Application of Modified Lignocellulosic Biomass for Sorption of Anionic Dye Reactive Black 5 in an Air-Lift and Column Reactor
Abstract
1. Introduction
2. Materials and Methods
2.1. Dyes
2.2. Beech Sawdust
2.3. Preparation of Sorbents Used in the Study: S-AB and S-AB-EA
2.4. FTIR Analysis
2.5. Studies on Sorption Under Flow Conditions
2.5.1. Sorption Studies in an Air-Lift Reactor
2.5.2. Sorption Studies in a Packed Column Reactor
2.6. Determination of Dye Concentration in Reactors
2.7. Calculation Methods
2.8. Analytical Methods
Determination of Dye Concentration in Solution
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Periyasamy, A.P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- McMullan, G.; Meehan, C.; Conneely, A.; Kirby, N.; Robinson, T.; Nigam, P.; Banat, I.M.; Marchant, R.; Smyth, W.F. Microbial Decolourisation and Degradation of Textile Dyes. Appl. Microbiol. Biotechnol. 2001, 56, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Burkinshaw, S.M.; Kabambe, O. Attempts to Reduce Water and Chemical Usage in the Removal of Reactive Dyes: Part 1 Bis(Aminochlorotriazine) Dyes. Dye. Pigment. 2009, 83, 363–374. [Google Scholar] [CrossRef]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A Critical Review on Advances in the Practices and Perspectives for the Treatment of Dye Industry Wastewater. Bioengineered 2020, 12, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Kamenická, B.; Švec, P.; Weidlich, T. Separation of Anionic Chlorinated Dyes from Polluted Aqueous Streams Using Ionic Liquids and Their Subsequent Recycling. Int. J. Mol. Sci. 2023, 24, 12235. [Google Scholar] [CrossRef]
- Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile Finishing Dyes and Their Impact on Aquatic Environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef]
- Revankar, M.S.; Lele, S.S. Synthetic Dye Decolorization by White Rot Fungus, Ganoderma Sp. WR-1. Bioresour. Technol. 2007, 98, 775–780. [Google Scholar] [CrossRef]
- Machado, F.M.; Bergmann, C.P.; Fernandes, T.H.M.; Lima, E.C.; Royer, B.; Calvete, T.; Fagan, S.B. Adsorption of Reactive Red M-2BE Dye from Water Solutions by Multi-Walled Carbon Nanotubes and Activated Carbon. J. Hazard. Mater. 2011, 192, 1122–1131. [Google Scholar] [CrossRef]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Jain, A.K.; Gupta, V.K.; Bhatnagar, A.; Suhas. Utilization of Industrial Waste Products as Adsorbents for the Removal of Dyes. J. Hazard. Mater. 2003, 101, 31–42. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Thu, T.T.; Tran, A.T.H.; Le, O.T.K.; Sagadevan, S.; Mohd Kaus, N.H. Effect of Red Mud and Rice Husk Ash-Based Geopolymer Composites on the Adsorption of Methylene Blue Dye in Aqueous Solution for Wastewater Treatment. ACS Omega 2023, 8, 41258–41272. [Google Scholar] [CrossRef] [PubMed]
- Kamenická, B.; Weidlich, T.; Pouzar, M. Sorption of Halogenated Anti-Inflammatory Pharmaceuticals from Polluted Aqueous Streams on Activated Carbon: Lifetime Extension of Sorbent Caused by Benzalkonium Chloride Action. Water 2023, 15, 3178. [Google Scholar] [CrossRef]
- Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S. Utilization of Various Agricultural Wastes for Activated Carbon Preparation and Application for the Removal of Dyes and Metal Ions from Aqueous Solutions. Bioresour. Technol. 2003, 87, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Nady, D.S.; Abdel-Halim, S.; Hegazy, M.E.F.; El-Desouky, M.A.; Hanna, D.H. Use of Carica Papaya Waste as Bio-Adsorbent for Sewage Wastewater Treatment. Biomass Convers. Biorefin. 2025, 15, 15921–15938. [Google Scholar] [CrossRef]
- Morosanu, I.; Teodosiu, C.; Tofan, L.; Fighir, D.; Paduraru, C. Valorization of Rapeseed Waste Biomass in Sorption Processes for Wastewater Treatment. In Environmental Issues and Sustainable Development; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Mohadesi, M.; Gouran, A.; Darabi, F.; Samimi, M. Sunflower Seed Pulp Ash as an Efficient and Eco-Friendly Adsorbent for Congo Red Uptake: Characteristics, Kinetics, and Optimization. Water Pract. Technol. 2024, 19, 228–240. [Google Scholar] [CrossRef]
- Hassan, M.M.; Carr, C.M. A Critical Review on Recent Advancements of the Removal of Reactive Dyes from Dyehouse Effluent by Ion-Exchange Adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Xu, G.; Shan, M.; Chen, H.; Cao, Y.; Nie, P.; Xiang, T.; Dang, C.; Stapelberg, M.G.; Zhu, D.; Zhu, M. Recycling of Chicken Feathers. Carbon Neutralization 2024, 3, 533–556. [Google Scholar] [CrossRef]
- Sukmana, H.; Radojčin, M.; Gyulavári, T.; Kozma, G.; Kónya, Z.; Hodúr, C. Utilization of Rice Husks as Effective Bioadsorbents for Methylene Blue Removal from Wastewater: Characterization, Adsorption Performance, and Regeneration Studies. Appl. Water Sci. 2025, 15, 148. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kapoor, A.; Prabhakar, S. Valorization of Food Waste as Adsorbents for Toxic Dye Removal from Contaminated Waters: A Review. J. Hazard. Mater. 2022, 424, 127432. [Google Scholar] [CrossRef]
- Ouéda, N.; Tchakala, I.; Sanni, S.; Bawa, M.L. Simple Use of Low-Cost and Available Adsorbent for Cationic Dye Adsorption from Aqueous Solution. Am. J. Appl. Chem. 2024, 12, 149–157. [Google Scholar] [CrossRef]
- Pang, Y.L.; Tan, J.H.; Lim, S.; Chong, W.C. A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies, Kinetics, Isotherms and Thermodynamics. Polymers 2021, 13, 3009. [Google Scholar] [CrossRef] [PubMed]
- Coelho, R.S.; Soares, L.C.; Adarme, O.F.H.; Maia, L.C.; Costa, C.S.D.; Guibal, E.; Gurgel, L.V.A. A Review on Advances in the Use of Raw and Modified Agricultural Lignocellulosic Residues in Mono- and Multicomponent Continuous Adsorption of Inorganic Pollutants for Upscaling Technologies. Polymers 2025, 17, 953. [Google Scholar] [CrossRef] [PubMed]
- Bugajska, P.; Filipkowska, U.; Jóźwiak, T. Effect of Beech Sawdust Conditions Modification on the Efficiency of the Sorption of Anionic and Cationic Dyes. Molecules 2024, 29, 5017. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, N.; Salmataj, S.A.; Kumar, P.S.; Bhat, P. Exploring Chemically and Physically Modified Plant-Based Fiber Biomass for Biosorption in Wastewater Treatment: A Concise Review. J. Water Process Eng. 2024, 67, 106245. [Google Scholar] [CrossRef]
- Akindolie, M.S.; Choi, H.J. Acid Modification of Lignocellulosic Derived Material for Dye and Heavy Metals Removal: A Review. Environ. Eng. Res. 2023, 28, 210574. [Google Scholar] [CrossRef]
