Enhancing Crash Safety Analysis Through Female-Specific Head Modeling: Application of FeFEHM in Traffic Accident Reconstructions
Abstract
1. Introduction
2. Methods
2.1. Framework of the Employed FEHM
2.2. Brain Regions Analysis
Corpus Callosum and Pituitary Gland Overview
2.3. Data Collection and Car Crash Scenarios
2.3.1. Case 1 Scenario
2.3.2. Case 2 Scenario
3. Results
3.1. Case 1
3.2. Case 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A


References
- Hughes, N.; Williams, W.H.; Chitsabesan, P.; Walesby, R.C.; Mounce, L.T.A.; Clasby, B. The prevalence of traumatic brain injury among young offenders in custody. J. Head Trauma Rehabil. 2015, 30, 94–105. [Google Scholar] [CrossRef]
- Lavoie, S.; Sechrist, S.; Quach, N.; Ehsanian, R.; Duong, T.; Gotlib, I.H.; Isaac, L. Depression in men and women one year following traumatic brain injury (TBI): A TBI model systems study. Front. Psychol. 2017, 8, 634. [Google Scholar] [CrossRef]
- Viano, D.C.; Parenteau, C.S. Concussion, Diffuse Axonal Injury, and AIS4+ Head Injury in Motor Vehicle Crashes. Traffic Inj. Prev. 2015, 16, 747–753. [Google Scholar] [CrossRef]
- Carroll, L.J.; Cassidy, J.D.; Cancelliere, C.; Côté, P.; Hincapié, C.A.; Kristman, V.L.; Holm, L.W.; Borg, J.; Boussard, C.N.-D.; Hartvigsen, J. Systematic review of the prognosis after mild traumatic brain injury in adults: Cognitive, psychiatric, and mortality outcomes: Results of the international collaboration on mild traumatic brain injury prognosis. Arch. Phys. Med. Rehabil. 2014, 95, S152–S173. [Google Scholar] [CrossRef]
- Mazure, C.M.; Jones, D.P. Twenty years and still counting: Including women as participants and studying sex and gender in biomedical research. BMC Women’s Health 2015, 15, 94. [Google Scholar] [CrossRef]
- Blaya, M.O.; Raval, A.P.; Bramlett, H.M. Traumatic brain injury in women across lifespan. Neurobiol. Dis. 2022, 164, 105613. [Google Scholar] [CrossRef]
- Valera, E.M.; Joseph, A.-L.C.B.; Snedaker, K.L.; Breiding, M.J.; Robertson, C.L.; Colantonio, A.; Levin, H.; Pugh, M.J.; Yurgelun-Todd, D.; Mannix, R.; et al. Understanding Traumatic Brain Injury in Females: A State-of-the-Art Summary and Future Directions. J. Head Trauma Rehabil. 2021, 36, E1–E17. [Google Scholar] [CrossRef] [PubMed]
- Sass, D.; Guedes, V.A.; Smith, E.G.; Vorn, R.; Devoto, C.; Edwards, K.A.; Mithani, S.; Hentig, J.; Lai, C.; Wagner, C.; et al. Sex differences in behavioral symptoms and the levels of circulating gfap, tau, and nfl in patients with traumatic brain injury. Front. Pharmacol. 2021, 12, 746491. [Google Scholar] [CrossRef] [PubMed]
- Bah, M. Racial and gender disparities in traumatic brain injury clinical trial enrollment. Neurosurg. Focus 2023, 55, E11. [Google Scholar] [CrossRef]
- McKee, A.C.; Mez, J.; Abdolmohammadi, B.; Butler, M.; Huber, B.R.; Uretsky, M.; Babcock, K.; Cherry, J.D.; Alvarez, V.E.; Martin, B.; et al. Neuropathologic and Clinical Findings in Young Contact Sport Athletes Exposed to Repetitive Head Impacts. JAMA Neurol. 2023, 80, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Fesharaki-Zadeh, A. Chronic Traumatic Encephalopathy: A Brief Overview. Front. Neurol. 2019, 10, 713. [Google Scholar] [CrossRef]
- Munivenkatappa, A.; Agrawal, A.; Shukla, D.P.; Kumaraswamy, D.; Devi, B.I. Traumatic brain injury: Does gender influence outcomes? Int. J. Crit. Illn. Inj. Sci. 2016, 6, 70. [Google Scholar] [CrossRef]
- Eagle, S.R.; Pease, M.; Nwachuku, E.; Deng, H.; Okonkwo, D.O. Prognostic models for traumatic brain injury have good discrimination but poor overall model performance for predicting mortality and unfavorable outcomes. Neurosurgery 2022, 92, 137–143. [Google Scholar] [CrossRef]
- Carlsen, R.W.; Fawzi, A.L.; Wan, Y.; Kesari, H.; Franck, C. A quantitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis. Brain Multiphys. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Perkins, R.A.; Bakhtiarydavijani, A.; Ivanoff, A.E.; Jones, M.; Hammi, Y.; Prabhu, R.K. Assessment of brain injury biomechanics in soccer heading using finite element analysis. Brain Multiphys. 2022, 3, 100052. [Google Scholar] [CrossRef]
- GIDAS (German In-Depth Accident Study). 2025. Available online: https://www.gidas.org/start-en.html (accessed on 27 October 2025).
