Use of Urinary β2-Microglobulin in the Assessment of the Health Risk from Environmental Cadmium Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sourcing
2.2. Blood and Urine Sampling and Chemical Compositional Analysis
2.3. Calculation of eGFR and Normalization of Cd and β2M Excretion Rates
2.4. Benchmark Dose Modeling
2.5. Statistical Analysis
3. Results
3.1. Cd, eGFR, and β2M Excretion Levels in Study Subjects
3.2. Determinants of the Prevalence Odds for CKD (eGFR ≤ 60 mL/min/1.73 m2)
3.3. Incremental β2M Excretion Rates in Relation to Cd Excretion Levels
3.4. Cd Excretion Benchmarks Derive from Continuous eGFR and β2M Endpoints
3.5. Cd Excretion Benchmarks Derived from CKD and Abnormal β2M Excretion Prevalences
3.6. Validity Analysis of a Proposed Urinary Cd Threshold
4. Discussion
4.1. Cd Exposure as a Risk Factor for CKD and Understated Toxicity by Ecr Adjustment
4.2. Reduction in eGFR Due to Cd-Induced Nephron Destruction
4.3. Urinary Cd Benchmarks for the β2M Excretion and eGFR Reduction Endpoints
4.4. Dietary Cd Exposure Carrying a Negligible Health Risk
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aoshima, K. Epidemiology of renal tubular dysfunction in the inhabitants of a cadmium-polluted area in the Jinzu River basin in Toyama Prefecture. Tohoku J. Exp. Med. 1987, 152, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Aoshima, K.; Katoh, T.; Teranishi, H.; Kasuya, M. Renal tubular dysfunction in male inhabitants of a cadmium-polluted area in Toyama, Japan—An eleven-year follow-up study. J. Epidemiol. 2001, 11, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Horiguchi, H.; Matsukawa, T.; Kobayashi, M.; Omori, Y.; Oguma, E.; Komatsuda, A. A suspected case of “itai-itai disease” in a cadmium-polluted area in Akita prefecture, Japan. Environ. Health Prev. Med. 2024, 29, 40. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H.; Aoshima, K.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Hosoi, Y.; Katoh, T.; Kayama, F. Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. Int. Arch. Occup. Environ. Health 2010, 83, 953–970. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Summary and Conclusions. In Proceedings of the Joint FAO/WHO Expert Committee on Food Additives and Contaminants, Seventy-Third Meeting, Geneva, Switzerland, 8–17 June 2010; Available online: https://iris.who.int/items/9b0d9daf-c57a-4051-a9f7-6380ec80fd25 (accessed on 25 September 2025).
- Wong, C.; Roberts, S.M.; Saab, I.N. Review of regulatory reference values and background levels for heavy metals in the human diet. Regul. Toxicol. Pharmacol. 2022, 130, 105122. [Google Scholar] [CrossRef]
- Crump, K.S. A new method for determining allowable daily intakes. Fundam. Appl. Toxicol. 1984, 4, 854–871. [Google Scholar] [CrossRef]
- Gaylor, D.; Ryan, L.; Krewski, D.; Zhu, Y. Procedures for calculating benchmark doses for health risk assessment. Regul. Toxicol. Pharmacol. 1998, 28, 150–164. [Google Scholar] [CrossRef]
