Eco-Friendly Thermoplastic Starch Nanocomposite Films Reinforced with Microfibrillated Cellulose (MFC) from Fraxinus uhdei (Wenz.) Lingelsh
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose Pulp
2.2.1. Kappa Number
2.2.2. Quantification of α-, β-, and γ-Cellulose
2.2.3. Fourier-Transform Infrared (FTIR) Analysis
2.2.4. Viscosymmetry
2.3. MFC Obtention and Characterization
Microscopy Electron Transmission (TEM)
2.4. Obtaining Extracts
2.5. Starch and Biofilms Preparation
2.5.1. Characterization of Biofilms
Analysis of Color, Opacity, Thickness, Grammage, and Electrical Conductivity
Solubility and Water Vapor Permeability
Gas Permeability
Differential Scanning Calorimetry (DSC)
Mechanical Properties
Scanning Electron Microscope (SEM)
Contact Angle
Antibacterial Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Ash Pulp
Infrared Spectroscopy (FTIR) of Fibers
3.2. Obtaining Extracts from Hibiscus and Muicle
3.3. Starch and Biofilms Preparation and Characterization
3.3.1. Analysis of Color and Opacity, Thickness, Grammage, and Electrical Conductivity of Biofilms
3.3.2. Solubility and Water Vapor Permeability of Biofilms
3.3.3. CO2, O2 Permeability of Biofilms
3.3.4. Fourier-Transform Infrared Spectroscopy (FTIR-ATR) of Biofilms
3.3.5. Differential Scanning Calorimetry (DSC)
3.3.6. Mechanical Properties
3.3.7. Scanning Electron Microscopy (SEM)
3.3.8. Contact Angle
3.3.9. Antibacterial Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lomelí-Ramírez, M.G.; Barrios-Guzmán, A.J.; García-Enriquez, S.; de Jesús Rivera-Prado, J.; Manríquez-González, R. Chemical and mechanical evaluation of bio-composites based on thermoplastic starch and wood particles prepared by thermal compression. BioResources 2014, 9, 2960–2974. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural characterization of yam starch films. Carbohydr. Polym. 2002, 50, 379–386. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic fibers-An overview. Prog. Polym. Sci. 2008, 34, 982–1021. [Google Scholar] [CrossRef]
- James, M.; Myers, A. Seed starch synthesis. In Handbook of Maize: Its Biology; Bennetzen, J., Hake, S., Eds.; Springer: New York, NY, USA, 2009; pp. 439–456. [Google Scholar]
- Rindlav-Westling, Å.; Stading, M.; Gatenholm, P. Crystallinity and morphology in films of starch, amylose and amylopectin blends. Biomacromolecules 2002, 3, 84–91. [Google Scholar] [CrossRef]
- Fredriksson, H.; Silverio, J.; Andersson, R.; Eliasson, A.C.; Åman, P.J.C.P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr. Polym. 1998, 35, 119–134. [Google Scholar] [CrossRef]
- Huang, L.; Xu, H.; Zhao, H.; Xu, M.; Qi, M.; Yi, T.; An, S.; Zhang, X.; Li, C.; Huang, C.; et al. Properties of thermoplastic starch films reinforced with modified cellulose nanocrystals obtained from cassava residues. New J. Chem. 2019, 43, 14883–14891. [Google Scholar] [CrossRef]
- Fazeli, M.; Keley, M.; Biazar, E. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int. J. Biol. Macromol. 2018, 116, 272–280. [Google Scholar] [CrossRef]
- Nasri-Nasrabadi, B.; Behzad, T.; Bagheri, R. Preparation and characterization of cellulose nanofiber reinforced thermoplastic starch composites. Fibers Polym. 2014, 15, 347–354. [Google Scholar] [CrossRef]
- Lomelí-Ramírez, M.G.; Reyes-Alfaro, B.; Martínez-Salcedo, S.L.; González-Pérez, M.M.; Gallardo-Sánchez, M.A.; Landázuri-Gómez, G.; Vargas-Radillo, J.J.; Diaz-Vidal, T.; Torres-Rendón, J.G.; Macias-Balleza, E.R.; et al. Thermoplastic starch biocomposite films reinforced with nanocellulose from Agave tequilana weber var. Azul Bagasse. Polymers 2023, 15, 3793. [Google Scholar] [CrossRef]