- Šćiban, M.; Klašnja, M.; Škrbić, B. Modified Softwood Sawdust as Adsorbent of Heavy Metal Ions from Water. J. Hazard. Mater. 2006, 136, 266–271. [Google Scholar] [CrossRef]
- Jóźwiak, T. The Amination of Waste Newsprint Paper with Various Aminating Agents (Ammonia Water, Ethylenediamine, and Diethylenetriamine) to Improve the Sorption Efficiency of Anionic Dyes. Molecules 2024, 29, 6024. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Halim, A.A.; Mohammad, A.W. The Removal of Anionic and Cationic Dyes from an Aqueous Solution Using Biomass-Based Activated Carbon. Sci. Rep. 2021, 11, 8623. [Google Scholar] [CrossRef]
- Deng, S.; Niu, L.; Bei, Y.; Wang, B.; Huang, J.; Yu, G. Adsorption of Perfluorinated Compounds on Aminated Rice Husk Prepared by Atom Transfer Radical Polymerization. Chemosphere 2013, 91, 124–130. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. A Review of Emerging Adsorbents for Nitrate Removal from Water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Temesgen, T.; Park, H.; Na, C. Synthesis of Aminated Glycidyl Methacrylate Grafted Rice Husk and Investigation of Its Anion-Adsorption Properties. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Brym, S.; Kopeć, L. Use of Aminated Hulls of Sunflower Seeds for the Removal of Anionic Dyes from Aqueous Solutions. Int. J. Environ. Sci. Technol. 2020, 17, 1211–1224. [Google Scholar] [CrossRef]
- Filipkowska, U.; Jóźwiak, T. Reusability of Chitosan and Sawdust-Modified Chitosan for Adsorption/Desorption of Anionic and Cationic Dyes. Prog. Chem. Appl. Chitin Deriv. 2023, 28, 14–25. [Google Scholar] [CrossRef]
- Chem, D.; Glidewell, S.; Tarannum, F.; Walters, K.B. Aminated Phenolated Lignin for Effective Anionic Dye Removal for Water Remediation. J. Polym. Environ. 2025, 33, 4430–4445. [Google Scholar] [CrossRef]
- Díaz, J.; Roa, K.; Boulett, A.; Azócar, L.; Sánchez, J. Reusable Aminated Lignin–Based Hydrogel Biocomposite for Effective Dye Adsorption in Wastewater. Int. J. Biol. Macromol. 2025, 304, 140842. [Google Scholar] [CrossRef]
- Antanasković, A.; Lopičić, Z.; Šoštarić, T.; Adamović, V.; Cvetković, S.; Perendija, J.; Milivojević, M. Toxic Dye Removal by Thermally Modified Lignocellulosic Waste in a Three-Phase Air-Lift Reactor: Kinetic Insights. Hem. Ind. 2024, 78, 241–252. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Sánchez-Machado, D.I.; Sánchez-Duarte, R.G.; Correa-Murrieta, M.A. Study of a Fixed-Bed Column in the Adsorption of an Azo Dye from an Aqueous Medium Using a Chitosan–Glutaraldehyde Biosorbent. Adsorpt. Sci. Technol. 2018, 36, 215–232. [Google Scholar] [CrossRef]
- Cherif, S.; Rezzaz-Yazid, H.; Ayachine, S.; Toukal, I.; Boudechiche, N.; Belmedani, M.; Djelal, H.; Sadaoui, Z. Continuous Fixed Bed Bioreactor for the Degradation of Textile Dyes: Phytotoxicity Assessment. Processes 2024, 12, 2222. [Google Scholar] [CrossRef]
- Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Negi, B.B.; Aliveli, M.; Behera, S.K.; Das, R.; Sinharoy, A.; Rene, E.R.; Pakshirajan, K. Predictive Modelling and Optimization of an Airlift Bioreactor for Selenite Removal from Wastewater Using Artificial Neural Networks and Particle Swarm Optimization. Environ. Res. 2023, 219, 115073. [Google Scholar] [CrossRef]