- Ginsberg, G.L. Cadmium risk assessment in relation to background risk of chronic kidney disease. J. Toxicol. Environ. Health Part A 2012, 75, 374–390. [Google Scholar] [CrossRef]
- Murton, M.; Goff-Leggett, D.; Bobrowska, A.; Garcia Sanchez, J.J.; James, G.; Wittbrodt, E.; Nolan, S.; Sörstadius, E.; Pecoits-Filho, R.; Tuttle, K. Burden of Chronic Kidney Disease by KDIGO Categories of Glomerular Filtration Rate and Albuminuria: A Systematic Review. Adv. Ther. 2021, 38, 180–200. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Farrell, D.R.; Vassalotti, J.A. Screening, identifying, and treating chronic kidney disease: Why, who, when, how, and what? BMC Nephrol. 2024, 25, 34. [Google Scholar] [CrossRef]
- Doccioli, C.; Sera, F.; Francavilla, A.; Cupisti, A.; Biggeri, A. Association of cadmium environmental exposure with chronic kidney disease: A systematic review and meta-analysis. Sci. Total Environ. 2024, 906, 167165. [Google Scholar] [CrossRef]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef]
- GBD 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022–2050: A forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef]
- Slob, W.; Setzer, R.W. Shape and steepness of toxicological dose-response relationships of continuous endpoints. Crit. Rev. Toxicol. 2014, 44, 270–297. [Google Scholar] [CrossRef]
- Slob, W. A general theory of effect size, and its consequences for defining the benchmark response (BMR) for continuous endpoints. Crit. Rev. Toxicol. 2017, 47, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Moffett, D.B.; Mumtaz, M.M.; Sullivan, D.W., Jr.; Whittaker, M.H. Chapter 13, General Considerations of Dose-Effect and Dose-Response Relationships. In Handbook on the Toxicology of Metals, 5th ed.; Volume I: General Considerations; Nordberg, G., Costa, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 299–317. [Google Scholar]
- EFSA Scientific Committee. Update: Use of the benchmark dose approach in risk assessment. EFSA J. 2017, 15, 4658. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: Implications for calculating exposure limits. Am. J. Ind. Med. 2007, 50, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Byber, K.; Lison, D.; Verougstraete, V.; Dressel, H.; Hotz, P. Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: A systematic review. Crit. Rev. Toxicol. 2016, 46, 191–240. [Google Scholar] [CrossRef]
- Jalili, C.; Kazemi, M.; Cheng, H.; Mohammadi, H.; Babaei, A.; Taheri, E.; Moradi, S. Associations between exposure to heavy metals and the risk of chronic kidney disease: A systematic review and meta-analysis. Crit. Rev. Toxicol. 2021, 51, 165–182. [Google Scholar] [CrossRef]
- Swaddiwudhipong, W.; Nguntra, P.; Kaewnate, Y.; Mahasakpan, P.; Limpatanachote, P.; Aunjai, T.; Jeekeeree, W.; Punta, B.; Funkhiew, T.; Phopueng, I. Human health effects from cadmium exposure: Comparison between persons living in cadmium-contaminated and non-contaminated areas in northwestern Thailand. Southeast Asian J. Trop. Med. Public Health 2015, 46, 133–142. [Google Scholar]