- Shamsabadi, O.D.; Soltanolkottabi, F. Green nanocomposite of (starch/polylactic acid/cellulose nanofiber) thermoplastic. Polym. Polym. Compos. 2024, 32, 09673911241294213. [Google Scholar] [CrossRef]
- Montero, B.; Rico, M.; Barral, L.; Bouza, R.; López, J.; Schmidt, A.; Bittmann-Hennes, B. Preparation and characterization of bionanocomposite films based on wheat starch and reinforced with cellulose nanocrystals. Cellulose 2021, 28, 7781–7793. [Google Scholar] [CrossRef]
- Żołek-Tryznowska, Z.; Bednarczyk, E.; Tryznowski, M.; Kobiela, T. A comparative investigation of the surface properties of corn-starch-microfibrillated cellulose composite films. Materials 2023, 16, 3320. [Google Scholar] [CrossRef]
- Freitas, P.A.; Arias, C.I.L.F.; Torres-Giner, S.; González-Martínez, C.; Chiralt, A. Valorization of rice straw into cellulose microfibers for the reinforcement of thermoplastic corn starch films. Appl. Sci. 2021, 11, 8433. [Google Scholar] [CrossRef]
- Montoya, Ú.; Zuluaga, R.; Castro, C.; Goyanes, S.; Gañán, P. Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes. J. Thermoplast. Compos. Mater. 2014, 27, 413–426. [Google Scholar] [CrossRef]
- Kumar, V.; Bollström, R.; Yang, A.; Chen, Q.; Chen, G.; Salminen, P.; Bousfield, D.; Toivakka, M. Comparison of nano-and microfibrillated cellulose films. Cellulose 2014, 21, 3443–3456. [Google Scholar] [CrossRef]
- Andresen, M.; Johansson, L.S.; Tanem, B.S.; Stenius, P. Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 2006, 13, 665–677. [Google Scholar] [CrossRef]
- Midhun, C.D.M.; dos Santos Rosa, D.; Camani, P.H.; Kumar, A.S.; Kv, N.; Begum, P.S.; Dinakaran, D.; John, E.; Baby, D.; Thomas, M.M.; et al. Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers. Int. J. Biol. Macromol. 2021, 191, 572–583. [Google Scholar] [CrossRef]
- Babaee, M.; Jonoobi, M.; Hamzeh, Y.; Ashori, A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr. Polym. 2015, 132, 1–8. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, M.; Wei, Y.J.; Cheng, F.; Zhu, P.X. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polym. Compos. 2019, 40 (Suppl. S1), E365–E372. [Google Scholar] [CrossRef]
- de Oliveira, A.L.M.; Bento, J.A.C.; Fidelis, M.C.; Dias, M.C.; de Barros, H.E.A.; Natarelli, C.V.L.; do Lago, R.C.; Barbosa, J.W.; Ossani, P.C.; Caliari, M.; et al. Effect of pine, eucalyptus, and corn straw nanofibers on the structural properties of rice flour-based biodegradable films. Ind. Crops Prod. 2023, 191, 115929. [Google Scholar] [CrossRef]
- Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M. Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydr. Polym. 2018, 197, 305–311. [Google Scholar] [CrossRef]
- Montero, B.; Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr. Polym. 2017, 157, 1094–1104. [Google Scholar] [CrossRef]
- Tropical Plants Database, Ken Fern. Available online: https://tropical.theferns.info/viewtropical.php?id=Fraxinus+uhdei (accessed on 7 October 2025).
- Backyard Nature. Fraxinus uhdei (Tropical Ash). 2024. Available online: https://www.backyardnature.net/q/fraxinus.htm (accessed on 7 October 2025).
- Saavedra-Ramírez, K.A.; Etter, A.; Ramírez, A. Tropical ash (Fraxinus udhei) invading Andean forest remnants in Northern South America. Ecol. Process. 2018, 7, 16. [Google Scholar] [CrossRef]
- Francis, J.K. Fraxinus uhdei (Wenz.) Lingelsh.: Tropical Ash. U.S. Department of Agriculture, Forest Service, Institute of Tropical Forestry, General Technical Report IITF-28. 1990. Available online: https://data.fs.usda.gov/research/pubs/iitf/sm_iitf028%20%20%284%29.pdf (accessed on 7 October 2025).