- BASt. Federal Highway Research and Transport Institute (Bundesanstalt für Straßenwesen). 1951. Available online: https://www.bast.de/EN/BASt/BASt_node.html (accessed on 27 October 2025).
- Takahira, Y.; Koshizako, K.; Hayashi, S.; Imai, H. Prediction of Brain Injury in Vehicle Accident Reconstruction using THUMS. In Proceedings of the IRCOBI Pre-Conference Workshop, Stockholm, Sweden, 10 September 2024. [Google Scholar]
- Carmo, G.P.; Dymek, M.; Ptak, M.; Alves-de-Sousa, R.J.; Fernandes, F.A. Development, validation and a case study: The female finite element head model (FeFEHM). Comput. Methods Programs Biomed. 2023, 231, 107430. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, A.; MacManus, D.B.; Gilchrist, M.D.; Depreitere, B.; Sloten, J.V.; Famaey, N. Regional characterization of the dynamic mechanical properties of human brain tissue by microindentation. Int. J. Eng. Sci. 2020, 155, 103355. [Google Scholar] [CrossRef]
- Puso, M.A.; Weiss, J.A. Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation. J. Biomech. Eng. 1998, 120, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, M.D. Modelling and Accident Reconstruction of Head Impact Injuries. Key Eng. Mater. 2003, 245–246, 417–432. [Google Scholar] [CrossRef]
- Bouchonville, N.; Meyer, M.; Gaude, C.; Gay, E.; Ratel, D.; Nicolas, A. AFM mapping of the elastic properties of brain tissue reveal kPa/-gradients of rigidity. Soft Matter 2016, 12, 6232–6239. [Google Scholar] [CrossRef] [PubMed]
- Alshareef, A.; Giudice, J.S.; Forman, J.; Salzar, R.S.; Panzer, M.B. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J. Neurotrauma 2018, 35, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.S.; Carmo, G.P.; Ptak, M.; Fernandes, F.A.O.; de Sousa, R.J.A. Accuracy and efficiency of finite element head models: The role of finite element formulation and material laws. Int. J. Numer. Methods Biomed. Eng. 2024, 40, e3851. [Google Scholar] [CrossRef]
- Fernandes, F.A.; de Sousa, R.J.A. Head injury predictors in sports trauma—A state-of-the-art review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2015, 229, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.A.O.; Alves de Sousa, R.J.; Ptak, M. Finite Element Head Modelling and Head Injury Predictors. In Head Injury Simulation in Road Traffic Accidents; SpringerBriefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Katz, D.I.; Bernick, C.; Dodick, D.W.; Mez, J.; Mariani, M.L.; Adler, C.H.; Alosco, M.L.; Balcer, L.J.; Banks, S.J.; Barr, W.B.; et al. National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome. Neurology 2021, 96, 848–863. [Google Scholar] [CrossRef]
- Corporation, Toyota Motor. Total Human Model for Safety (THUMS): Revolutionizing Crash Simulation to Support Safe Mobility for All. 2021. Available online: https://www.toyota.co.jp/thums/ (accessed on 16 December 2024).
- Takhounts, E.G.; Craig, M.J.; Moorhouse, K.; McFadden, J.; Hasija, V. Development of brain injury criteria (BrIC). Stapp Car Crash J. 2013, 57, 243–266. [Google Scholar] [CrossRef]
- Wu, T.; Hajiaghamemar, M.; Giudice, J.S.; Alshareef, A.; Margulies, S.S.; Panzer, M.B. Evaluation of Tissue-Level Brain Injury Metrics Using Species-Specific Simulations. J. Neurotrauma 2021, 38, 1879–1888. [Google Scholar] [CrossRef]
- Arani, A.; Murphy, M.C.; Glaser, K.J.; Manduca, A.; Lake, D.S.; Kruse, S.A.; Jack, C.R.; Ehman, R.L.; Huston, J. Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults. NeuroImage 2015, 111, 59–64. [Google Scholar] [CrossRef]
- Sack, I.; Beierbach, B.; Wuerfel, J.; Klatt, D.; Hamhaber, U.; Papazoglou, S.; Martus, P.; Braun, J. The impact of aging and gender on brain viscoelasticity. NeuroImage 2009, 46, 652–657. [Google Scholar] [CrossRef]
- Wilhelm, J.; Ptak, M.; Fernandes, F.A.O.; Kubicki, K.; Kwiatkowski, A.; Ratajczak, M.; Sawicki, M.; Szarek, D. Injury biomechanics of a child’s head: Problems, challenges and possibilities with a new aHEAD finite element model. Appl. Sci. 2020, 10, 4467. [Google Scholar] [CrossRef]
- Toma, M.; Nguyen, P.D. Fluid–structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration. Brain Inj. 2018, 32, 1576–1584. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration. Crash Simulation Vehicle Models. U.S. Department of Transportation. Available online: https://www.nhtsa.gov/crash-simulation-vehicle-models (accessed on 12 June 2025).







