Polysaccharide-Enriched Bakery and Pasta Products: Advances, Functional Benefits, and Challenges in Modern Food Innovation
Abstract
1. Introduction
2. Methods
3. Major Classes of Polysaccharides in Bakery and Pasta Products
- (1)
- Soluble fibres (inulin, FOS, β-glucan);
- (2)
- Complex non-starch polysaccharides (arabinoxylan, pectin);
- (3)
- Starch-based polysaccharides, including native, resistant, and modified starches, as well as maltodextrins and dextrins;
- (4)
- Cellulose-based technological polysaccharides (HPMC, CMC);
- (5)
- Microbial exopolysaccharides (xanthan gum and related exopolysaccharides).
3.1. Soluble Fibres
3.1.1. Fructans—Inulin and Fructooligosaccharides (FOS)
Short-Chain Fructans (FOS)
Long-Chain Fructans (Inulin)
3.1.2. β-Glucan
3.2. Complex Non-Starch Polysaccharides
3.2.1. Arabinoxylan (AX)
3.2.2. Pectin
3.3. Cellulose-Based Polysaccharides
Hydroxypropyl Methylcellulose (HPMC) and Carboxymethyl Cellulose (CMC)
3.4. Starch-Based Polysaccharides
3.4.1. Native Starch
3.4.2. Resistant Starch (RS)
3.4.3. Chemically Modified Starches
3.4.4. Maltodextrins and Dextrins
3.5. Microbial Exopolysaccharides
Xanthan Gum and Other Exopolysaccharides
4. Comparative Overview and Future Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DP | Degree of polymerisation |
| HPMC | Hydroxypropyl methylcellulose |
| CMC | Chemically modified starches |
| MCC | Methylcellulose |
| GF | Gluten free |
| MD | Maltodextrins |
| RS | Resistant starch |
| GI | Glycemic index |
| FOS | Fructooligosacharides |
| HPS | Hydroxypropyl starch |
| XG | Xanthan gum |
| DE | Dextrose equivalent |
| AX | Arabinoxylan |
| FAX | Feruloylated AX |
| MW | Molecular weight |
References
- Veronese, N.; Gianfredi, V.; Solmi, M.; Barbagallo, M.; Dominguez, L.J.; Mandalà, C.; Fontana, L. The Impact of Dietary Fiber Consumption on Human Health: An Umbrella Review of Evidence from 17,155,277 Individuals. Clin. Nutr. 2025, 51, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Deehan, E.C.; Mocanu, V.; Madsen, K.L. Effects of Dietary Fibre on Metabolic Health and Obesity. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 301–318. [Google Scholar] [CrossRef]
- Kabisch, S.; Hajir, J.; Sukhobaevskaia, V.; Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fibre on Inflammation in Humans. Int. J. Mol. Sci. 2025, 26, 2000. [Google Scholar] [CrossRef]
- Guiné, R.P. Textural Properties of Bakery Products: A Review of Instrumental and Sensory Evaluation Studies. Appl. Sci. 2022, 12, 8628. [Google Scholar] [CrossRef]
- Dossa, S.; Rivis, A. Functional Foods and Bakery Products: A Review. J. Agroaliment. Process Technol. 2024, 30, 104–114. [Google Scholar] [CrossRef]
- Dedhia, N.; Survase, S.; Singhal, R.S. Food Polysaccharides: A Review on Emerging Microbial Polysaccharides and Modifications. Carbohydr. Polym. 2022, 287, 119355. [Google Scholar] [CrossRef] [PubMed]
- Sempio, R.; Sahin, A.W.; Walter, J.; Arendt, E.K.; Zannini, E. Impact of Isolated and Chemically Modified Dietary Fiber on Bakery Products: Current Knowledge and Future Directions. Cereal Chem. 2024, 101, 7–37. [Google Scholar] [CrossRef]
- Mohammadi, F.; Shiri, A.; Tahmouzi, S.; Mollakhalili-Meybodi, N.; Nematollahi-Meybodi, A. Application of Inulin in Bread: A Review of Technological Properties and Factors Affecting Its Stability. Food Sci. Nutr. 2022, 11, 639–650. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The Effects of Dietary Fibre Addition on the Quality of Common Cereal Products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Ferrero, C. Hydrocolloids in wheat breadmaking: A concise review. Food Hydrocoll. 2017, 68, 15–22. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary fiber intake and gut microbiota in human health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef] [PubMed]
- Schadow, A.M.; Revheim, I.; Spielau, U.; Dierkes, J.; Schwingshackl, L.; Frank, J.; Rosendahl-Riise, H. The Effect of Regular Consumption of Reformulated Breads on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv. Nutr. 2023, 14, 30–43. [Google Scholar] [CrossRef]
- Canale, M.; Sanfilippo, R.; Strano, M.C.; Bavaro, A.R.; Amenta, M.; Bizzini, M.; Spina, A. Technological Properties of Inulin-Enriched Doughs and Breads, Influence on Short-Term Storage and Glycemic Response. Foods 2024, 13, 2711. [Google Scholar] [CrossRef]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The prebiotic potential of inulin-type fructans: A systematic review. Adv. Nutr. 2022, 13, 492–529. [Google Scholar] [CrossRef]
- Roberfroid, M. Inulin-Type Fructans: Functional Food Ingredients, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 392. [Google Scholar] [CrossRef]
- Drabińska, N.; Zieliński, H.; Krupa-Kozak, U. Technological Benefits of Inulin-Type Fructans Application in Gluten-Free Products—A Review. Trends Food Sci. Technol. 2016, 56, 149–157. [Google Scholar] [CrossRef]
- Schaafsma, G.; Slavin, J.L. Significance of Inulin Fructans in the Human Diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 37–47. [Google Scholar] [CrossRef]
- Niness, K.R. Inulin and oligofructose: What are they? J. Nutr. 1999, 129, 1402S–1406S. [Google Scholar] [CrossRef]
- Seyedain-Ardabili, M.; Sharifan, A.; Ghiassi Tarzi, B. The production of synbiotic bread by microencapsulation. Food Tech. Biotech. 2016, 54, 52–59. [Google Scholar] [CrossRef]
- Dana, H.; Sonia, A. Substituting Sugar in Pastry and Bakery Products with Functional Ingredients. Appl. Sci. 2024, 14, 8563. [Google Scholar] [CrossRef]
- Kumarasamy, S.M.P.; Dasgupta, P.; Sivasubramaniam, V.; Elangovan, A.; Ranganathan, I. Studies on Physiochemical and Sensorial Properties of Biscuits Using Composite Protein Rich Flours. AIP Conf. Proc. 2020, 2240, 050002. [Google Scholar] [CrossRef]
- Simonato, B. Improving the Sensory, Nutritional and Technological Profile of Conventional and Gluten-Free Pasta and Bakery Products. Foods 2021, 10, 975. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.; Nam, A.Y.; Park, S.H.; Lee, S.H. Production of Fructooligosaccharide-Containing Bakery and Sweet Paste Products Using Invertase. Food Sci. Biotechnol. 2024, 33, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Ebrahimi, M.; Assadpour, E.; Jafari, S.M. Recent Advances in Probiotic Breads: A Market Trend in the Functional Bakery Products. Crit. Rev. Food Sci. Nutr. 2024, 64, 13163–13174. [Google Scholar] [CrossRef]
- Chailangka, A.; Autsavapromporn, N.; Karnjanapratum, S.; Leksawasdi, N.; Castagnini, J.M.; Barba, F.J.; Phimolsiripol, Y. Kinetic Stability, Gastrointestinal Fate, and Cytotoxicity of Vitamin D3 Emulsion Incorporated with Cricket Protein-Fructooligosaccharide Conjugate. Food Hydrocoll. 2024, 146, 109288. [Google Scholar] [CrossRef]
- Öncel, B.; Akgün, S.T.; Özer, M.S. Development of Functional Tortillas with Inulin and Fructooligosaccharide: Effects on Dough, Tortilla Properties, and Sensory Evaluation. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca 2025, 82, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J.; Reimer, R. Prebiotic Fiber Modulation of the Gut Microbiota Improves Risk Factors for Obesity and the Metabolic Syndrome. Gut Microbes 2012, 3, 29–34. [Google Scholar] [CrossRef]
- UCSF. Increasing Fiber Intake. Available online: https://www.ucsfhealth.org/education/increasing-fiber-intake (accessed on 15 July 2025).