- McElwee, R.L.; Tobias, R.C.; Gregory, A.H. Wood characteristics of three southern hardwood species and their relationship to pulping properties. TAPPI J. 1970, 53, 1882–1886. [Google Scholar]
- Baqueiro-Peña, I.; Guerrero-Beltrán, J.Á. Physicochemical and antioxidant characterization of Justicia spicigera. Food Chem. 2017, 218, 305–312. [Google Scholar] [CrossRef]
- Ohenhen, O.N.; Njoku, P.C.; Igara, C.E. Antibacterial and antioxidant activity of Justicia spicigera extracts: Activity enhancement by addition of metal salts. In Proceedings of the 39th CSN Annual International Conference 2016, Workshop and Exhibition, Rivers State University of Science and Technology, Port Harcourt, Nigeria, 18–23 September 2016; p. B06A952. [Google Scholar]
- Ali, B.H.; Wabel, N.A.; Blunden, G. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2005, 19, 369–375. [Google Scholar]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef]
- Jardim, J.M.; Hart, P.W.; Lucia, L.A.; Jameel, H.; Chang, H.M. The effect of the Kraft pulping process, wood species, and pH on lignin recovery from black liquor. Fibers 2022, 10, 16. [Google Scholar] [CrossRef]
- TAPPI T236 om-22; Kappa Number of Pulp. Standard by Technical Association of the Pulp and Paper Industry. Tappi Press: Atlanta, GA, USA, 2022.
- TAPPI T 203 cm-22; Alpha-, Beta- and Gamma-Cellulose in Pulp. Standard by Technical Association of the Pulp and Paper Industry. Tappi Press: Atlanta, GA, USA, 2022.
- TAPPI T230 om-19; Viscosity of Pulp (Capillary Viscometer Method). Standard by Technical Association of the Pulp and Paper Industry. Tappi Press: Atlanta, GA, USA, 2019.
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Nanasombat, S.; Thonglong, J.; Jitlakha, J. Formulation and characterization of novel functional beverages with antioxidant and anti-acetylcholinesterase activities. Funct. Foods Health Dis. 2015, 5, 1–16. [Google Scholar] [CrossRef]
- Jaramillo, C.M.; González Seligra, P.; Goyanes, S.; Bernal, C.; Famá, L. Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch-Stärke 2015, 67, 780–789. [Google Scholar] [CrossRef]
- Fronza, P.; Batista, M.J.; Franca, A.S.; Oliveira, L.S. Bionanocomposite based on cassava waste starch, locust bean galactomannan, and cassava waste cellulose nanofibers. Foods 2024, 13, 202. [Google Scholar] [CrossRef]
- Luís, Â.; Domingues, F.; Ramos, A. Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms 2019, 7, 267. [Google Scholar] [CrossRef]
- de Oliveira, J.P.; de Almeida, M.E.F.; Costa, J.D.S.S.; da Silva, I.B.; de Oliveira, J.S.; Oliveira, E.L.; Landim, L.B.; da Silva, N.M.C.; de Oliveira, C.P. Effect of eucalyptus nanofibril as reinforcement in biodegradable thermoplastic films based on rice starch (Oryza sativa): Evaluation as primary packaging for crackers. Food Chem. 2025, 474, 143177. [Google Scholar] [CrossRef]
- Almeida, T.; Karamysheva, A.; Valente, B.F.; Silva, J.M.; Braz, M.; Almeida, A.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S. Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging. Food Hydrocoll. 2023, 144, 108934. [Google Scholar] [CrossRef]
