
- Shin, Y.; Bae, I.T.; Arey, B.W.; Exarhos, G.J. Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J. Phys. Chem. C 2008, 112, 4844–4848. [Google Scholar] [CrossRef]
- Priya Velammal, S.; Devi, T.A.; Amaladhas, T.P. Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark. J. Nanostruct. Chem. 2016, 6, 247–260. [Google Scholar] [CrossRef]
- Sun, L.; Luan, W.; Shan, Y.J. A composition and size controllable approach for Au-Ag alloy nanoparticles. Nanoscale Res. Lett. 2012, 7, 225. [Google Scholar] [CrossRef]
- Ahmad, N.; Sharma, A.K.; Sharma, S.; Khan, I.; Sharma, D.K.; Shamsi, A.; Santhosh Kumar, T.R.; Seervi, M. Biosynthesized composites of Au-Ag nanoparticles using Trapa peel extract induced ROS-mediated p53 independent apoptosis in cancer cells. Drug Chem. Toxicol. 2019, 42, 43–53. [Google Scholar] [CrossRef]
- Mujahid, S.; Ambreen, N.; Yaseen, M.; Ihtesham, M.; Mohammed Khan, K.; Nasimullah Qureshi, M. Metallic nanoentities: Bio-engineered silver, gold, and silver/gold bimetallic nanoparticles for biomedical applications. Heliyon 2024, 10, e37481. [Google Scholar] [CrossRef]
- Navya, P.N.; Madhyastha, H.; Madhyastha, R.; Nakajima, Y.; Maruyama, M.; Srinivas, S.P.; Jain, D.; Amin, M.H.; Bhargava, S.K.; Daima, H.K. Single step formation of biocompatible bimetallic alloy nanoparticles of gold and silver using isonicotinylhydrazide. Mater. Sci. Eng. C 2019, 96, 286–294. [Google Scholar] [CrossRef]
- Das, G.; Seo, S.; Yang, I.J.; Nguyen, L.T.H.; Shin, H.S.; Patra, J.K. Sericin mediated gold/silver bimetallic nanoparticles and exploration of its multi-therapeutic efficiency and photocatalytic degradation potential. Environ. Res. 2023, 229, 115935. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Luo, Y.; Liu, P.; Li, Y.; Yue, J.; Jiang, L. Atomic-engineering Au-Ag nanoalloys for screening antimicrobial agents with low toxicity towards mammalian cells. Colloids Surf. B Biointerfaces 2021, 204, 111831. [Google Scholar] [CrossRef] [PubMed]
- Reviana, R.; Usman, A.N.; Raya, I.; Dirpan, A.; Arsyad, A.; Fendi, F. Analysis of antioxidant activity on cocktail honey products as female pre-conception supplements. Gac. Sanit. 2021, 35 (Suppl. S2), S202–S205. [Google Scholar] [CrossRef]
- Sharma, C.; Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Srivastava, M.M. Single-step green route synthesis of Au/Ag bimetallic nanoparticles using clove buds extract: Enhancement in antioxidant bio-efficacy and catalytic activity. Mater. Sci. Eng. C 2020, 116, 111153. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Khan, S.A.; Qayum, M.; Khan, M.A.; Anwar, Y.; Akhtar, K.; Asiri, A.M.; Khan, S.B. Green synthesis of antibacterial bimetallic Ag–Cu nanoparticles for catalytic reduction of persistent organic pollutants. J. Mater. Sci. Mater. Electron. 2018, 29, 20840–20855. [Google Scholar] [CrossRef]
- Amina, M.; Al Musayeib, N.M.; Alarfaj, N.A.; El-Tohamy, M.F.; Al-Hamoud, G.A. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomaterials 2020, 10, 2453. [Google Scholar] [CrossRef] [PubMed]