- Hager, A.S.; Ryan, L.A.; Schwab, C.; Gänzle, M.G.; O’Doherty, J.V.; Arendt, E.K. Influence of the Soluble Fibres Inulin and Oat β-Glucan on Quality of Dough and Bread. Eur. Food Res. Technol. 2011, 232, 405–413. [Google Scholar] [CrossRef]
- Burešová, I.; Šebestíková, R.; Šebela, J.; Adámková, A.; Zvonková, M.; Skowronková, N.; Mlček, J. The Effect of Inulin Addition on Rice Dough and Bread Characteristics. Appl. Sci. 2024, 14, 2882. [Google Scholar] [CrossRef]
- Belorio, M.; Gómez, M. Effect of Hydration on Gluten-Free Breads Made with Hydroxypropyl Methylcellulose in Comparison with Psyllium and Xanthan Gum. Foods 2020, 9, 1548. [Google Scholar] [CrossRef]
- Peng, H.; Wang, X.; Chen, K.; Yue, C.; Wang, L.; Bai, Z.; Han, S.; Zhang, Z.; Guo, J.; Luo, D. Effect of Long-Chain Inulin on the Rheological Properties, Water State, Gluten Structure, and Microstructure of Frozen Dough. Int. J. Food Sci. Technol. 2023, 58, 5125–5136. [Google Scholar] [CrossRef]
- Tsatsaragkou, K.; Methven, L.; Chatzifragkou, A.; Rodriguez-Garcia, J. The Functionality of Inulin as a Sugar Replacer in Cakes and Biscuits; Highlighting the Influence of Differences in Degree of Polymerisation on the Properties of Cake Batter and Product. Foods 2021, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Wood, P.J. Relationships between Structural Features, Molecular Weight and Rheological Properties of Cereal β-d-Glucans. In Hydrocolloids; Nishinari, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 159–168. [Google Scholar] [CrossRef]
- Harasym, J.; Olędzki, R. The Mutual Correlation of Glucose, Starch, and Beta-Glucan Release during Microwave Heating and Antioxidant Activity of Oat Water Extracts. Food Bioprocess Technol. 2018, 11, 874–884. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Ma, Z.; Hu, X. Solvent Retention Capacity of Oat Flour: Relationship with Oat β-Glucan Content and Molecular Weight. Food Hydrocoll. 2019, 93, 19–23. [Google Scholar] [CrossRef]
- Păucean, A.; Man, S.; Pop, A. Development of Oat-Based Food Formulation and Quality Characteristics. J. Agroaliment. Process. Technol. 2015, 21, 261–266. [Google Scholar]
- Bae, I.Y.; Kim, S.M.; Lee, S.; Lee, H.G. Effect of Enzymatic Hydrolysis on Cholesterol-Lowering Activity of Oat β-Glucan. New Biotechnol. 2010, 27, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Malkki, E.; Virtanen, T. Gastrointestinal Effects of Oat Bran and Oat Gum: A Review. LWT-Food Sci. Technol. 2001, 34, 337–347. [Google Scholar] [CrossRef]
- Mejía, S.M.V.; de Francisco, A.; Bohrer, B. A comprehensive review on cereal β-glucan: Extraction, characterisation, causes of degradation, and food application. Crit. Rev. Food Sci. Nutr. 2020, 60, 3693–3704. [Google Scholar] [CrossRef]
- Ahmad, S.; Jan, K.; Sahu, J.K.; Habib, M.; Jan, S.; Bashir, K. A comprehensive review on recent trends and utilization of algal β-glucan for the development of nutraceuticals and functional foods. Food Rev. Int. 2025, 41, 469–490. [Google Scholar] [CrossRef]
- Kurek Marcin, A.; Moczkowska, M.; Karp, S.; Olaf, K.H.; Ewelina, R. Application of rich in β-glucan flours and preparations in bread baked from frozen dough. Food Sci. Technol. Int. 2020, 26, 53–64. [Google Scholar] [CrossRef]
- Gao, M.; Hu, Z.; Yang, Y.; Jin, Z.; Jiao, A. Effect of different molecular weight β-glucan hydrated with highland barley protein on the quality and in vitro starch digestibility of whole wheat bread. Int. J. Biol. Macromol. 2024, 268, 131681. [Google Scholar] [CrossRef] [PubMed]
- Symons, L.J.; Brennan, C.S. The effect of barley β-glucan fiber fractions on bread dough and bread quality. J. Food Sci. 2004, 69, C220–C224. [Google Scholar] [CrossRef]
- Bieniek, A.; Buksa, K. The influence of oat β-glucans of different molar mass on the properties of gluten-free bread. Molecules 2024, 29, 4579. [Google Scholar] [CrossRef]
- Ronda, F.; Perez-Quirce, S.; Lazaridou, A.; Biliaderis, C.G. Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocoll. 2015, 48, 197–207. [Google Scholar] [CrossRef]
- Pastuszka, D.; Gambus, H.; Ziobro, R.; Buksa, K.; Sabat, R.; Augustyn, G. Impact of oats β-glucans on properties of gluten-free bread. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 972–981. [Google Scholar]
- Piwińska, J.; Wyrwisz, M.; Kurek, A.; Wierzbicka, A. Effect of oat β-glucan fiber powder and vacuum-drying on cooking quality and physical properties of pasta. CyTA J. Food 2016, 14, 101–108. [Google Scholar] [CrossRef]
- Brandstedt, T. Incorporation of oat β-Glucan in Pasta and the Effect on Product Quality. Master’s Thesis, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2013. Available online: https://stud.epsilon.slu.se/6192/ (accessed on 2 October 2025).