- ASTM E96/E96M-22; Standard Test Methods for Gravimetric Determination of Water Vapor Transmission Rate of Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- Group, I.W.; Sabbah, R.; Xu-Wu, A.; Usa, J.C.; Leitão, M.P.; Roux, M.V.; Torres, L.A. Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 1999, 331, 93–204. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Manzano, C.; Landa, A.; Calva, D.; Lehman, M.; Erro, L.E.; Tonantzintla, P.M. Un Método Simple para la Medida de Halos de Difusión en Cultivos Biológicos; Software Integral para Laboratorio (Sofilab) SA de CV: Mexico City, Mexico, 2011. [Google Scholar]
- Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P.; Santas, R. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod. 2004, 19, 245–254. [Google Scholar] [CrossRef]
- Österling, S.R.; Ferritsius, O.; Ferritsius, R. Mechanical Pulping: The influence of fiber dimensions on mechanical pulp long fiber tensile index and density. Nord. Pulp Pap. Res. J. 2012, 27, 844–859. [Google Scholar] [CrossRef]
- NagarajaGanesh, B.; Rekha, B.; Mohanavel, V.; Ganeshan, P. Exploring the possibilities of producing pulp and paper from discarded lignocellulosic fibers. J. Nat. Fibers 2023, 20, 2137618. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef]
- Robles, E.; Fernández-Rodríguez, J.; Barbosa, A.M.; Gordobil, O.; Carreño, N.L.; Labidi, J. Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr. Polym. 2018, 183, 294–302. [Google Scholar] [CrossRef]
- Contreras, H.J.; Trujillo, H.A.; Arias, G.; Pérez, J.; Delgado, E. Espectroscopia Atr-Ftir De Celulosa: Aspecto Instrumental Y Tratamiento Matemático De Espectros. e-Gnosis 2010, 8, 1–13. [Google Scholar]
- Pacheco-Coello, F.; Ramírez-Azuaje, D.; Pinto-Catari, I.; Peraza-Marrero, M.; Orosco-Vargas, C. Comparación de compuestos fenólicos totales en Hibiscus sabdariffa L. Venezuela. Rev. Colomb. Cienc. Químico-Farm. 2019, 48, 521–527. [Google Scholar] [CrossRef]
- González-Pérez, M.M.; Lomelí-Ramírez, M.G.; Robledo-Ortiz, J.R.; Silva-Guzmán, J.A.; Manríquez-González, R. Biodegradable Biocomposite of Starch Films Cross-Linked with Polyethylene Glycol Diglycidyl Ether and Reinforced by Microfibrillated Cellulose. Polymers 2024, 16, 1290. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, T.J.; Tapia, M.S.; Pérez, E.; Famá, L. Edible films based on native and phosphated 80:20 waxy:normal corn starch. Starch-Stärke 2015, 67, 90–97. [Google Scholar] [CrossRef]
- Do Lago, R.C.; de Oliveira, A.L.M.; de Amorim dos Santos, A.; Zitha, E.Z.M.; Nunes Carvalho, E.E.; Tonoli, G.H.D.; de Barros Vilas Boas, E.V. Addition of Wheat Straw Nanofibrils to Improve the Mechanical and Barrier Properties of Cassava Starch–Based Bionanocomposites. Ind. Crops Prod. 2021, 170, 113816. [Google Scholar] [CrossRef]
- Almeida, D.M.; Woiciechowski, A.L.; Wosiacki, G.; Prestes, R.A.; Pinheiro, L.A. Propriedades físicas, químicas e de barreira em filme formados por blenda de celulose bacteriana e fécula de batata. Polímeros 2013, 23, 538–546. [Google Scholar] [CrossRef]