- Nishijo, M.; Suwazono, Y.; Ruangyuttikarn, W.; Nambunmee, K.; Swaddiwudhipong, W.; Nogawa, K.; Nakagawa, H. Risk assessment for Thai population: Benchmark dose of urinary and blood cadmium levels for renal effects by hybrid approach of inhabitants living in polluted and non-polluted areas in Thailand. BMC Public Health 2014, 14, 702. [Google Scholar] [CrossRef]
- Suwatvitayakorn, P.; Ko, M.S.; Kim, K.W.; Chanpiwat, P. Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand. Environ. Geochem. Health 2020, 42, 2331–2344. [Google Scholar] [CrossRef]
- Swaddiwudhipong, W.; Mahasakpan, P.; Limpatanachote, P.; Krintratun, S. Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: A population study. Environ. Res. 2010, 110, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Đorđević, A.B.; Yimthiang, S.; Vesey, D.A.; Gobe, G.C. The NOAEL Equivalent of Environmental Cadmium Exposure Associated with GFR Reduction and Chronic Kidney Disease. Toxics 2022, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Zarcinas, B.A.; Pongsakul, P.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Sripaoraya, K.; Siriwong, W.; Pavittranon, S.; Chapman, R.S. Environmental arsenic exposure and risk of diabetes type 2 in Ron Phibun subdistrict, Nakhon Si Thammarat Province, Thailand: Unmatched and matched case-control studies. Risk Manag Healthc. Policy 2017, 10, 41–48. [Google Scholar] [CrossRef]
- Apple, F.; Bandt, C.; Prosch, A.; Erlandson, G.; Holmstrom, V.; Scholen, J.; Googins, M. Creatinine clearance: Enzymatic vs. Jaffé determinations of creatinine in plasma and urine. Clin. Chem. 1986, 32, 388–390. [Google Scholar] [CrossRef]
- Bernard, A.M.; Vyskocil, A.; Lauwerys, R.R. Determination of beta 2-microglobulin in human urine and serum by latex immunoassay. Clin. Chem. 1981, 27, 832–837. [Google Scholar] [CrossRef]
- Trzcinka-Ochocka, M.; Brodzka, R.; Janasik, B. Useful and Fast Method for Blood Lead and Cadmium Determination Using ICP-MS and GF-AAS; Validation Parameters. J. Clin. Lab. Anal. 2016, 30, 130–139. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: A systematic review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Phelps, K.R.; Gosmanova, E.O. A generic method for analysis of plasma concentrations. Clin. Nephrol. 2020, 94, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Sand, S.J.; von Rosen, D.; Filipsson, A.F. Benchmark calculations in risk assessment using continuous dose-response information: The influence of variance and the determination of a cut-off value. Ris Anal. 2003, 23, 1059–1068. [Google Scholar] [CrossRef]
- Slob, W.; Moerbeek, M.; Rauniomaa, E.; Piersma, A.H. A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints. Toxicol. Sci. 2005, 84, 167–185. [Google Scholar] [CrossRef]
- Sand, S.; Filipsson, A.F.; Victorin, K. Evaluation of the benchmark dose method for dichotomous data: Model dependence and model selection. Regul. Toxicol. Pharmacol. 2002, 36, 184–197. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, T.; Jelsovsky, J.Z. Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data. Risk. Anal. 2007, 27, 447–465. [Google Scholar] [CrossRef]