- Ungureanu-Iuga, M.; Avrămia, I. Pasta fortified with β-glucan isolated from brewer’s yeast (Saccharomyces cerevisiae) by-product. J. Cereal Sci. 2024, 115, 103818. [Google Scholar] [CrossRef]
- De Santis, D.; Moresi, M.; Cimini, A. Effect of β-glucan enrichment on the sensory properties of fresh egg white pasta. LWT 2020, 130, 109654. [Google Scholar] [CrossRef]
- Karp, S.; Wyrwisz, J.; Kurek, M.A.; Wierzbicka, A. The use of high-in-β-glucan oat fibre powder as a structuring agent in gluten-free yeast-leavened cake. Food Sci. Technol. Int. 2019, 25, 618–629. [Google Scholar] [CrossRef]
- Zbikowska, A.; Kowalska, M.; Zbikowska, K.; Onacik-Gür, S.; Łempicka, U.; Turek, P. Study on the incorporation of oat and yeast β-glucan into shortbread biscuits as a basis for designing healthier and high-quality food products. Molecules 2022, 27, 1393. [Google Scholar] [CrossRef]
- Martinez-Subira, M.; Romero, M.P.; Puig, E.; Macià, A.; Romagosa, I.; Moralejo, M. Purple, high β-glucan, hulless barley as valuable ingredient for functional food. LWT 2020, 131, 109582. [Google Scholar] [CrossRef]
- Sinangil, Z.; Taştan, Ö.; Baysal, T. Beta-glucan as a novel functional fiber: Functional properties, health benefits and food applications. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 1957–1965. [Google Scholar] [CrossRef]
- Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Kowalska, G.; Maher, A.; Oracz, J. Effect of oat fiber preparations with different contents of β-glucan on the formation of acrylamide in dietary bread (rusks). Molecules 2024, 29, 306. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Lin, H.; Xiao, L.; Guo, M.; Yan, X.; Su, X.; Sang, S. Impact of native form oat β-glucan on the physical and starch digestive properties of whole oat bread. Foods 2022, 11, 2622. [Google Scholar] [CrossRef]
- Li, F.; Li, T.; Zhao, J.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Unraveling the deterioration mechanism of dough during whole wheat flour processing: A case study of gluten protein containing arabinoxylan with different molecular weights. Food Chem. 2024, 432, 137199. [Google Scholar] [CrossRef] [PubMed]
- Pandeirada, C.O.; Merkx, D.W.; Janssen, H.G.; Westphal, Y.; Schols, H.A. TEMPO/NaClO2/NaOCl oxidation of arabinoxylans. Carbohydr. Polym. 2021, 259, 117781. [Google Scholar] [CrossRef]
- Pritchard, J.R.; Lawrence, G.J.; Larroque, O.; Li, Z.; Laidlaw, H.K.; Morell, M.K.; Rahman, S. A survey of β-glucan and arabinoxylan content in wheat. J. Sci. Food Agric. 2011, 91, 1298–1303. [Google Scholar] [CrossRef]
- Pereira, G.V.; Abdel-Hamid, A.M.; Dutta, S.; D’Alessandro-Gabazza, C.N.; Wefers, D.; Farris, J.A.; Cann, I. Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat. Commun. 2021, 12, 459. [Google Scholar] [CrossRef]
- Paesani, C.; Sciarini, L.S.; Moiraghi, M.; Salvucci, E.; Prado, S.B.; Pérez, G.T.; Fabi, J.P. Human colonic in vitro fermentation of water-soluble arabinoxylans from hard and soft wheat alters Bifidobacterium abundance and short-chain fatty acids concentration. LWT 2020, 134, 110253. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Zhou, J.; Shen, T.; Hu, W. Immunomodulatory effects of wheat bran arabinoxylan on RAW264.7 macrophages via the NF-κB signaling pathway using RNA-seq analysis. Food Res. Int. 2021, 140, 110067. [Google Scholar] [CrossRef]
- Knudsen, K.E.B.; Lærke, H.N.; Hedemann, M.S.; Nielsen, K.L.; Kasprzak, M.M.; Jeppesen, P.B.; Hermansen, K. Arabinoxylan concentrate from wheat as a functional food ingredient to improve glucose homeostasis. Nutrients 2025, 17, 1561. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.M.; Gibson, G.R.; Stainton, G.N.; Bertocco, A.; Kennedy, O.B.; Walton, G.E.; Commane, D.M. Chronic consumption of a blend of inulin and arabinoxylan reduces energy intake in an ad libitum meal but does not influence perceptions of appetite and satiety: A randomised control-controlled crossover trial. Eur. J. Nutr. 2023, 62, 2205–2215. [Google Scholar] [CrossRef]
- Wang, P.; Hou, C.; Zhao, X.; Tian, M.; Gu, Z.; Yang, R. Molecular characterization of water-extractable arabinoxylan from wheat bran and its effect on the heat-induced polymerization of gluten and steamed bread quality. Food Hydrocoll. 2019, 87, 570–581. [Google Scholar] [CrossRef]
- Döring, C.; Nuber, C.; Stukenborg, F.; Jekle, M.; Becker, T. Impact of arabinoxylan addition on protein microstructure formation in wheat and rye dough. J. Food Eng. 2015, 154, 10–16. [Google Scholar] [CrossRef]
- Si, X.; Li, T.; Zhang, Y.; Zhang, W.; Qian, H.; Li, Y.; Wang, L. Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chem. 2021, 345, 128785. [Google Scholar] [CrossRef]
- Sun, J.; Si, X.; Li, T.; Zhao, J.; Qian, H.; Li, Y.; Wang, L. The influence of water-unextractable arabinoxylan and its hydrolysates on the aggregation and structure of gluten proteins. Front. Nutr. 2022, 9, 877135. [Google Scholar] [CrossRef]
- Zhang, D.; Rudjito, R.C.; Pietiäinen, S.; Chang, S.C.; Idström, A.; Evenäs, L.; Jiménez-Quero, A. Arabinoxylan supplemented bread: From extraction of fibers to effect of baking, digestion, and fermentation. Food Chem. 2023, 413, 135660. [Google Scholar] [CrossRef] [PubMed]
- Zannini, E.; Bravo Núñez, Á.; Sahin, A.W.; Arendt, E.K. Arabinoxylans as functional food ingredients: A review. Foods 2022, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
- Pietiäinen, S.; Jimenez-Quero, A.; Moldin, A.; Ström, A.; Katina, K.; Langton, M. Feruloylation and hydrolysis of arabinoxylan extracted from wheat bran: Effect on bread quality and shelf-life. J. Cereal Sci. 2024, 117, 103920. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Donchenko, L.V.; Sokol, N.V.; Sanzharovskaya, N.S.; Khrapko, O.P.; Mikhaylova, T.A. Functional role of pectin in the bakery technology. IOP Conf. Ser. Earth Environ. Sci. 2020, 488, 012010. [Google Scholar] [CrossRef]
- Tursynbek, A.E.; Zheldynbaeva, A.A. Research on the use and safety of pectin substances obtained from vegetable raw materials in bread production. In Пищевые Технoлoгии Будущегo: Иннoвации в Прoизвoдстве и Перерабoтке Сельскoхoзяйственнoй Прoдукции; Center for Social Agroinnovations of Saratov State Agrarian University: Saratov, Russia, 2021; pp. 163–169. Available online: https://elibrary.ru/item.asp?id=46120774 (accessed on 2 September 2025).