- Escobar-Millán, Z.; García-Iglesias, T.; Gómez-Leyva, J.F.; Ramírez-Alvarado, D.; Figueroa-Martínez, R.; Torres-Bugarín, O.; García-García, M.R. Extracto de jamaica (Hibiscus sabdariffa L.): Efecto antioxidante y terapéutico. Acta De Ciencia En Salud 2022, 14–19. [Google Scholar] [CrossRef]
- Ma, X.; Chang, P.R.; Yu, J. Plasticized starch. In Starch-Based Polymeric Materials and Nanocomposites: Chemistry, Processing and Applications; Ahmed, J., Tiwari, B.K., Imam, S.H., Rao, M.A., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2012; pp. 69–83. [Google Scholar]
- Fazeli, M.; Simão, R.A. The effect of cellulose nanofibers on the properties of starch biopolymer. Macromol. Symp. 2018, 380, 1800110. [Google Scholar] [CrossRef]
- Abd Karim, S.F.; Idris, J.; Jai, J.; Musa, M.; Ku Hamid, K.H. Production of thermoplastic starch-aloe vera gel film with high tensile strength and improved water solubility. Polymers 2022, 14, 4213. [Google Scholar] [CrossRef]
- Granda, L.A.; Oliver-Ortega, H.; Fabra, M.J.; Tarrés, Q.; Pèlach, M.À.; Lagarón, J.M.; Méndez, J.A. Improved process to obtain nanofibrillated cellulose (CNF) reinforced starch films with upgraded mechanical properties and barrier character. Polymers 2020, 12, 1071. [Google Scholar] [CrossRef]
- Li, M.; Tian, X.; Jin, R.; Li, D. Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Ind. Crops Prod. 2018, 123, 654–660. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; do Amaral Sobral, P.J.; Menegalli, F.C. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J. Colloid Interface Sci. 2017, 505, 154–167. [Google Scholar] [CrossRef]
- Ragoubi, M.; Terrié, C.; Leblanc, N. Physico-Chemical, Rheological, and Viscoelastic Properties of Starch Bio-Based Materials. J. Compos. Sci. 2022, 6, 375. [Google Scholar] [CrossRef]
- Merino, D.; Mansilla, A.Y.; Gutiérrez, T.J.; Casalongué, C.A.; Alvarez, V.A. Chitosan coated-phosphorylated starch films: Water interaction, transparency and antibacterial properties. React. Funct. Polym. 2018, 131, 445–453. [Google Scholar] [CrossRef]
- Ghosh Dastidar, T.; Netravali, A. Cross-linked waxy maize starch-based “green” composites. ACS Sustain. Chem. Eng. 2013, 1, 1537–1544. [Google Scholar] [CrossRef]
- Prabhakar, M.N.; Rehman Shah, A.; Song, J.I. Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green composites. Carbohydr. Polym. 2017, 168, 201–211. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Q.; Shi, Z.; Ye, J. Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Res. Int. 2017, 100, 858–863. [Google Scholar] [CrossRef]
- Van Soest, J.J.; Tournois, H.; de Wit, D.; Vliegenthart, J.F. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Khadsai, S.; Janmanee, R.; Sam-Ang, P.; Nuanchawee, Y.; Rakitikul, W.; Mankhong, W.; Likittrakulwong, W.; Ninjiaranai, P. Influence of crosslinking concentration on the properties of biodegradable modified cassava starch-based films for packaging applications. Polymers 2024, 16, 1647. [Google Scholar] [CrossRef]