- Rezk, N.; Abdelsattar, A.S.; Makky, S.; Hussein, A.H.; Kamel, A.G.; El-Shibiny, A. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Express 2022, 12, 108. [Google Scholar] [CrossRef]
- Ojo, S.A.; Lateef, A.; Azeez, M.A.; Oladejo, S.M.; Akinwale, A.S.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Oladipo, I.C.; Gueguim-Kana, E.B.; et al. Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: Antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans. Nanobiosci. 2016, 15, 433–442. [Google Scholar] [CrossRef]
- Wang, H.; Wang, D.; Huangfu, H.; Chen, S.; Qin, Q.; Ren, S.; Zhang, Y.; Fu, L.; Zhou, Y. Highly efficient photothermal branched Au-Ag nanoparticles containing procyanidins for synergistic antibacterial and anti-inflammatory immunotherapy. Biomater. Sci. 2023, 11, 1335–1349. [Google Scholar] [CrossRef]
- Tran, T.H.M.; Wang, R.; Kim, H.; Kim, Y.J. The anti-inflammation and skin moisturizing effects of Boehmeria tricuspis-mediated biosynthesized gold nanoparticles in human keratinocytes. Front. Pharmacol. 2023, 14, 1258057. [Google Scholar] [CrossRef]
- Soliman, W.E.; Elsewedy, H.S.; Younis, N.S.; Shinu, P.; Elsawy, L.E.; Ramadan, H.A. Evaluating antimicrobial activity and wound healing effect of rod-shaped nanoparticles. Polymers 2022, 14, 2637. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Laurenzana, A.; Fibbi, G.; Veiga-Villauriz, C.; Fanelli, F.; Fracassi, F.; Onzo, A.; Bianco, G.; et al. Biomolecules from snail mucus (Helix aspersa) conjugate gold nanoparticles, exhibiting potential wound healing and anti-inflammatory activity. Soft Matter 2020, 16, 10876–10888. [Google Scholar] [CrossRef]
- Bai, M.Y.; Ku, F.Y.; Shyu, J.F.; Hayashi, T.; Wu, C.C. Evaluation of polyacrylonitrile nonwoven mats and silver-gold bimetallic nanoparticle-decorated nonwoven mats for potential promotion of wound healing in vitro and in vivo and bone growth in vitro. Polymers 2021, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Mbarek, W.B.; Escoda, L.; Saurina, J.; Pineda, E.; Alminderej, F.M.; Khitouni, M.; Suñol, J.J. Nanomaterials as a sustainable choice for treating wastewater: A review. Materials 2022, 15, 8576. [Google Scholar] [CrossRef] [PubMed]
- Alula, M.T.; Aragaw, B.A.; Modukanele, S.T.; Yang, J. Enhanced catalytic activity of silver nanoparticles loaded into Fe3O4 nanoparticles towards reduction of 4-nitrophenol, degradation of organic dyes and oxidation of o-phenylenediamine. Inorg. Chem. Commun. 2021, 127, 108504. [Google Scholar] [CrossRef]
- Mutukwa, D.; Taziwa, R.T.; Khotseng, L. A review of plant-mediated ZnO nanoparticles for photodegradation and antibacterial applications. Nanomaterials 2024, 14, 1182. [Google Scholar] [CrossRef]
- Weng, Y.; Li, J.; Ding, X.; Wang, B.; Dai, S.; Zhou, Y.; Pang, R.; Zhao, Y.; Xu, H.; Tian, B.; et al. Functionalized gold and silver bimetallic nanoparticles using Deinococcus radiodurans protein extract mediate degradation of toxic dye malachite green. Int. J. Nanomed. 2020, 15, 1823–1835. [Google Scholar] [CrossRef]
