GLMA: Global-to-Local Mamba Architecture for Low-Light Image Enhancement
Abstract
1. Introduction
- We propose a Global-to-Local Mamba network for low-light image restoration that effectively captures intricate global and local dependency relationships.
- We incorporate wavelet transforms to avert information loss during downsampling and devise a framework that amalgamates a Global Mamba Block, predicated on the Visual State Space Module (VSSM) for long-range dependency modeling, which can progressively distill multi-level features.
- We integrate a novel Multi-Scale Feedforward Network (MSFFN) to supply complementary structural features across scales, leveraging rich low-frequency feature information to guide the restoration of high-frequency details.
- Extensive experiments conducted across multiple benchmark datasets demonstrate the superior performance of the proposed model, achieving state-of-the-art results in quantitative metrics while maintaining exceptional visual fidelity in restored images.
2. Related Works
2.1. Low-Light Image Enhancement
2.2. State Space Models (SSMs)
2.3. Wavelet Transformation
3. Method
3.1. Framework Overview
3.2. Low-Frequency Mamba Block
- Computational Efficiency: Using state-space models like VSSM allows for linear complexity with respect to sequence length, which is beneficial for high-resolution images.
- Improved Optimization: The sequential structure avoids the common issue of gradient cancellation when parallel global and local paths are used.
- Contextual Coherence: Global context informs local processing, which is especially useful in low-light scenarios where local features might be noisy or ambiguous.
3.3. High Frequency Guidance Block
- Frequency-Matching Transformation module ensures that only semantically coherent low-frequency cues are injected into the high-frequency, eliminating semantic misalignment.
- Frequency-Matching Transformation module offers statistically reliable cues for fine-grained detail recovery, resulting in perceptually faithful edge sharpening.
- The residual pathway ensures unimpeded gradient flow, facilitating stable end-to-end back-propagation.
4. Experiment
4.1. Implementation Details
4.2. Datasets
4.3. Comparisons with State-of-the-Art Methods
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Li, J.; Dai, T.; Ouyang, Z.; Ren, X.; Xia, S.T. Mambair: A simple baseline for image restoration with state-space model. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024; pp. 222–241. [Google Scholar]
- Shi, Y.; Xia, B.; Jin, X.; Wang, X.; Zhao, T.; Xia, X.; Xiao, X.; Yang, W. VmambaIR: Visual State Space Model for Image Restoration. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 5560–5574. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Tu, Z.; Liu, X.; Guo, Q.; Juefei-Xu, F.; Xu, R.; Yu, H. Light the night: A multi-condition diffusion framework for unpaired low-light enhancement in autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 15205–15215. [Google Scholar]
- Liang, D.; Xu, Z.; Li, L.; Wei, M.; Chen, S. PIE: Physics-inspired low-light enhancement. Int. J. Comput. Vis. 2024, 132, 3911–3932. [Google Scholar] [CrossRef]
- Goyal, B.; Dogra, A.; Lepcha, D.C.; Goyal, V.; Alkhayyat, A.; Chohan, J.S.; Kukreja, V. Recent advances in image dehazing: Formal analysis to automated approaches. Inf. Fusion 2024, 104, 102151. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S.; Li, H. Depth information assisted collaborative mutual promotion network for single image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 2846–2855. [Google Scholar]
- Xiang, Y.; Zhou, H.; Li, C.; Sun, F.; Li, Z.; Xie, Y. Deep learning in motion deblurring: Current status, benchmarks and future prospects. Vis. Comput. 2024, 41, 3801–3827. [Google Scholar] [CrossRef]
- Su, H.; Li, Y.; Xu, Y.; Fu, X.; Liu, S. A review of deep-learning-based super-resolution: From methods to applications. Pattern Recognit. 2024, 157, 110935. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, W.; Cao, W. Dvmsr: Distillated vision mamba for efficient super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 6536–6546. [Google Scholar]
- Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A review of convolutional neural networks in computer vision. Artif. Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Shou, Y.; Cao, X.; Liu, H.; Meng, D. Masked contrastive graph representation learning for age estimation. Pattern Recognit. 2025, 158, 110974. [Google Scholar] [CrossRef]