- Horiguchi, H.; Oguma, E.; Sasaki, S.; Okubo, H.; Murakami, K.; Miyamoto, K.; Hosoi, Y.; Murata, K.; Kayama, F. Age-relevant renal effects of cadmium exposure through consumption of home-harvested rice in female Japanese farmers. Environ. Int. 2013, 56, 1–9. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Nishijo, M.; Ruangyuttikarn, W.; Gobe, G.C. The inverse association of glomerular function and urinary β2-MG excretion and its implications for cadmium health risk assessment. Environ. Res. 2019, 173, 40–47. [Google Scholar] [CrossRef]
- Xie, S.; Perrais, M.; Golshayan, D.; Wuerzner, G.; Vaucher, J.; Thomas, A.; Marques-Vidal, P. Association between urinary heavy metal/trace element concentrations and kidney function: A prospective study. Clin. Kidney J. 2024, 18, sfae378. [Google Scholar] [CrossRef]
- Kudo, K.; Konta, T.; Mashima, Y.; Ichikawa, K.; Takasaki, S.; Ikeda, A.; Hoshikawa, M.; Suzuki, K.; Shibata, Y.; Watanabe, T.; et al. The association between renal tubular damage and rapid renal deterioration in the Japanese population: The Takahata study. Clin. Exp. Nephrol. 2011, 15, 235–241. [Google Scholar] [CrossRef]
- Phelps, K.R.; Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Vesey, D.A.; Satarug, S. Homeostasis of β2-microglobulin in diabetics and non-diabetics with modest cadmium intoxication. J. Environ. Expo. Assess. 2025, 4, 23. [Google Scholar] [CrossRef]
- Satarug, S.; Swaddiwudhipong, W.; Ruangyuttikarn, W.; Nishijo, M.; Ruiz, P. Modeling cadmium exposures in low- and high-exposure areas in Thailand. Environ. Health Perspect. 2013, 121, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S. Benchmark dose modeling to define permissible exposure levels for environmental cadmium. J. Environ. Expo. Assess. 2025, 4, 28. [Google Scholar] [CrossRef]
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2018, 37, 276–284. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar] [CrossRef]
- Schaefer, H.R.; Flannery, B.M.; Crosby, L.M.; Pouillot, R.; Farakos, S.M.S.; Van Doren, J.M.; Dennis, S.; Fitzpatrick, S.; Middleton, K. Reassessment of the cadmium toxicological reference value for use in human health assessments of foods. Regul. Toxicol. Pharmacol. 2023, 144, 105487. [Google Scholar] [CrossRef]
- Swaddiwudhipong, W.; Limpatanachote, P.; Mahasakpan, P.; Krintratun, S.; Punta, B.; Funkhiew, T. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: A five-year follow-up. Environ. Res. 2012, 112, 194–198. [Google Scholar] [CrossRef]




| Variables | All Subjects n = 799 | eGFR, mL/min/1.73 m2 | p | ||
|---|---|---|---|---|---|
| ≥90, n = 426 | 61−89, n = 303 | ≤60, n = 70 | |||
| Age, years | 49.2 (11.5) | 43.7 (9.5) * | 53.5 (8.9) * | 63.9 (11.1) * | <0.001 |
| Age range, years | 18−87 | 16−73 | 28−80 | 44−87 | − |
| BMI, kg/m2 | 23.3 (3.9) | 23.6 (3.8) | 23.2 (3.9) | 22.3 (4.3) | 0.088 |