- Noreen, A.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Zia, K.M. Pectins functionalized biomaterials: A new viable approach for biomedical applications—A review. Int. J. Biol. Macromol. 2017, 101, 254–272. [Google Scholar] [CrossRef]
- Correa, M.J.; Pérez, G.T.; Ferrero, C. Pectins as breadmaking additives: Effect on dough rheology and bread quality. Food Bioprocess Technol. 2012, 5, 2889–2898. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Zhao, J.; Mu, M.; Jia, F.; Wang, Q.; Wang, J. Aggregative and structural properties of wheat gluten induced by pectin. J. Cereal Sci. 2021, 100, 103247. [Google Scholar] [CrossRef]
- Khakimova, B.; Atkhamova, S.; Radjabov, M.; Sanayev, E.; Khakimova, O.; Irnazarov, S. Application of pectin-containing concentrate from Portúlaca olerácea in the production of first-grade wheat bread. BIO Web Conf. 2024, 113, 03002. [Google Scholar] [CrossRef]
- Qi, K.; Cao, S.; Li, C. Possible interaction between pectin and gluten alters the starch digestibility and texture of wheat bread. Int. J. Biol. Macromol. 2024, 269, 131907. [Google Scholar] [CrossRef] [PubMed]
- Bugarín, R.; Gómez, M. Can citrus fiber improve the quality of gluten-free breads? Foods 2023, 12, 1357. [Google Scholar] [CrossRef]
- Lazova-Borisova, I. Determination innovative technological solutions for chia flour, corn starch, and apple pectin for gluten-free bread production. Int. J. Nat. Eng. Sci. 2024, 18, 45–54. Available online: https://www.ijnes.org/index.php/ijnes/article/view/771 (accessed on 2 October 2025).
- Scappaticci, G.; Mercanti, N.; Pieracci, Y.; Ferrari, C.; Mangia, R.; Marianelli, A.; Zinnai, A. Bread Improvement with Nutraceutical Ingredients Obtained from Food By-Products: Effect on Quality and Technological Aspects. Foods 2024, 13, 825. [Google Scholar] [CrossRef]
- Difonzo, G.; de Gennaro, G.; Pasqualone, A.; Caponio, F. Potential use of plant-based by-products and waste to improve the quality of gluten-free foods. J. Sci. Food Agric. 2022, 102, 2199–2211. [Google Scholar] [CrossRef]
- Abdollahzadeh, A.; Vazifedoost, M.; Didar, Z.; Haddadkhodaprast, M.H.; Armin, M. Comparison of the effect of hydroxyl propyl methyl cellulose, pectin, and concentrated raisin juice on gluten-free bread based on rice and foxtail millet flour. Food Sci. Nutr. 2024, 12, 439–449. [Google Scholar] [CrossRef]
- Li, J.; Yin, L.; Li, J. Effect of pectins on dough rheology and Chinese steamed bread quality. Grain Oil Sci. Technol. 2018, 1, 77–84. [Google Scholar] [CrossRef]
- Nuzzo, D.; Scurria, A.; Picone, P.; Guiducci, A.; Pagliaro, M.; Pantaleo, G.; Ciriminna, R. A gluten-free biscuit fortified with lemon IntegroPectin. ChemistrySelect 2022, 7, e202104247. [Google Scholar] [CrossRef]
- Kazemi, M.; Aboutalebzadeh, S.; Mojaverian, S.P.; Samani, S.A.; Kouhsari, F.; PourvatanDoust, S.; Khodaiyan, F. Valorization of pistachio industrial waste: Simultaneous recovery of pectin and phenolics, and their application in low-phenylalanine cookies for phenylketonuria. Int. J. Biol. Macromol. 2023, 249, 126086. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Osama, K.; Gaur, V.K.; Farooqui, A.; Varjani, S.; Younis, K. Sustainable utilization of Citrus limetta peel for obtaining pectin and its application in cookies as a fat replacer. J. Food Sci. Technol. 2023, 60, 975–986. [Google Scholar] [CrossRef]
- Nawaz, A.; Li, E.; Khalifa, I.; Walayat, N.; Liu, J.; Nilofar; Inam-Ur-Raheem, M. Effect of structurally different pectin on dough rheology, structure, pasting and water distribution properties of partially meat-based sugar snap cookies. Foods 2021, 10, 2692. [Google Scholar] [CrossRef]
- Khatko, Z.N.; Kolodina, E. Pectin-containing flour confectionery with a reduced gluten content. J. Biochem. Technol. 2021, 12, 9–13. [Google Scholar] [CrossRef]
- López-Ruiz, R.; Marin-Saez, J.; Cunha, S.C.; Fernandes, A.; de Freitas, V.; Viegas, O.; Ferreira, I.M. Fibre enrichment of cookies to mitigate acrylamide formation and gastrointestinal bioaccessibility. LWT 2023, 182, 114835. [Google Scholar] [CrossRef]
- Ratnadewi, A.A.I.; Zahro, A.A.; Handayani, W.; Sari, A.B.T.; Kusuma, A.N.N. The Effect of Adding Pectin Derived from Cocoa Pod Husk Extract (Theobroma cacao L.) on Physical Properties, Chemical Properties and Digestibility of Cookies. Eng. Headw. 2025, 24, 139–146. [Google Scholar] [CrossRef]
- Gumul, D.; Kruczek, M.; Ivanišová, E.; Słupski, J.; Kowalski, S. Apple pomace as an ingredient enriching wheat pasta with health-promoting compounds. Foods 2023, 12, 804. [Google Scholar] [CrossRef]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.S.; Simonato, B. Technological, nutritional and sensory properties of pasta fortified with agro-industrial by-products: A review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- Sempio, R.; Nyhan, L.; Sahin, A.W.; Zannini, E.; Walter, J.; Arendt, E.K. Enriching pasta with soluble and insoluble fibre: A strategy for boosting fibre intake. Appl. Food Res. 2025, 5, 100737. [Google Scholar] [CrossRef]
- Li, X.; Zeng, X.; Xi, Y.; Li, H.; Yuan, Y.; Li, J. Effects of non-covalent interactions between pectin and volatile compounds on the flavor release of tomato paste. Food Hydrocoll. 2022, 133, 107886. [Google Scholar] [CrossRef]
- Zioga, M.; Tsianaka, K.; Pappas, C.; Evageliou, V. Pectin or/and carrageenan edible films in the presence of tomato paste. Food Hydrocoll. 2025, 169, 111623. [Google Scholar] [CrossRef]
- Culetu, A.; Duta, D.E.; Papageorgiou, M.; Varzakas, T. The Role of Hydrocolloids in Gluten-Free Bread and Pasta; Rheology, Characteristics, Staling and Glycemic Index. Foods 2021, 10, 3121. [Google Scholar] [CrossRef]
- Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Irondi, E.A.; Akintayo, O.; Adeleke, O.R.; Zakari, M.D. Natural and modified food hydrocolloids as gluten replacement in baked foods: Functional benefits and prospects. Grain Oil Sci. Technol. 2023, 6, 322–335. [Google Scholar] [CrossRef]
- Burdock, G.A. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food Chem. Toxicol. 2007, 45, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Vlad, R.-A.; Pintea, A.; Pintea, C.; Rédai, E.-M.; Antonoaea, P.; Bîrsan, M.; Ciurba, A. Hydroxypropyl Methyl-cellulose—A Key Excipient in Pharmaceutical Drug Delivery Systems. Pharmaceutics 2025, 17, 784. [Google Scholar] [CrossRef] [PubMed]