- Mu, J.; Yu, S. Quantitative Evaluation of Water Vapor Permeability Coefficients of Earth Materials Under the Influence of Density and Particle Size Distribution. Buildings 2025, 15, 1821. [Google Scholar] [CrossRef]
- Santana, J.S.; do Rosário, J.M.; Pola, C.C.; Otoni, C.G.; de Fátima FerreiraSoares, N.; Camilloto, G.P.; Cruz, R.S. Cassava starch-based nanocomposites reinforced with cellulose nanofibers extracted from sisal. J. Appl. Polym. Sci. 2017, 134, 44637. [Google Scholar] [CrossRef]
- Savadekar, N.R.; Mhaske, S.T. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr. Polym. 2012, 89, 146–151. [Google Scholar] [CrossRef]
- Omran, A.A.B.; Mohammed, A.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Rahimian Koloor, S.S.; Petrů, M. Micro-and nanocellulose in polymer composite materials: A review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef]
- Silva, F.A.; Dourado, F.; Gama, M.; Poças, F. Nanocellulose bio-based composites for food packaging. Nanomaterials 2020, 10, 2041. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, C.; Zhao, H.; Wang, J.; Yin, C.; Zhang, L.; Zhao, Y. Effects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites. Polymers 2019, 11, 2063. [Google Scholar] [CrossRef]
- Muñoz-Gimena, P.F.; Oliver-Cuenca, V.; Peponi, L.; López, D. A review on reinforcements and additives in starch-based composites for food packaging. Polymers 2023, 15, 2972. [Google Scholar] [CrossRef]
- Khalili, H.; Bahloul, A.; Ablouh, E.H.; Sehaqui, H.; Kassab, Z.; Hassani, F.Z.S.A.; El Achaby, M. Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). Int. J. Biol. Macromol. 2023, 226, 345–356. [Google Scholar] [CrossRef]
- Ribeiro, T.S.M.; Martins, C.C.N.; Scatolino, M.V.; Dias, M.C.; Mascarenhas, A.R.P.; Ferreira, C.B.; Bianchi, M.L.; Tonoli, G.H.D. Using Cellulose Nanofibril from Sugarcane Bagasse as an Eco-Friendly Ductile Reinforcement in Starch Films for Packaging. Sustainability 2025, 17, 4128. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Dashipour, A.; Razavilar, V.; Hosseini, H.; Shojaee-Aliabadi, S.; German, J.B.; Ghanati, K.; Khakpour, M.; Khaksar, R. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int. J. Biol. Macromol. 2015, 72, 606–613. [Google Scholar] [CrossRef]
- Shan, P.; Wang, K.; Yu, F.; Yi, L.; Sun, L.; Li, H. Gelatin/sodium alginate multilayer composite film crosslinked with green tea extract for active food packaging application. Colloids Surf. A Physicochem. Eng. Asp. 2023, 662, 131013. [Google Scholar] [CrossRef]
- Andrade-Mahecha, M.M.; Tapia-Blácido, D.R.; Menegalli, F.C. Development and optimization of biodegradable films based on achira flour. Carbohydr. Polym. 2012, 88, 449–458. [Google Scholar] [CrossRef]










| Sample | MFC (g) | Muicle Extract (g) | Hibiscus Extract (g) |
|---|---|---|---|
| TPS | --- | --- | --- |
| FA05M1.0 | 0.275 | 0.0027 | --- |
| FA05M2.0 | 0.275 | 0.0054 | --- |
| FA10M1.0 | 0.55 | 0.0027 | --- |
| FA10M2.0 | 0.55 | 0.0054 | --- |
| FA05H1.25 | 0.275 | --- | 0.0045 |
| FA05H2.5 | 0.275 | --- | 0.0090 |
| FA10H1.25 | 0.55 | --- | 0.0045 |