- Merchuk, J.C. Airlift Bioreactors: Review of Recent Advances. Can. J. Chem. Eng. 2003, 81, 324–337. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Silva Filho, E.C.; Lima, L.C.B.; Silva, F.C.; Sousa, K.S.; Fonseca, M.G.; Santana, S.A.A. Immobilization of Ethylene Sulfide in Aminated Cellulose for Removal of the Divalent Cations. Carbohydr. Polym. 2013, 92, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; Senso, A.; Oliveros, L.; Minguillón, C. Covalently Bonded Polysaccharide Derivatives as Chiral Stationary Phases in High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 906, 155–170. [Google Scholar] [CrossRef]
- da Silva Filho, E.C.; de Melo, J.C.P.; Airoldi, C. Preparation of Ethylenediamine-Anchored Cellulose and Determination of Thermochemical Data for the Interaction between Cations and Basic Centers at the Solid/Liquid Interface. Carbohydr. Res. 2006, 341, 2842–2850. [Google Scholar] [CrossRef]
- Ding, Z.; Yu, R.; Hu, X.; Chen, Y.; Zhang, Y. Graft Copolymerization of Epichlorohydrin and Ethylenediamine onto Cellulose Derived from Agricultural By-Products for Adsorption of Pb(II) in Aqueous Solution. Cellulose 2014, 21, 1459–1469. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Li, B. Adsorption of Hg2+ and Cd2+ by Ethylenediamine Modified Peanut Shells. Carbohydr. Polym. 2010, 81, 335–339. [Google Scholar] [CrossRef]
- da Silva Filho, E.C.; da Silva, L.S.; Lima, L.C.B.; de Santos, L.S.; de Santos, M.R.M.C.; de Matos, J.M.E.; Airoldi, C. Thermodynamic Data of 6-(4′-Aminobutylamino)-6-Deoxycellulose Sorbent for Cation Removal from Aqueous Solutions. Sep. Sci. Technol. 2011, 46, 2566–2574. [Google Scholar] [CrossRef]
- Da Silva Filho, E.C.; Monteiro, P.D.R.; Sousa, K.S.; Airoldi, C. Ethylenesulfide as a Useful Agent for Incorporation on the Biopolymer Chitosan in a Solvent-Free Reaction for Use in Lead and Cadmium Removal. J. Therm. Anal. Calorim. 2010, 106, 369–373. [Google Scholar] [CrossRef]
- Cavas, L.; Karabay, Z.; Alyuruk, H.; Doğan, H.; Demir, G.K. Thomas and Artificial Neural Network Models for the Fixed-Bed Adsorption of Methylene Blue by a Beach Waste Posidonia oceanica (L.) Dead Leaves. Chem. Eng. J. 2011, 171, 557–562. [Google Scholar] [CrossRef]
- Trgo, M.; Medvidović, N.V.; Peric, J. Application of mathematical empirical models to dynamic removal of lead on natural zeolite clinoptilolite in a fixed bed column. Indian J. Chem. Technol. 2011, 18, 123–131. [Google Scholar]
- Chu, K.H. Fixed Bed Sorption: Setting the Record Straight on the Bohart-Adams and Thomas Models. J. Hazard. Mater. 2010, 177, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Zhang, J.; Zou, W.; Xiao, H.; Shi, J.; Liu, H. Biosorption of Copper(II) and Lead(II) from Aqueous Solution by Chaff in a Fixed-Bed Column. J. Hazard. Mater. 2006, 133, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Wang, Y.; Yu, W.; Zou, W.; Shi, J.; Liu, H. Biosorption of Methylene Blue from Aqueous Solution by Rice Husk in a Fixed-Bed Column. J. Hazard. Mater. 