- Feng, K.; Ma, Y.; Wang, B.; Qi, C.; Chen, H.; Chen, Q.; Wang, Z. Dit4edit: Diffusion transformer for image editing. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 2969–2977. [Google Scholar]
- Xia, C.; Wang, X.; Lv, F.; Hao, X.; Shi, Y. Vit-comer: Vision transformer with convolutional multi-scale feature interaction for dense predictions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 5493–5502. [Google Scholar]
- Ma, X.; Zhang, X.; Pun, M.O. Rs 3 mamba: Visual state space model for remote sensing image semantic segmentation. IEEE Geosci. Remote Sens. Lett. 2024, 21, 6011405. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, M.; Zhao, W.; Ding, P.; Huang, S.; Wang, D. Cobra: Extending mamba to multi-modal large language model for efficient inference. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 10421–10429. [Google Scholar]
- Shen, H.; Wan, Z.; Wang, X.; Zhang, M. Famba-v: Fast vision mamba with cross-layer token fusion. In Proceedings of the European Conference on Computer Vision, Dublin, Ireland, 22–23 October 2025; pp. 268–278. [Google Scholar]
- Liu, Y.; Tian, Y.; Zhao, Y.; Yu, H.; Xie, L.; Wang, Y.; Ye, Q.; Jiao, J.; Liu, Y. Vmamba: Visual state space model. Adv. Neural Inf. Process. Syst. 2024, 37, 103031–103063. [Google Scholar]
- Chang, M.; Feng, H.; Xu, Z.; Li, Q. Low-light image restoration with short-and long-exposure raw pairs. IEEE Trans. Multimed. 2021, 24, 702–714. [Google Scholar] [CrossRef]
- Xu, K.; Yang, X.; Yin, B.; Lau, R.W. Learning to restore low-light images via decomposition-and-enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2281–2290. [Google Scholar]
- Wu, X.; Lai, Z.; Yu, S.; Zhou, J.; Liang, Z.; Shen, L. Coarse-to-fine low-light image enhancement with light restoration and color refinement. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 8, 591–603. [Google Scholar] [CrossRef]
- Land, E.H.; McCann, J.J. Lightness and retinex theory. J. Opt. Soc. Am. 1971, 61, 1–11. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Zhang, J.; Wang, A.; Bai, H. Learning deep texture-structure decomposition for low-light image restoration and enhancement. Neurocomputing 2023, 524, 126–141. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1780–1789. [Google Scholar]
- Li, C.; Guo, C.; Loy, C.C. Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4225–4238. [Google Scholar] [CrossRef]
- Jiang, H.; Luo, A.; Fan, H.; Han, S.; Liu, S. Low-light image enhancement with wavelet-based diffusion models. ACM Trans. Graph. (TOG) 2023, 42, 238. [Google Scholar] [CrossRef]
- Bai, J.; Yin, Y.; He, Q.; Li, Y.; Zhang, X. Retinexmamba: Retinex-based mamba for low-light image enhancement. In Proceedings of the ICONIP 2024, Auckland, New Zealand, 2–6 December 2024; pp. 427–442. [Google Scholar]
- Weng, J.; Yan, Z.; Tai, Y.; Qian, J.; Yang, J.; Li, J. Mamballie: Implicit retinex-aware low light enhancement with global-then-local state space. Adv. Neural Inf. Process. Syst. 2024, 37, 27440–27462. [Google Scholar]
- Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 64–67. [Google Scholar]
- Mai, H.; Yin, Z. A new zero-order algorithm to solve the maximum hands-off control. IEEE Trans. Autom. Control 2023, 69, 2761–2768. [Google Scholar] [CrossRef]
- Zou, W.; Gao, H.; Yang, W.; Liu, T. Wave-mamba: Wavelet state space model for ultra-high-definition low-light image enhancement. In Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 1534–1543. [Google Scholar]
- Osadchiy, A.; Kamenev, A.; Saharov, V.; Chernyi, S. Signal processing algorithm based on discrete wavelet transform. Designs 2021, 5, 41. [Google Scholar] [CrossRef]
- Azad, R.; Aghdam, E.K.; Rauland, A.; Jia, Y.; Avval, A.H.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.P.; Adeli, E.; Merhof, D. Medical Image Segmentation Review: The Success of U-Net. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10076–10095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Guo, X. Kindling the darkness: A practical low-light image enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1632–1640. [Google Scholar]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10561–10570. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. Enlightengan: Deep light enhancement without paired supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cun, X.; Bao, J.; Zhou, W.; Liu, J.; Li, H. Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 17683–17693. [Google Scholar]