| eGFR, mL/min/1.73 m2 | 90 (21) | 106 (10) | 77 (8) | 47 (11) | <0.001 |
| Women, % | 62.5 | 59.9 | 66.3 | 61.4 | 0.202 |
| Hypertension, % | 33.5 | 30.3 | 36.2 | 41.4 | 0.087 |
| Smoking, % | 39.7 | 34.3 * | 42.9 * | 58.6 * | <0.001 |
| ECd/Ecr, µg/g creatinine | 2.15 [2.09] | 1.58 [2.53] | 2.55 [1.90] | 6.58 [1.23] | <0.001 |
| Eβ2M/Ecr, µg/g creatinine | 46.0 [1.0] | 21.1[1.11] | 63.17 [1.03] | 1341.1 [1.00] | <0.001 |
| Eβ2M/Ecr, µg/g creatinine, % | |||||
| ≥100 | 31.8 | 20.0 | 37.0 | 81.4 | <0.001 |
| ≥300 | 16.1 | 6.3 | 18.5 | 65.7 | <0.001 |
| ≥1000 | 8.9 | 0.9 | 9.2 | 55.7 | <0.001 |
| (ECd/Ccr) × 100, µg/L filtrate | 1.82 [2.47] | 1.15 [3.25] | 2.38 [2.00] | 9.00 [1.18] | <0.001 |
| (Eβ2M/Ccr) × 100, µg/L filtrate | 38.9 [1.1] | 21.13 [1.11] | 63.17 [1.04] | 1341 [1.00] | <0.001 |
| (Eβ2M/Ccr) × 100, µg/L filtrate, % | |||||
| ≥100 | 28.2 | 14.8 | 34.3 | 82.9 | <0.001 |
| ≥300 | 16.0 | 5.2 | 18.8 | 70.0 | <0.001 |
| ≥1000 | 8.6 | 0.5 | 8.9 | 57.1 | <0.001 |
| Independent Variables/Factors | CKD (eGFR ≤ 60 mL/min/1.73 m2) | ||||
|---|---|---|---|---|---|
| β Coefficients | POR | 95% CI | p | ||
| (SE) | Lower | Upper | |||
| Model A | |||||
| Age, years | 0.160 (0.020) | 1.173 | 1.128 | 1.220 | <0.001 |
| Log2[(ECd/Ecr)], µg/g creatinine | 0.684 (0.142) | 1.981 | 1.500 | 2.615 | <0.001 |
| Gender | 0.126 (0.107) | 1.135 | 0.533 | 2.415 | 0.743 |
| Hypertension | 0.659 (0.355) | 1.933 | 0.965 | 3.874 | 0.063 |
| Smoking | 0.131 (0.392) | 1.140 | 0.529 | 2.456 | 0.738 |
| BMI, kg/m2 | |||||
| 12−18 | Referent | ||||
| 19−23 | 0.140 (0.489) | 1.150 | 0.441 | 3.002 | 0.775 |
| ≥24 | 1.387 (0.554) | 4.002 | 1.351 | 11.86 | 0.012 |
| Model B | |||||
| Age, years | 0.156 (0.022) | 1.168 | 1.119 | 1.219 | <0.001 |
| Log2[(ECd/Ccr)], µg/L filtrate | 1.142 (0.169) | 3.132 | 2.249 | 4.361 | <0.001 |
| Gender | −0.330 (0.422) | 0.719 | 0.315 | 1.643 | 0.434 |
| Hypertension | 0.977 (0.392) | 2.656 | 1.231 | 5.727 | 0.013 |
| Smoking | 0.098 (0.417) | 1.103 | 0.487 | 2.495 | 0.815 |
| BMI, kg/m2 | |||||
| 12−18 | Referent | ||||
| 19−23 | 0.126 (0.528) | 1.134 | 0.403 | 3.189 | 0.812 |
| ≥24 | 1.565 (0.603) | 4.784 | 1.468 | 15.59 | 0.009 |
| Independent Variables | β2M Excretion Level 1 a | β2M Excretion Level 2 | β2M Excretion Level 3 | |||
|---|---|---|---|---|---|---|
| POR (95% CI) | p | POR (95% CI) | p | POR (95% CI) | p | |
| Model A | ||||||
| Age, years | 1.045 (1.021, 1.070) | <0.001 | 1.044 (1.017, 1.073) | 0.002 | 1.035 (1.000, 1.071) | 0.049 |
| BMI, kg/m2 | 0.931 (0.880, 0.986) | 0.015 | 0.905 (0.842, 0.974) | 0.008 | 0.963 (0.878, 1.055) | 0.413 |
| Gender | 0.781 (0.501, 1.218) | 0.276 | 2.031 (1.192, 3.459) | 0.009 | 1.235 (0.624, 2.444) | 0.545 |
| Hypertension | 1.353 (0.887, 2.065) | 0.161 | 1.399 (0.815, 2.401) | 0.223 | 1.436 (0.718, 2.874) | 0.306 |
| Smoking | 0.728 (0.470, 1.126) | 0.153 | 1.150 (0.662, 1.998) | 0.619 | 0.653 (0.313, 1.359) | 0.254 |
| CKD b | 4.475 (2.051, 9.763) | <0.001 | 8.125 (3.399, 16.93) | <0.001 | 12.51 (5.879, 26.64) | <0.001 |