- Torres-Pérez, R.; Martínez-García, E.; Siguero-Tudela, M.M.; García-Segovia, P.; Martínez-Monzó, J.; Igual, M. Enhancing Gluten-Free Bread Production: Impact of Hydroxypropyl Methylcellulose, Psyllium Husk Fiber, and Xanthan Gum on Dough Characteristics and Bread Quality. Foods 2024, 13, 1691. [Google Scholar] [CrossRef]
- Di Renzo, T.; Trivisonno, M.C.; Nazzaro, S.; Reale, A.; Messia, M.C. Effect of Different Hydrocolloids on the Qualitative Characteristics of Fermented Gluten-Free Quinoa Dough and Bread. Foods 2024, 13, 1382. [Google Scholar] [CrossRef]
- Baldino, N.; Laitano, F.; Lupi, F.R.; Curcio, S.; Gabriele, D. Effect of HPMC and CMC on rheological behavior at different temperatures of gluten-free bread formulations based on rice and buckwheat flours. Eur. Food Res. Technol. 2018, 244, 1829–1842. [Google Scholar] [CrossRef]
- Villanueva, M.; Vicente, A.; Náthia-Neves, G.; Ronda, F. Microwave-treated rice flour halves the need of hydroxypropyl methylcellulose in the formulation of gluten-free bread. Food Hydrocoll. 2024, 150, 109738. [Google Scholar] [CrossRef]
- Arp, C.G.; Correa, M.J.; Ferrero, C. Modified celluloses improve the proofing performance and quality of bread made with a high content of resistant starch. J. Sci. Food Agric. 2023, 103, 3041–3049. [Google Scholar] [CrossRef]
- Liu, S.-F.; Zhu, K.-X.; Guo, X.-N. The Effect of Carboxymethyl Cellulose Sodium on the Proofing Tolerance and Quality of Frozen Dough Steamed Bread. Foods 2024, 13, 870. [Google Scholar] [CrossRef] [PubMed]
- Marco, C.; Rosell, C.M. Breadmaking performance of protein enriched, gluten-free breads. Eur. Food Res. Technol. 2008, 227, 1205–1213. [Google Scholar] [CrossRef]
- Mohseni, M.; Mahasti Shotorbani, P.; Akhondzadeh Basti, A.; Azimi, Y. Quality Evaluation of Gluten-Free Pasta Enhanced with Carboxymethyl Cellulose Gum: Rheological Properties, Characterization, Cooking Tests, and Sensory Analysis. J. AOAC Int. 2025, 108, 539–548. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, L.; Hong, Y.; Li, Z.; Li, C.; Gu, Z. An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Crit. Rev. Food Sci. Nutr. 2023, 63, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- van Rooyen, J.; Simsek, S.; Oyeyinka, S.A.; Manley, M. Wheat starch structure–function relationship in breadmaking: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2292–2309. [Google Scholar] [CrossRef]
- Roman, L.; Gomez, M.; Martinez, M.M. Mesoscale structuring of gluten-free bread with starch. Curr. Opin. Food Sci. 2021, 38, 189–195. [Google Scholar] [CrossRef]
- Whitney, K.; Simsek, S. Potato flour as a functional ingredient in bread: Evaluation of bread quality and starch characteristics. Int. J. Food Sci. Technol. 2020, 55, 3639–3649. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.; Gu, Z.; Hong, Y.; Li, Z.; Li, C.; Ban, X. Effects of different gelatinization degrees of starch in potato flour on the quality of steamed bread. Int. J. Biol. Macromol. 2022, 209, 144–152. [Google Scholar] [CrossRef]
- Rhazi, L.; Méléard, B.; Daaloul, O.; Grignon, G.; Branlard, G.; Aussenac, T. Genetic and environmental variation in starch content, starch granule distribution and starch polymer molecular characteristics of French bread wheat. Foods 2021, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Zi, Y.; Shen, H.; Dai, S.; Ma, X.; Ju, W.; Wang, C.; Song, J. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocoll. 2019, 93, 78–86. [Google Scholar] [CrossRef]
- Corrado, M.; Zafeiriou, P.; Ahn-Jarvis, J.H.; Savva, G.M.; Edwards, C.H.; Hazard, B.A. Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocoll. 2023, 135, 108139. [Google Scholar] [CrossRef]
- Witczak, M.; Korus, J.; Ziobro, R.; Juszczak, L. Waxy starch as dough component and anti-staling agent in gluten-free bread. LWT 2019, 99, 476–482. [Google Scholar] [CrossRef]
- Roman, L.; Reguilon, M.P.; Martinez, M.M.; Gomez, M. The effects of starch cross-linking, stabilization and pre-gelatinization at reducing gluten-free bread staling. LWT 2020, 132, 109908. [Google Scholar] [CrossRef]
- Xu, K.; Chi, C.; She, Z.; Liu, X.; Zhang, Y.; Wang, H.; Zhang, H. Understanding how starch constituent in frozen dough following freezing-thawing treatment affected quality of steamed bread. Food Chem. 2022, 366, 130614. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, D.; Zhou, H.; Wu, F.; Xu, X. New insight into the contribution of wheat starch and gluten to frozen dough bread quality. Food Biosci. 2022, 48, 101777. [Google Scholar] [CrossRef]
- Yu, S.; Dong, K.; Pora, B.L.; Hasjim, J. The roles of a native starch and a resistant dextrin in texture improvement and low glycemic index of biscuits. Processes 2022, 10, 2404. [Google Scholar] [CrossRef]
- Devi, R.; Singh, A.; Dutta, D.; Sit, N. Physicochemical properties of barley starch and effect of substitution of wheat flour with barley starch on texture and sensory properties of bread. Efood 2024, 5, e132. [Google Scholar] [CrossRef]
- Ma, Z.; Lin, X.; Liu, F.; Zheng, H.; Li, Y. Preparation, characterization, and application of a novel chestnut starch-based bigel as a fat substitute in bread. Int. J. Biol. Macromol. 2025, 328, 147516. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Man, Y.; Liu, Y. Reduction of acrylamide content in bread crust by starch coating. J. Sci. Food Agric. 2018, 98, 336–345. [Google Scholar] [CrossRef]
- da Cruz, E.P.; Pires, J.B.; dos Santos, F.N.; Fonseca, L.M.; Radünz, M.; Dal Magro, J.; Dias, A.R.G. Encapsulation of lemongrass essential oil into cassava starch fibers for application as antifungal agents in bread. Food Hydrocoll. 2023, 145, 109105. [Google Scholar] [CrossRef]
- Luna-Niño, M.F.; Beristain-Guevara, C.I.; Pascual-Pineda, L.A.; Rascón-Díaz, M.P.; Luna-Solano, G.; Jiménez-Fernández, M. Characterization of chayotextle starch films supplemented with essential oils and their effect as a coating on the shelf life of bread. Starch-Stärke 2025, 77, 2400057. [Google Scholar] [CrossRef]
- Fitriati, A.; Detchewa, P.; Moongngarm, A. Replacing rice flour with starch-lipid complex reduced estimated glycemic index and enhanced slow digestible starch and resistant starch content in gluten-free fettuccine. J. Cereal Sci. 2025, 121, 104080. [Google Scholar] [CrossRef]