2007, 141, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z.; Gönen, F. Biosorption of Phenol by Immobilized Activated Sludge in a Continuous Packed Bed: Prediction of Breakthrough Curves. Process Biochem. 2004, 39, 599–613. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Zhao, X.; Wang, Y.; Xie, F.; Cheng, J.; Tang, M. Adsorption of Methylene Blue by Phoenix Tree Leaf Powder in a Fixed-Bed Column: Experiments and Prediction of Breakthrough Curves. Desalination 2009, 245, 284–297. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Z.; Feng, C.; Li, M.; Chen, R.; Sugiura, N. Investigations on the Batch and Fixed-Bed Column Performance of Fluoride Adsorption by Kanuma Mud. Desalination 2011, 268, 76–82. [Google Scholar] [CrossRef]
- Futalan, C.M.; Kan, C.C.; Dalida, M.L.; Pascua, C.; Wan, M.W. Fixed-Bed Column Studies on the Removal of Copper Using Chitosan Immobilized on Bentonite. Carbohydr. Polym. 2011, 83, 697–704. [Google Scholar] [CrossRef]
- Setshedi, K.Z.; Bhaumik, M.; Onyango, M.S.; Maity, A. Breakthrough Studies for Cr(VI) Sorption from Aqueous Solution Using Exfoliated Polypyrrole-Organically Modified Montmorillonite Clay Nanocomposite. J. Ind. Eng. Chem. 2014, 20, 2208–2216. [Google Scholar] [CrossRef]
- Hameed, B.H. Spent Tea Leaves: A New Non-Conventional and Low-Cost Adsorbent for Removal of Basic Dye from Aqueous Solutions. J. Hazard. Mater. 2009, 161, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, J.; Zhang, C.; Yue, Q.; Li, Y.; Li, C. Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived from Phragmites Australis. Desalination 2010, 252, 149–156. [Google Scholar] [CrossRef]
- Wasilewska, M.; Derylo-Marczewska, A.; Marczewski, A.W. Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon. Molecules 2024, 29, 2038. [Google Scholar] [CrossRef] [PubMed]
- Filipkowska, U.; Waraksa, K. Adsorption of Reactive Dye on Chitosan in Air-Lift Reactor. Adsorption 2008, 14, 815–821. [Google Scholar] [CrossRef]
- Marques, P.; Pinheiro, H.M.; Rosa, M.F. Cd(II) Removal from Aqueous Solution by Immobilised Waste Brewery Yeast in Fixed-Bed and Airlift Reactors. Desalination 2007, 214, 343–351. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, H.B.; Kwon, D.; Tsang, Y.F.; Nam, I.H.; Kwon, E.E. Establishment of Circular Economy by Utilising Textile Industry Waste as an Adsorbent for Textile Dye Removal. Environ. Res. 2024, 262, 119987. [Google Scholar] [CrossRef]
- Almeida-Naranjo, C.E.; Darío Aguilar, A.; Valle, V.; Bastidas-Caldes, C.; Debut, A.; Sinchiguano, B. A Circular Bioeconomy Approach to Using Post-Bioadsorbent Materials Intended for the Removal of Domestic Wastewater Contaminants as Potential Reinforcements. Polymers 2024, 16, 1822. [Google Scholar] [CrossRef]



| Dye Name | Reactive Black 5—(RB5) | Basic Violet 10—(BV10) |
|---|---|---|
| Structural formula | ![]() | ![]() |
| Molar weight | 991 g/mol | 479 g/mol |
| λmax | 600 [nm] | 554 [nm] |
| Type of dye | anionic–reactive | cationic |
| Use | Dyeing of wool, cotton, viscose, polyamide fibers. | Dyeing paper, leather, cotton. Paint production. |
| Component | Dry Matter Content |
|---|---|
| Cellulose | 41.0% |
| Hemicellulose | 27.9% |
| Lignin | 26.7% |
| Ash | 0.1% |