| Occupants | Sex | Age | Height | Weight | Injuries | |||
|---|---|---|---|---|---|---|---|---|
| Regions | AIS | Diagnosis | Cause | |||||
| Driver | Female | 58 | 168 | 90 | Head | 1 | Abrasion | Headrest |
| Upper Body | 1 | Abrasion | Dashboard | |||||
| Upper Body | 1 | Laceration | Center-console | |||||
| Chest | 2 | Fracture | Belt | |||||
| Head | 2 | Lost Consciousness | Headrest | |||||
| Case | Peak Linear Acceleration (g) | Peak Rotational Velocity (rad/s) | ||||||
|---|---|---|---|---|---|---|---|---|
| No. | X | Y | Z | Magnitude | X | Y | Z | Magnitude |
| Case 1 | −66.0 | −94.2 | −91.3 | 146.8 | 38.8 | −25.6 | −19.0 | 50.2 |
| Case 2 | −49.2 | 54.3 | 64.5 | 97.6 | −29.0 | −45.2 | 27.9 | 60.5 |
| Occupants | Sex | Age | Height | Weight | Injuries | |||
|---|---|---|---|---|---|---|---|---|
| Regions | AIS | Diagnosis | Cause | |||||
| Driver | Female | 60 | 164 | 80 | Head | 1 | Concussion | DAB |
| Spine | 1 | Cervical Sprain | Body Motion | |||||
| Head | 2 | Cranial Nerve Injury | DAB | |||||
| Upper Extremity | 1 | Hematoma | Door Trim | |||||
| Head | 1 | Scalp Laceration | Headrest | |||||
| Region | von Mises (kPa) | Pressure (kPa) | Maximum Principal Strain |
|---|---|---|---|
| Frontal | 7.05 | 36.64 | 0.31 |
| Parietal | 11.47 | 38.14 | 0.52 |
| Temporal | 17.67 | 15.95 | 0.45 |
| Occipital | 3.82 | 11.02 | 0.19 |
| White Matter | 7.09 | 28.38 | 0.28 |
| Brainstem | 1.53 | 2.21 | 0.24 |
| Region | von Mises (kPa) | Pressure (kPa) | Maximum Principal Strain |
|---|---|---|---|
| Frontal | 6.47 | 24.76 | 0.36 |
| Parietal | 5.71 | 13.19 | 0.36 |
| Temporal | 7.48 | 98.06 | 0.48 |
| Occipital | 6.84 | 177.27 | 0.44 |
| White Matter | 3.76 | 46.94 | 0.27 |
| Brainstem | 1.93 | 51.45 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, C.G.S.; Eggers, A.; Wisch, M.; Fernandes, F.A.O.; Alves de Sousa, R.J. Enhancing Crash Safety Analysis Through Female-Specific Head Modeling: Application of FeFEHM in Traffic Accident Reconstructions. Appl. Sci. 2025, 15, 11837. https://doi.org/10.3390/app152111837
Cardoso CGS, Eggers A, Wisch M, Fernandes FAO, Alves de Sousa RJ. Enhancing Crash Safety Analysis Through Female-Specific Head Modeling: Application of FeFEHM in Traffic Accident Reconstructions. Applied Sciences. 2025; 15(21):11837. https://doi.org/10.3390/app152111837
Chicago/Turabian StyleCardoso, Carlos G. S., Andre Eggers, Marcus Wisch, Fábio A. O. Fernandes, and Ricardo J. Alves de Sousa. 2025. "Enhancing Crash Safety Analysis Through Female-Specific Head Modeling: Application of FeFEHM in Traffic Accident Reconstructions" Applied Sciences 15, no. 21: 11837. https://doi.org/10.3390/app152111837
APA StyleCardoso, C. G. S., Eggers, A., Wisch, M., Fernandes, F. A. O., & Alves de Sousa, R. J. (2025). Enhancing Crash Safety Analysis Through Female-Specific Head Modeling: Application of FeFEHM in Traffic Accident Reconstructions. Applied Sciences, 15(21), 11837. https://doi.org/10.3390/app152111837