- Wahab, M.; Janaswamy, S. Porous starch granules loaded curcumin and resveratrol modulate starch digestibility of wheat bread: Toward developing novel functional foods. Food Hydrocoll. 2025, 162, 111006. [Google Scholar] [CrossRef]
- You, J.G.; Lee, J.H.; Park, E.Y. Effect of high amylose corn starch/dextrin on quality of non-fried instant noodles. Korean J. Food Sci. Technol. 2020, 52, 655–660. [Google Scholar]
- Huang, D.W.; Chan, Y.J.; Huang, Y.C.; Chang, Y.J.; Tsai, J.C.; Mulio, A.T.; Li, P.H. Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin. Plants 2021, 10, 578. [Google Scholar] [CrossRef]
- Dang, Y.; Otsubo, T.; Iwamoto, S.; Katsuno, N. Unraveling the changes of physical properties and nanostructures of rice starch incorporated with pregelatinized rice starch paste during gelatinization. Food Hydrocoll. 2025, 162, 110931. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, M.; Li, W.; Liang, C.; Huang, X.; Hu, H.; Zhang, Y. Effects of the addition of cassava starch and the size of water clusters on physicochemical and cooking properties of rice noodles. Food Chem. 2025, 470, 142665. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Z.; He, X.; Xu, Z.; Li, M.; Liu, X.; Sun, Q. Effects of sweet potato starch on the physicochemical properties and edible qualities of instant fresh rice noodles. Int. J. Biol. Macromol. 2025, 286, 138553. [Google Scholar] [CrossRef] [PubMed]
- Roman, L.; Martinez, M.M. Structural basis of resistant starch (RS) in bread: Natural and commercial alternatives. Foods 2019, 8, 267. [Google Scholar] [CrossRef]
- Li, J.; Deng, F.; Han, P.; Ding, Y.; Cao, J. Preparation of Resistant Starch Types III+ V with Moderate Amylopullulanase and Its Effects on Bread Properties. Foods 2024, 13, 1251. [Google Scholar] [CrossRef]
- Barros, J.H.; Telis, V.R.; Taboga, S.; Franco, C.M. Resistant starch: Effect on rheology, quality, and staling rate of white wheat bread. J. Food Sci. Technol. 2018, 55, 4578–4588. [Google Scholar] [CrossRef] [PubMed]
- Arp, C.G.; Correa, M.J.; Ferrero, C. Improving quality: Modified celluloses applied to bread dough with high level of resistant starch. Food Hydrocoll. 2021, 112, 106302. [Google Scholar] [CrossRef]
- Arp, C.G.; Correa, M.J.; Ferrero, C. Kinetic study of staling in breads with high-amylose resistant starch. Food Hydrocoll. 2020, 106, 105879. [Google Scholar] [CrossRef]
- Correa, M.J.; Burbano Moreano, J.J.; Guardianelli, L.M.; Weisstaub, A.R.; Zuleta, A.; Salinas, M.V. Garlic: A natural bread improver for wheat bread with a high level of resistant starch. J. Food Process. Preserv. 2021, 45, e15519. [Google Scholar] [CrossRef]
- Feng, H.; Cheng, B.; Lim, J.; Li, B.; Li, C.; Zhang, X. Advancements in enhancing resistant starch type 3 (RS3) content in starchy food and its impact on gut microbiota: A review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13355. [Google Scholar] [CrossRef]
- Moon, Y.; Kweon, M. Processing suitability of physical modified non-GMO high-amylose wheat flour as a resistant starch ingredient in cookies. Molecules 2025, 30, 2619. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, K.; Ansorena, D.; Astiasaran, I. Effect of baking conditions on resistant starch: Model systems and cake formulations. Food Chem. 2024, 449, 139174. [Google Scholar] [CrossRef]
- Farré Forcén, I. Bibliographic Review—The Technological Application of Resistant Starch and Its Health Benefits on the Formulation of Pasta in the Food Industry. Appl. Sci. 2024, 14, 5273. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Otomo, Y.; Toyota, K.; Noma, S.; Ebihara, S. Effects of the bread containing resistant starch from wheat (Triticum aestivum) on the improvement in bowel movements: A randomized, double-blind, placebo-controlled, crossover study. Biosci. Biotechnol. Biochem. 2025, 89, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Karunarathna, S.; Wickramasinghe, I.; Truong, T.; Brennan, C.; Navaratne, S.B.; Chandrapala, J. Development of low-calorie food products with resistant starch-rich sources—A review. Food Rev. Int. 2024, 40, 814–831. [Google Scholar] [CrossRef]
- Gałkowska, D.; Kapuśniak, K.; Juszczak, L. Chemically Modified Starches as Food Additives. Molecules 2023, 28, 7543. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, P.; Zhao, Y.; Zhu, Y.; Xiao, X. The effect of protein–starch interaction on the structure and properties of starch, and its application in flour products. Foods 2025, 14, 778. [Google Scholar] [CrossRef]
- Wang, M.; Chen, X.; Yang, Z.; Wang, M.; Shang, S.; Fu, B.; Wen, C. Effect of acetylated distarch adipate on fermentation properties of freeze-thawed post-fermented frozen dough and bread characteristics. J. Cereal Sci. 2025, 121, 104094. [Google Scholar] [CrossRef]
- Durmuş, Y.; Bilgiçli, N.; Elgün, A.; Demir, M.K. Enrichment of sourdough bread with hazelnut skin, cross-linked starch or oxidized starch for improvement of nutritional quality. J. Food Process Eng. 2023, e14361. [Google Scholar] [CrossRef]
- Handayani, M.N.; Cakrawati, D. Chemical Characteristics and Sensory Properties of Biscuits Using Modified Potato Flour. Pertanika J. Soc. Sci. Humanit. 2017, 25, 147–156. [Google Scholar]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Woutersen, R.A. Re-evaluation of oxidised starch (E 1404), monostarch phosphate (E 1410), distarch phosphate (E 1412), phosphated distarch phosphate (E 1413), acetylated distarch phosphate (E 1414), acetylated starch (E 1420), acetylated distarch adipate (E 1422), hydroxypropyl starch (E 1440), hydroxypropyl distarch phosphate (E 1442), starch sodium octenyl succinate (E 1450), acetylated oxidised starch (E 1451) and starch aluminium octenyl succinate (E 1452) as food additives. EFSA J. 2017, 15, e04911. [Google Scholar] [CrossRef]
- AbuDujayn, A.A.; Altayyar, R.; Abbood, H.M.; Mohamed, R.; Alamri, A.; Ibraheem, M.A. Relationship between dough properties and baking performance: Maltodextrins as promising antistaling ingredients. Molecules 2022, 28, 235. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, F.; Li, C.; Ban, X.; Gu, Z.; Li, Z. Fine structures of added maltodextrin impact stability of frozen bread dough system. Carbohydr. Polym. 2022, 298, 120028. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, H.; Li, C.; Ban, X.; Gu, Z.; Lu, Y.; Li, Z. Short-Clustered Maltodextrin Provides Cryoprotection by Maintaining Yeast Cell Membrane Homeostasis during Frozen Storage. Food Chem. 2023, 404, 134729. [Google Scholar] [CrossRef]