| FA10H2.5 | 0.55 | --- | 0.0090 |
| Biofilm | L* | a* | b* | ΔE | Opacity (A·mm−1) | |
|---|---|---|---|---|---|---|
| 400 nm | 600 nm | |||||
| TPS | 88.49 ± 1.65 | 0.16 ± 0.01 | 2.34 ± 0.06 | --- | 4.18 ± 0.19 | 5.46 ± 0.25 |
| FA05M1.0 | 79.92 ± 2.31 | −0.64 ± −0.03 | −6.56 ± 0.19 | 12.38 ± 0.67 | 1.34 ± 0.06 | 3.07 ± 0.14 |
| FA05M2.0 | 78.66 ± 1.94 | −1.19 ± 0.06 | −6.83 ± 0.12 | 13.51 ± 0.30 | 1.13 ± 0.05 | 2.80 ± 0.13 |
| FA10M1.0 | 75.77 ± 2.09 | −1.91 ± 0.08 | −5.23 ± 0.43 | 14.95 ± 0.58 | 1.80 ± 0.08 | 3.39 ± 0.15 |
| FA10M2.0 | 72.29 ± 1.90 | −2.22 ± 0.11 | −9.35 ± 0.64 | 20.12 ± 0.64 | 0.87 ± 0.04 | 2.75 ± 0.12 |
| FA05H1.25 | 66.96 ± 1.48 | −1.20 ± 0.08 | −8.08 ± 0.11 | 23.96 ± 0.19 | 1.32 ± 0.06 | 2.23 ± 0.10 |
| FA05H2.5 | 62.62 ± 1.64 | −3.10 ± 0.09 | −12.44 ± 0.32 | 29.97 ± 0.27 | 1.19 ± 0.05 | 2.21 ± 0.10 |
| FA10H1.25 | 70.26 ± 2.02 | −6.57 ± 0.08 | −9.37 ± 0.12 | 22.69 ± 0.38 | 1.22 ± 0.06 | 2.24 ± 0.10 |
| FA10H2.5 | 56.57 ± 1.47 | −3.85 ± 0.09 | −10.94 ± 0.27 | 34.80 ± 0.29 | 0.75 ± 0.03 | 1.80 ± 0.08 |
| Biofilm | Thickness (µm) | Grammage (g/m2) | Electrical Conductivity σ (10−5 S/cm) | Contact Angle (°) |
|---|---|---|---|---|
| TPS | 125 ± 0.5 | 148 ± 9.11 | 2.59 ± 0.08 | 62.7 ± 4.5 |
| FA05M1.0 | 146 ± 3.8 | 154 ± 10.1 | 2.06 ± 0.14 | 64.8 ± 1.1 |
| FA05M2.0 | 143 ± 2.7 | 156 ± 9.87 | 2.07 ± 0.12 | 75.1 ± 4.7 |
| FA10M1.0 | 190 ± 4.1 | 178 ± 10.8 | 1.52 ± 0.07 | 73.6 ± 5.2 |
| FA10M2.0 | 187 ± 3.7 | 184 ± 10.7 | 1.53 ± 0.08 | 53.8 ± 3.7 |
| FA05H1.25 | 151 ± 2.9 | 158 ± 8.41 | 2.01 ± 0.12 | 70.3 ± 4.3 |
| FA05H2.5 | 147 ± 3.4 | 156 ± 9.40 | 2.03 ± 0.10 | 63.2 ± 1.7 |
| FA10H1.25 | 193 ± 3.8 | 181 ± 11.4 | 1.47 ± 0.07 | 56.6 ± 2.6 |
| FA10H2.5 | 189 ± 4.1 | 186 ± 10.9 | 1.49 ± 0.08 | 71.6 ± 2.2 |
| Sample | Solubility (%) | Water Vapor Transmission (g/h m2) | Water Vapor Permeance 1010 (g/Pa m s) | Permeability Barrer * | Tg (°C) | |
|---|---|---|---|---|---|---|
| CO2 | O2 | |||||
| Control TPS | 48.7 ± 0.82 | 14.51 ± 0.95 | 2.877 ± 0.19 | <0.10 | <0.10 | 85.8 |
| FA05M1.0 | 43.8 ± 0.76 | 10.91 ± 0.41 | 2.569 ± 0.17 | 1.65 | <0.10 | 89.9 |
| FA05M2.0 | 42.9 ± 0.91 | 11.23 ± 0.53 | 2.517 ± 0.18 | 0.79 | <0.10 | 100.3 |
| FA10M1.0 | 39.8 ± 0.67 | 10.17 ± 0.47 | 2.298 ± 0.17 | 1.40 | <0.10 | 97.8 |
| FA10M2.0 | 38.7 ± 0.59 | 9.94 ± 0.43 | 2.284 ± 0.18 | 2.29 | <0.10 | 96.1 |
| FA05H1.25 | 44.1 ± 0.84 | 10.61 ± 0.49 | 2.483 ± 0.19 | 1.15 | <0.10 | 98.5 |
| FA05H2.5 | 43.8 ± 0.68 | 10.78 ± 0.39 | 2.501 ± 0.17 | 3.57 | 0.23 | 96.9 |
| FA10H1.25 | 39.4 ± 0.54 | 9.87 ± 0.37 | 2.247 ± 0.18 | 1.06 | 0.11 | 102.9 |
| FA10H2.5 | 38.9 ± 0.62 | 9.67 ± 0.42 | 2.216 ± 0.17 | 2.31 | 0.58 | 106.7 |
| Matrix | Reinforcer | Plasticizer | Tensile Strength (MPa) | Young’s Modulus, (MPa) | Elongation (%) | Reference |
|---|---|---|---|---|---|---|
| Starch | MFC from Ash | Glycerol (30%) | 11–18 | 800–1180 | 11–37 | Our work |
| Corn starch | MFC from Agave | Glycerol (30%) | 3.9 to 10.16 | 43.51 to 277.3 | ~9 to ~80 | [10] |
| Corn starch | CNC, CNF, MCF | Glycerol (20%) | ~3.1 to ~6.2 | ~150 to ~460 | ----- | [20] |