- Sabahat, S.; Nazish, Y.; Akhtar, A.; Shahid, A. Nanoengineering of mono (Au, Ag) and bimetallic (Ag-Au) alloy nanoparticles for dye degradation and toxicity assessment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 321, 124705. [Google Scholar] [CrossRef]
- Sharma, A.; Sunny, S.; Arulraj, J.; Hegde, G. Exploring the efficiency of green synthesized silver nanoparticles as photocatalysts for organic dye degradation: Unveiling key insights. Nano Express 2024, 5, 022002. [Google Scholar] [CrossRef]
C | O | K | Cl | Ag | Au | |
---|---|---|---|---|---|---|
Au | 9.18 | 2.15 | 1.05 | 1.01 | – | 86.61 |
Ag | 8.34 | 5.18 | 0.68 | 0.57 | 85.23 | – |
Au-Ag alloy | 10.28 | 3.35 | 0.74 | 1.86 | 40.21 | 43.56 |
MQLE | Che-AgNPs | Che-AuNPs | Bio-Capped AgNPs | Bio-Capped AuNPs | Bio-Capped Au-Ag Alloy NPs | |
---|---|---|---|---|---|---|
DPPH | 134.7 ± 12.5 | 452.6 ± 16.7 | 33.5 ± 2.4 | 95.4 ± 8.2 | 12.6 ± 1.3 | 14.6 ± 1.5 |
ABTS | 78.2 ± 8.3 | 386.1 ± 20.4 | 28.6 ± 3.2 | 64.1 ± 6.1 | 8.3 ± 0.6 | 10.6 ± 0.9 |
MQLE | Che-AgNPs | Che-AuNPs | Bio-Capped AgNPs | Bio-Capped AuNPs | Bio-Capped Au-Ag Alloy NPs | |
---|---|---|---|---|---|---|
MIC | ||||||
E. coli | 75 | 20 | >500 | 2.5 | 50 | 2.5 |
S. aureus | 75 | 40 | >500 | 5 | 75 | 10 |
P. aeruginosa | 150 | 20 | >500 | 2.5 | 75 | 2.5 |
MFC | ||||||
C. albicans | 300 | 100 | 200 | 15 | 75 | 15 |
A. niger | 125 | 75 | >500 | 10 | 100 | 20 |
VBR | MG | MB | RY4G | CR | MO | RhB | |
---|---|---|---|---|---|---|---|
AuNPs | 0.712 | 0.492 | 0.413 | 0.463 | 0.384 | 0.517 | 0.361 |
AgNPs | 0.153 | 0.116 | 0.094 | 0.102 | 0.065 | 0.128 | 0.042 |
Au-Ag alloy | 0.654 | 0.471 | 0.392 | 0.432 | 0.286 | 0.502 | 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-K.; Leu, J.-Y.; Kuo, J.-T.; Lai, Y.-L.; Chung, Y.-C.; Liu, H.-W. Microwave-Assisted Green Synthesis of Au-Ag Alloy Nanoparticles Using Melaleuca quinquenervia Leaf Extract and Their Pharmacological and Decontamination Activities. Appl. Sci. 2025, 15, 4345. https://doi.org/10.3390/app15084345
Lin T-K, Leu J-Y, Kuo J-T, Lai Y-L, Chung Y-C, Liu H-W. Microwave-Assisted Green Synthesis of Au-Ag Alloy Nanoparticles Using Melaleuca quinquenervia Leaf Extract and Their Pharmacological and Decontamination Activities. Applied Sciences. 2025; 15(8):4345. https://doi.org/10.3390/app15084345
Chicago/Turabian StyleLin, Ting-Kang, Jyh-Yih Leu, Jong-Tar Kuo, Yi-Lin Lai, Ying-Chien Chung, and Hsia-Wei Liu. 2025. "Microwave-Assisted Green Synthesis of Au-Ag Alloy Nanoparticles Using Melaleuca quinquenervia Leaf Extract and Their Pharmacological and Decontamination Activities" Applied Sciences 15, no. 8: 4345. https://doi.org/10.3390/app15084345
APA StyleLin, T.-K., Leu, J.-Y., Kuo, J.-T., Lai, Y.-L., Chung, Y.-C., & Liu, H.-W. (2025). Microwave-Assisted Green Synthesis of Au-Ag Alloy Nanoparticles Using Melaleuca quinquenervia Leaf Extract and Their Pharmacological and Decontamination Activities. Applied Sciences, 15(8), 4345. https://doi.org/10.3390/app15084345