- Cui, Z.; Li, K.; Gu, L.; Su, S.; Gao, P.; Jiang, Z.; Qiao, Y.; Harada, T. You only need 90k parameters to adapt light: A light weight transformer for image enhancement and exposure correction. arXiv 2022, arXiv:2205.14871. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, Y.; Tu, X.; Huang, Y.; Ding, X.; Ma, K.K. Learning a simple low-light image enhancer from paired low-light instances. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22252–22261. [Google Scholar]
- Ma, L.; Ma, T.; Liu, R.; Fan, X.; Luo, Z. Toward fast, flexible, and robust low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5637–5646. [Google Scholar]
- Jie, H.; Zuo, X.; Gao, J.; Liu, W.; Hu, J.; Cheng, S. Llformer: An efficient and real-time lidar lane detection method based on transformer. In Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems, Shenyang, China, 28–30 July 2023; pp. 18–23. [Google Scholar]
- Yan, Q.; Feng, Y.; Zhang, C.; Pang, G.; Shi, K.; Wu, P.; Dong, W.; Sun, J.; Zhang, Y. Hvi: A new color space for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Conference, Nashville, TN, USA, 10–17 June 2025; pp. 5678–5687. [Google Scholar]
- Guo, X.; Hu, Q. Low-light image enhancement via breaking down the darkness. Int. J. Comput. Vis. 2023, 131, 48–66. [Google Scholar] [CrossRef]
- Wang, W.; Yang, H.; Fu, J.; Liu, J. Zero-reference low-light enhancement via physical quadruple priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 26057–26066. [Google Scholar]
- Hou, J.; Zhu, Z.; Hou, J.; Liu, H.; Zeng, H.; Yuan, H. Global structure-aware diffusion process for low-light image enhancement. Adv. Neural Inf. Process. Syst. 2023, 36, 79734–79747. [Google Scholar]
Methods | Venue | PSNR | SSIM | LPIPS |
---|---|---|---|---|
RetinexNet [26] | BMVC 2018 | 16.77 | 0.56 | 0.47 |
KinD [33] | MM 2019 | 17.65 | 0.72 | 0.17 |
ZeroDCE [23] | CVPR 2020 | 14.86 | 0.58 | 0.33 |
RUAS [34] | CVPR 2021 | 16.40 | 0.50 | 0.27 |
EnlightenGAN [35] | TIP 2021 | 17.48 | 0.76 | 0.32 |
UFormer [36] | CVPR 2022 | 16.36 | 0.77 | 0.32 |
IAT [37] | BMVC 2022 | 21.30 | 0.81 | 0.32 |
PairLIE [38] | CVPR 2023 | 19.51 | 0.73 | 0.24 |
SCI [39] | CVPR 2022 | 14.78 | 0.52 | 0.33 |
LLFormer [40] | AAAI 2023 | 23.65 | 0.84 | 0.16 |
WaveMamba [30] | ACM MM 2024 | 23.27 | 0.84 | 0.14 |
HVI [41] | CVPR 2025 | 23.80 | 0.85 | 0.08 |
Ours | - | 23.91 | 0.84 | 0.14 |
Methods | VENUE | PSNR | SSIM | LPIPS |
---|---|---|---|---|
RetinexNet [26] | BMVC 2018 | 17.13 | 0.76 | 0.25 |
KinD [33] | MM 2019 | 18.32 | 0.79 | 0.25 |
RUAS [34] | CVPR 2021 | 13.76 | 0.63 | 0.30 |
ZeroDCE [23] | CVPR 2020 | 17.71 | 0.81 | 0.17 |
Uformer [36] | CVPR 2022 | 19.66 | 0.87 | - |
PairLIE [38] | CVPR 2023 | 19.07 | 0.79 | 0.23 |
LLFormer [40] | AAAI 2023 | 24.03 | 0.90 | 0.06 |
Bread [42] | JVC 2023 | 17.63 | 0.91 | 0.09 |
GSAD [44] | NeurIPS 2023 | 24.47 | 0.92 | 0.05 |
QuadPrior [43] | CVPR 2024 | 16.10 | 0.75 | 0.11 |
Wave-Mamba [30] | ACMM 2024 | 24.76 | 0.92 | 0.06 |
Ours | - | 24.87 | 0.93 | 0.06 |
Method | Param (M) | Flops (G) |
---|---|---|
KinD | 8.02 | 34.99 |
PairL | 0.33 | 20.81 |
LLFormer | 24.55 | 22.52 |
Uformer | 50.88 | 45.90 |
GSAD | 217.36 | 442.02 |
QuadPrior | 1252.7 | 1103.2 |
Ours | 1.9 | 9.02 |
Method | PSNR | SSIM |
---|---|---|
w/o LFMBlock | 22.81 | 0.82 |
w/o HFGBlock | 22.95 | 0.83 |
w/o LFE | 23.06 | 0.83 |
w/o MSFFN | 23.12 | 0.83 |
w/o FMT | 23.58 | 0.84 |
Full Model | 23.91 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, X.; Guan, Y.; Lin, S.; Ding, N.; Wang, Q.; Tang, Y. GLMA: Global-to-Local Mamba Architecture for Low-Light Image Enhancement. Appl. Sci. 2025, 15, 10931. https://doi.org/10.3390/app152010931
Li W, Wu X, Guan Y, Lin S, Ding N, Wang Q, Tang Y. GLMA: Global-to-Local Mamba Architecture for Low-Light Image Enhancement. Applied Sciences. 2025; 15(20):10931. https://doi.org/10.3390/app152010931
Chicago/Turabian StyleLi, Wentao, Xinhao Wu, Yu Guan, Sen Lin, Naida Ding, Qiang Wang, and Yandong Tang. 2025. "GLMA: Global-to-Local Mamba Architecture for Low-Light Image Enhancement" Applied Sciences 15, no. 20: 10931. https://doi.org/10.3390/app152010931
APA StyleLi, W., Wu, X., Guan, Y., Lin, S., Ding, N., Wang, Q., & Tang, Y. (2025). GLMA: Global-to-Local Mamba Architecture for Low-Light Image Enhancement. Applied Sciences, 15(20), 10931. https://doi.org/10.3390/app152010931