| Corn starch | MFC Recycled OCC cardboard | Glycerol (30%) | 2.0 to 14.3 | 5.8 to 212.7 | 17.9 to 76.8 | [56] |
| Potato starch | Nanofibers from rice straw | Glycerol (42.8%) | 3.1 to 5.01 | 36 to 160 | 126 to 61 | [9] |
| Corn starch | CNFs from kenaf | Glycerol (37%) | 8.6 to 38.0 | 16.6 to 141.0 | 27 to 52 | [19] |
| Rice starch | Corn straw, Pine, Eucalyptus NF. | Sorvitol | 1.84 to 56.58 | 0.02 to 25.31 | 0.76 to 42.62 | [21] |
| Cassava peel starch | nanofibers from cassava | Glycerol (26%) | 6.57 to 10.38 | ---- | 41.1 to 45.3 | [40] |
| Potato Starch | CNFs from Eucalyptus | Glycerol | ~3.5 to ~6.1 | ~135 to ~370 | ~20 to ~37.5 | [64] |
| Corn starch | Sugar beet CNFs | Glycerol and Xylitol (1:1), (30%) | 21.9 to 28.87 | 9.26 to 22.30 | 73.07 to 103.80 | [65] |
| Banana starch | CNFs from banana peels | Glycerol (25%) | 7.3 to 11.1 | 478.6 to 1047.7 | 20.7 to 32.2 | [66] |
| Potato Starch | MFC and CNCs from alfa fibers | Glycerol (40%) | ~2 to ~17 | ~170 to ~1100 | ~0.08 to ~0.9 | [81] |
| Cassava starch | CNFs from sugarcane bagasse | Glycerol (24%) | 4.6 to 15.7 | 192.5 to 487.0 | 4.39 to 11.0 | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Trujillo, E.; Lomelí-Ramírez, M.G.; Silva-Guzmán, J.A.; Anzaldo-Hernández, J.; Vargas-Radillo, J.J.; Barrientos-Ramírez, L.; Cisneros-López, E.O.; Jiménez-Amezcua, R.M.; Kronemberger, F.d.A.; Hupsel, A.L.; et al. Eco-Friendly Thermoplastic Starch Nanocomposite Films Reinforced with Microfibrillated Cellulose (MFC) from Fraxinus uhdei (Wenz.) Lingelsh. Appl. Sci. 2025, 15, 12925. https://doi.org/10.3390/app152412925
Gil-Trujillo E, Lomelí-Ramírez MG, Silva-Guzmán JA, Anzaldo-Hernández J, Vargas-Radillo JJ, Barrientos-Ramírez L, Cisneros-López EO, Jiménez-Amezcua RM, Kronemberger FdA, Hupsel AL, et al. Eco-Friendly Thermoplastic Starch Nanocomposite Films Reinforced with Microfibrillated Cellulose (MFC) from Fraxinus uhdei (Wenz.) Lingelsh. Applied Sciences. 2025; 15(24):12925. https://doi.org/10.3390/app152412925
Chicago/Turabian StyleGil-Trujillo, Eduardo, María Guadalupe Lomelí-Ramírez, José Antonio Silva-Guzmán, José Anzaldo-Hernández, J. Jesús Vargas-Radillo, Lucia Barrientos-Ramírez, Erick Omar Cisneros-López, Rosa María Jiménez-Amezcua, Frederico de Araujo Kronemberger, Amanda Loreti Hupsel, and et al. 2025. "Eco-Friendly Thermoplastic Starch Nanocomposite Films Reinforced with Microfibrillated Cellulose (MFC) from Fraxinus uhdei (Wenz.) Lingelsh" Applied Sciences 15, no. 24: 12925. https://doi.org/10.3390/app152412925
APA StyleGil-Trujillo, E., Lomelí-Ramírez, M. G., Silva-Guzmán, J. A., Anzaldo-Hernández, J., Vargas-Radillo, J. J., Barrientos-Ramírez, L., Cisneros-López, E. O., Jiménez-Amezcua, R. M., Kronemberger, F. d. A., Hupsel, A. L., Torres-Rendón, J. G., & Enriquez, S. G. (2025). Eco-Friendly Thermoplastic Starch Nanocomposite Films Reinforced with Microfibrillated Cellulose (MFC) from Fraxinus uhdei (Wenz.) Lingelsh. Applied Sciences, 15(24), 12925. https://doi.org/10.3390/app152412925