- Li, Y.; Kong, H.; Li, C.; Ban, X.; Gu, Z.; Lu, Y.; Li, Z. Short-Clustered Maltodextrin Mediates Stabilization of Gluten Proteins during Frozen Storage Compared to Trehalose and Guar Gum. Food Chem. 2025, 476, 143387. [Google Scholar] [CrossRef] [PubMed]
- Colla, K.; Costanzo, A.; Gamlath, S. Fat Replacers in Baked Food Products. Foods 2018, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayan, S.M.; Rathinam, V.; KrishnaRau, L. Effect of Maltodextrin and Emulsifiers on the Viscosity of Cake Batter and on the Quality of Cakes. J. Sci. Food Agric. 2006, 86, 706–712. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Konopka, I.Z.; Tańska, M.; Brandt, W.; Piłat, B. Effect of Maltodextrin Replacement by Selected Native Starches and Disaccharides on Physicochemical Properties of Pumpkin Oil Capsules Prepared by Spray-Drying. Appl. Sci. 2021, 12, 33. [Google Scholar] [CrossRef]
- Witczak, M.; Korus, J.; Ziobro, R.; Juszczak, L. The effects of maltodextrins on gluten-free dough and quality of bread. J. Food Eng. 2010, 96, 258–265. [Google Scholar] [CrossRef]
- Xu, X.; Gao, C.; Xu, J.; Meng, L.; Wang, Z.; Yang, Y.; Tang, X. Hydration and Plasticization Effects of Maltodextrin on the Structure and Cooking Quality of Extruded Whole Buckwheat Noodles. Food Chem. 2022, 374, 131613. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, W.; Zhang, Z.; Shen, S.; Lu, G.; Wu, W. Effect of Maltodextrin on the Physicochemical Properties of Noodles. Foods 2022, 11, 4082. [Google Scholar] [CrossRef]
- Hartley, C.; Keast, R.S.; Carr, A.J.; Roberts, S.S.; Bredie, W.L. Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose. Foods 2024, 13, 2130. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, J.J.; Chen, Y.; Wei, N.; Hou, Y.; Bai, W.; Hu, S.Q. Effect of Water-Soluble Dietary Fiber Resistant Dextrin on Flour and Bread Qualities. Food Chem. 2020, 317, 126452. [Google Scholar] [CrossRef]
- Bilyk, O.; Lytvynenko, O.K.; Bondarenko, Y.; Vasylchenko, T.; Pukhliak, A. Developing an Improver of Targeted Action for the Prolonged Freshness of Bread Made from Wheat Flour. East. Eur. J. Adv. Technol. 2020, 5, 62–70. [Google Scholar] [CrossRef]
- Bilyk, O.; Bondarenko, Y.; Kochubei-Lytvynenko, O.; Halykova, E.; Fain, A. Studying the Effect of the Integrated Bread Baking Improver “Mineral Freshness Super” on Consumer Properties of Wheat Bread. East. Eur. J. Adv. Technol. 2019, 3, 65–72. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Fan, X.; Wang, Q.; Wang, P.; Yuan, J.; Cui, L. The Effect of Branched Limit Dextrin on Corn and Waxy Corn Gelatinization and Retrogradation. Int. J. Biol. Macromol. 2018, 106, 116–122. [Google Scholar] [CrossRef]
- Guéritte, M.; Dalle Fratte, E.; Van de Velde, L.M.; Eeckhout, M.; Debonne, E. Effect of Wheat Dextrin on Corn Flour Extrusion Characteristics. Heliyon 2023, 9, e21827. [Google Scholar] [CrossRef]
- Peng, H.; Liu, S.; Huang, R.L.; Yuan, H.S.; Zhai, W.Y.; Ouyang, G.; Yang, Z.Z. Development and Determination of Glycemic Index Value of a Resistant Dextrin Biscuit. J. Chin. Cereal Oils Assoc. 2020, 28, 32–37. [Google Scholar]
- Rodriguez-Garcia, J.; Ding, R.; Nguyen, T.H.; Grasso, S.; Chatzifragkou, A.; Methven, L. Soluble Fibres as Sucrose Replacers: Effects on Physical and Sensory Properties of Sugar-Reduced Short-Dough Biscuits. LWT 2022, 167, 113837. [Google Scholar] [CrossRef]
- Dehghan, P.; Emami, N.; Mohtarami, F.; Ostadrahimi, A.; Azizi, M.H. Physicochemical, Textural, and Sensory Evaluation of Reduced Fat Gluten-Free Biscuit Prepared with Inulin and Resistant Dextrin Prebiotic. J. Agric. Sci. Technol. 2025, 20, 719–731. [Google Scholar]
- Wojcik, M.; Kapusniak, K.; Zarski, A.; Kapusniak, J. Preparation and Characterization of Soluble Dextrin Fibre from Potato Starch Obtained on a Semi-Industrial Scale. Appl. Sci. 2024, 14, 1438. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.; Yan, X.; Wu, X.; Zhang, Q.; Luan, M. An In-Depth Overview of the Structural Properties, Health Benefits, and Applications of Resistant Dextrin. J. Food Process. Preserv. 2024, 2024, 8055063. [Google Scholar] [CrossRef]
- Emilien, C.H.; Hsu, W.H.; Hollis, J.H. The Effect of Soluble Fiber Dextrin on Subjective and Physiological Markers of Appetite: A Randomized Trial. Nutrients 2020, 12, 3341. [Google Scholar] [CrossRef]
- Hobden, M.R.; Commane, D.M.; Guérin-Deremaux, L.; Wils, D.; Thabuis, C.; Martin-Morales, A.; Kennedy, O.B. Impact of Dietary Supplementation with Resistant Dextrin (NUTRIOSE®) on Satiety, Glycaemia, and Related Endpoints, in Healthy Adults. Eur. J. Nutr. 2021, 60, 4635–4643. [Google Scholar] [CrossRef]
- Barber, C.; Sabater, C.; Ávila-Gálvez, M.Á.; Vallejo, F.; Bendezu, R.A.; Guérin-Deremaux, L.; Azpiroz, F. Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients 2022, 14, 4611. [Google Scholar] [CrossRef]
- Saatchi, A.; Kiani, H.; Labbafi, M. Stabilization Activity of a New Protein–Carbohydrate Complex in Sesame Paste. J. Sci. Food Agric. 2022, 102, 5523–5530. [Google Scholar] [CrossRef]
- Deng, N.; Li, Z.; Li, H.; Cai, Y.; Li, C.; Xiao, Z.; Wang, J. Effects of Maltodextrin and Protein Hydrolysate from Lotus Seed Peel on Fat Substitution and Lipid Oxidation of Lotus Seed Paste. Food Chem. X 2023, 20, 100967. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, M.; Xia, W.; Wang, L.; Wu, J.; Su, L. Resistant Dextrin/Isomaltodextrin. In Biomanufacture of Functional Carbohydrates; CRC Press: Boca Raton, FL, USA, 2024; pp. 21–77. [Google Scholar] [CrossRef]
- Krstonošić, V.; Jovičić-Bata, J.; Maravić, N.; Nikolić, I.; Dokić, L. Rheology, structure, and sensory perception of hydrocolloids. In Food Structure and Functionality; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 23–47. [Google Scholar] [CrossRef]
- Tebben, L.; Li, Y. Effect of Xanthan Gum on Dough Properties and Bread Qualities Made from Whole Wheat Flour. Cereal Chem. 2019, 96, 263–272. [Google Scholar] [CrossRef]
- Bojňanská, T.; Šmitalová, J.; Vietoris, V.; Vollmannová, A. Influence of the Xanthan Gum Addition on the Technological and Sensory Quality of Baking Products during the Freezing Storage. Potravin. Slovak J. Food Sci. 2016, 10, 592. [Google Scholar] [CrossRef]