| ECd/Ecr, µg/g creatinine | ||||||
| ≤0.37 | Referent | |||||
| 0.38−2.49 | 1.976 (1.180, 3.308) | 0.010 | 1.163 (0.566, 2.390) | 0.680 | 1.419 (0.430, 4.688) | 0.566 |
| ≥2.50 | 5.285 (2.929, 9.536) | <0.001 | 3.470 (1.629, 7.394) | 0.001 | 4.540 (1.374, 14.99) | 0.013 |
| Model B | POR (95% CI) | p | POR (95% CI) | p | POR (95% CI) | p |
| Age, years | 1.049 (1.023, 1.075) | <0.001 | 1.048 (1.018, 1.078) | 0.001 | 1.050 (1.013, 1.088) | 0.007 |
| BMI, kg/m2 | 0.918 (0.865, 0.975) | 0.005 | 0.893 (0.826, 0.965) | 0.004 | 0.988 (0.896, 1.089) | 0.805 |
| Gender | 1.273 (0.806, 2.009) | 0.300 | 2.551 (1.457, 4.466) | 0.001 | 1.605 (0.779, 3.310) | 0.200 |
| Hypertension | 1.074 (0.699, 1.652) | 0.744 | 1.245 (0.721, 2.149) | 0.431 | 1.070 (0.519, 2.205) | 0.855 |
| Smoking | 0.833 (0.529, 1.311) | 0.430 | 1.044 (0.587, 1.856) | 0.883 | 0.527 (0.238, 1.165) | 0.113 |
| CKD b | 5.823 (2.601, 13.04) | <0.001 | 10.07 (4.657, 21.78 | <0.001 | 12.13 (5.588, 26.35) | <0.001 |
| (ECd/Ccr) × 100, µg/L filtrate | ||||||
| ≤1.49 | Referent | |||||
| 1.50−4.99 | 2.740 (1.460, 5.143) | 0.002 | 2.296 (0.913, 5.774) | 0.077 | 2.606 (0.297, 22.85) | 0.387 |
| ≥5 | 5.831 (3.095, 10.99) | <0.001 | 6.351 (2.617, 15.41) | <0.001 | 15.35 (1.976, 119.3) | 0.009 |
| Independent Variables | Elevated β2M Excretion Levels | Low eGFR a | ||
|---|---|---|---|---|
| Level 1: ≥100 | Level 2: ≥ 300 | Level 3: ≥1000 | ||
| Ecr-normalized dataset b | BMDL5 (BMDU5) | BMDL5 (BMDU5) | BMDL5 (BMDU5) | BMDL5 (BMDU5) |
| Men | 0.451 (2.65) | 0.869 (4.48) | 1.52 (4.96) | 1.76 (4.54) |
| Women | 0.668 (4.49) | 2.340 (14.3) | 3.11 (13.8) | 2.24 (9.30) |
| All | 0.640 (3.68) | 0.812 (5.51) | 2.35 (6.76) | 2.23 (6.29) |
| Ccr-normalized dataset c | BMDL5 (BMDU5) | BMDL5 (BMDU5) | BMDL5 (BMDU5) | BMDL5 (BMDU5) |
| Men | 0.91 (3.58) | 1.11 (4.40) | 2.93 (7.41) | 3.33 (6.76) |
| Women | 0.91 (3.18) | 2.01 (6.78) | 4.50 (9.74) | 2.95 (6.30) |
| All | 0.93 (3.30) | 1.91 (5.13) | 3.62 (7.80) | 3.10 (6.19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satarug, S.; Vesey, D.A.; Buha Đorđević, A. Use of Urinary β2-Microglobulin in the Assessment of the Health Risk from Environmental Cadmium Exposure. Appl. Sci. 2025, 15, 11757. https://doi.org/10.3390/app152111757
Satarug S, Vesey DA, Buha Đorđević A. Use of Urinary β2-Microglobulin in the Assessment of the Health Risk from Environmental Cadmium Exposure. Applied Sciences. 2025; 15(21):11757. https://doi.org/10.3390/app152111757
Chicago/Turabian StyleSatarug, Soisungwan, David A. Vesey, and Aleksandra Buha Đorđević. 2025. "Use of Urinary β2-Microglobulin in the Assessment of the Health Risk from Environmental Cadmium Exposure" Applied Sciences 15, no. 21: 11757. https://doi.org/10.3390/app152111757
APA StyleSatarug, S., Vesey, D. A., & Buha Đorđević, A. (2025). Use of Urinary β2-Microglobulin in the Assessment of the Health Risk from Environmental Cadmium Exposure. Applied Sciences, 15(21), 11757. https://doi.org/10.3390/app152111757