| Extracts and other ingredients | 4.3% |
| Parameter | Unit | Value |
|---|---|---|
| Solution flow rate | dm3/h | 0.1 |
| 0.5 | ||
| Sorbent dosage | g s.m. | 5 |
| Dye concentration in the influent | mg/dm3 | 10 |
| 50 |
| Type of Reactor | Type of Sorbent | Flow [dm3/h] | Dye Concentration [mg/dm3] | Sorbent Sorption Depletion Time [h] (Ce = C0) | Thomas’s Model | Adams-Bohart Model | Yoon-Nelson Model | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| kTh ml/min∙mg | q [mg/g] | R2 | kAB mg/min | q [mg/g] | R2 | kYN [mg/min] | q [mg/g] | R2 | |||||
| Reaktor air-lift | S-AB | 0.1 | 10 | 72 | 0.2411 | 2.8 | 0.9666 | 0.0002 | 2.78 | 0.9660 | 0.0024 | 2.4 | 0.9520 |
| 50 | 64 | 0.0578 | 11.2 | 0.9780 | 0.0001 | 11.2 | 0.9780 | 0.0029 | 10.0 | 0.9708 | |||
| 0.5 | 10 | 62 | 0.9686 | 3.6 | 0.9809 | 0.0010 | 3.6 | 0.9809 | 0.0099 | 3.3 | 0.9758 | ||
| 50 | 20 | 0.2672 | 12.7 | 0.9731 | 0.0003 | 12.7 | 0.9731 | 0.0128 | 13.9 | 0.9694 | |||
| S-AB-EA | 0.1 | 10 | 646 | 0.0223 | 69.3 | 0.9946 | 0.0000 | 69.3 | 0.9946 | 0.0002 | 69.3 | 0.9946 | |
| 50 | 304 | 0.0136 | 73.9 | 0.9885 | 0.0000 | 73.9 | 0.9885 | 0.0007 | 70.1 | 0.9855 | |||
| 0.5 | 10 | 214 | 0.0766 | 42.0 | 0.9890 | 0.0001 | 42.0 | 0.9890 | 0.0008 | 40.1 | 0.9872 | ||
| 50 | 134 | 0.0565 | 40.0 | 0.9426 | 0.0001 | 39.9 | 0.9426 | 0.0027 | 35.1 | 0.9374 | |||
| Reaktor column | S-AB | 0.1 | 10 | 18 | 6.6419 | 0.3 | 0.9789 | 0.0066 | 0.3 | 0.9789 | 0.0431 | 0.25 | 0.9751 |
| 50 | 10 | 1.2469 | 1.6 | 0.9975 | 0.0012 | 1.6 | 0.9975 | 0.0368 | 1.2 | 0.9915 | |||
| 0.5 | 10 | 12 | 8.9545 | 1.5 | 0.9978 | 0.0089 | 1.5 | 0.9978 | 0.0519 | 1.1 | 0.9958 | ||
| 50 | 14 | 2.3210 | 7.5 | 0.9995 | 0.0024 | 7.6 | 0.9995 | 0.0677 | 5.2 | 0.9990 | |||
| S-AB-EA | 0.1 | 10 | 438 | 0.0307 | 37.4 | 0.9814 | 0.0000 | 37.4 | 0.9814 | 0.0003 | 36.02 | 0.9786 | |
| 50 | 218 | 0.0191 | 38.8 | 0.9564 | 0.0000 | 38.7 | 0.9564 | 0.0010 | 33.9 | 0.9436 | |||
| 0.5 | 10 | 178 | 0.0833 | 33.7 | 0.9403 | 0.0000 | 33.7 | 0.9403 | 0.0008 | 30.0 | 0.9317 | ||
| 50 | 76 | 0.0738 | 35.6 | 0.9554 | 0.0000 | 35.6 | 0.9554 | 0.0036 | 30.0 | 0.9444 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipkowska, U.; Jóźwiak, T.; Bugajska, P. Application of Modified Lignocellulosic Biomass for Sorption of Anionic Dye Reactive Black 5 in an Air-Lift and Column Reactor. Appl. Sci. 2025, 15, 11970. https://doi.org/10.3390/app152211970
Filipkowska U, Jóźwiak T, Bugajska P. Application of Modified Lignocellulosic Biomass for Sorption of Anionic Dye Reactive Black 5 in an Air-Lift and Column Reactor. Applied Sciences. 2025; 15(22):11970. https://doi.org/10.3390/app152211970
Chicago/Turabian StyleFilipkowska, Urszula, Tomasz Jóźwiak, and Paula Bugajska. 2025. "Application of Modified Lignocellulosic Biomass for Sorption of Anionic Dye Reactive Black 5 in an Air-Lift and Column Reactor" Applied Sciences 15, no. 22: 11970. https://doi.org/10.3390/app152211970
APA StyleFilipkowska, U., Jóźwiak, T., & Bugajska, P. (2025). Application of Modified Lignocellulosic Biomass for Sorption of Anionic Dye Reactive Black 5 in an Air-Lift and Column Reactor. Applied Sciences, 15(22), 11970. https://doi.org/10.3390/app152211970