- Morimoto, N.; Tabara, A.; Seguchi, M. Effect of Xanthan Gum on Improvement of Bread Height and Specific Volume upon Baking with Frozen and Thawed Dough. Food Sci. Technol. Res. 2015, 21, 309–316. [Google Scholar] [CrossRef]
- Jiao, W.; Li, L.; Fan, P.; Zhao, D.; Li, B.; Rong, H.; Zhang, X. Effect of Xanthan Gum on the Freeze-Thaw Stability of Wheat Gluten. Food Biophys. 2019, 14, 142–153. [Google Scholar] [CrossRef]
- Jafari, M.; Koocheki, A.; Milani, E. Functional Effects of Xanthan Gum on Quality Attributes and Microstructure of Extruded Sorghum–Wheat Composite Dough and Bread. LWT 2018, 89, 551–558. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Perez, G.T. Incorporation of several additives into gluten free breads: Effect on dough properties and bread quality. J. Food Eng. 2012, 111, 590–597. [Google Scholar] [CrossRef]
- Morreale, F.; Garzón, R.; Rosell, C.M. Improving the Quality of Gluten-Free Bread by Hydrocolloids: Xanthan Gum Performance in Maize–Rice Systems. Foods 2020, 9, 117. [Google Scholar] [CrossRef]
- Salehi, F. Improvement of Gluten-Free Bread and Cake Properties Using Natural Hydrocolloids: A Review. Food Sci. Nutr. 2019, 7, 3391–3402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, Q.; Cheng, L.; Kang, J.; Liu, H.; Zhang, L.; Li, H.; Li, Q.; Guo, Q.; Goff, H.D. Enhancing Gluten-Free Dough and Bread Properties Using Xanthan Gum and Its Trifluoroacetic Acid Hydrolytes. Food Hydrocoll. 2025, 164, 111204. [Google Scholar] [CrossRef]
- Torres-Perez, R.; Martínez-García, E.; Igual, M.; Martínez-Monzó, J.; García-Segovia, P. Effect of Hydroxypropyl Methylcellulose, Xanthan Gum, and Psyllium in the Formulation of Gluten-Free Bread for the Improvement of Organoleptic Quality. Biol. Life Sci. Forum 2023, 26, 48. [Google Scholar] [CrossRef]
- Encina-Zelada, C.R.; Cadavez, V.; Monteiro, F.; Teixeira, J.A.; Gonzales-Barron, U. Combined Effect of Xanthan Gum and Water Content on Physicochemical and Textural Properties of Gluten-Free Batter and Bread. Food Res. Int. 2018, 111, 544–555. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Frutos, M.J.; Dusemund, B. Re-evaluation of xanthan gum (E 415) as a food additive. EFSA J. 2017, 15, e04909. [Google Scholar] [CrossRef]
| Product Category | Positive Effects | Negative Effects | Recommendations |
|---|---|---|---|
| Bread (wheat-based) | Enhanced nutritional profile; improved moisture retention; softer crumb at moderate levels [42,43,44] | Reduced loaf volume; denser texture; firmer crumb at high levels [42,43] | ≈2–5% (higher > 10% compromises quality) |
| Bread (gluten-free) | Improved hydration and softness; delayed staling; higher moisture retention [45,46,47] | Inconsistent loaf volume and texture depending on dose and molecular weight [45] | 1–2% (high-molecular-mass fractions most effective) |
| Pasta | Increased dough hardness and resilience; acceptable sensory quality at moderate levels [48,49,50,51] | Higher cooking loss; darker colour; weaker gluten network [48,49,50] | 1–3% (higher levels impair structure) |
| Cakes/Cookies/Biscuits | Improved batter viscosity; softer texture; fat replacement; extended freshness [52,53] | Excessive thickening > 4%; reduced aeration and volume [52] | 2–3% (optimal texture–moisture balance) |
| AX Fraction | Positive Effects | Negative Effects | Recommendations |
|---|---|---|---|
| WEAX (water-extractable arabinoxylan) |
|
|
|
| WUAX (water-unextractable arabinoxylan) |
|
|
| Polysaccharide | Positive Effects | Negative Effects | Recommendations | Products | References |
|---|---|---|---|---|---|
| Fructans (FOS, inulin) |
|
| 2–10% (bread, biscuits); up to 30% in GF breads (requires optimisation) | Bread, GF bread, cakes, biscuits, pasta | [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,33] |
| β-Glucan |
|
| 1–5% (bread/cakes); 5–15% (GF bread with adjustments); 1–2% (pasta) | Bread, GF bread, pasta, cookies, cakes | [43,44,45,46,48] |
| Arabinoxylans |
|
| 2–6% (bread, GF bread) | Bread, GF bread | [61,62,63,70,71,72] |
| Pectin |
|
| 2–5% (bread, biscuits); ≤10% (cakes/pastry) | Bread, biscuits, cookies, fine bakery, pasta | [74,75,76,77,87,88,89,90,91,92,93,94,95,96,97,98,99] |
| Cellulose derivatives (HPMC, CMC) |
|
| 1–3% (GF bread) | GF bread, frozen doughs | [99,100,101,102,103,104,105,106,107,120] |
| Resistant starch (RS) |
|
| 5–20% (bread, biscuits); 5–15% (pasta/noodles) | Bread, biscuits, pasta, noodles | [136,137,138,139,140,141,142,143,144,145,146] |
| Chemically modified starches |
|
| 2–10% depending on type | Bread, GF bread, frozen doughs | [149,151] |
| Maltodextrins (MDs) |
|
| 1–3% (bread); 5–10% (cakes/cookies); 0.5–2% (pasta) | Bread, GF bread, frozen dough, cakes, cookies, pasta | [155,156,157,158,159,160,163,164] |
| Dextrins (resistant, isomaltodextrin, branched-limit) |
|
| 5–15% (bread, biscuits); 0.5–2% (pasta) | Bread, GF bread, biscuits, pasta | [166,167,168,171,172,173,175,179,180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, J.; Zahorec, J.; Šoronja-Simović, D.; Lončarević, I.; Nikolić, I.; Pajin, B.; Stožinić, M.; Šubarić, D.; Ačkar, Đ.; Jozinović, A. Polysaccharide-Enriched Bakery and Pasta Products: Advances, Functional Benefits, and Challenges in Modern Food Innovation. Appl. Sci. 2025, 15, 11839. https://doi.org/10.3390/app152111839
Petrović J, Zahorec J, Šoronja-Simović D, Lončarević I, Nikolić I, Pajin B, Stožinić M, Šubarić D, Ačkar Đ, Jozinović A. Polysaccharide-Enriched Bakery and Pasta Products: Advances, Functional Benefits, and Challenges in Modern Food Innovation. Applied Sciences. 2025; 15(21):11839. https://doi.org/10.3390/app152111839
Chicago/Turabian StylePetrović, Jovana, Jana Zahorec, Dragana Šoronja-Simović, Ivana Lončarević, Ivana Nikolić, Biljana Pajin, Milica Stožinić, Drago Šubarić, Đurđica Ačkar, and Antun Jozinović. 2025. "Polysaccharide-Enriched Bakery and Pasta Products: Advances, Functional Benefits, and Challenges in Modern Food Innovation" Applied Sciences 15, no. 21: 11839. https://doi.org/10.3390/app152111839
APA StylePetrović, J., Zahorec, J., Šoronja-Simović, D., Lončarević, I., Nikolić, I., Pajin, B., Stožinić, M., Šubarić, D., Ačkar, Đ., & Jozinović, A. (2025). Polysaccharide-Enriched Bakery and Pasta Products: Advances, Functional Benefits, and Challenges in Modern Food Innovation. Applied Sciences, 15(21), 11839. https://doi.org/10.3390/app152111839

