Effect of a Four-Week Extreme Heat (100 ± 2 °C) Sauna Baths Program in Combination with Resistance Training on Lower Limb Strength and Body Composition: A Blinded, Randomized Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical and Biosafety Criteria
2.2. Participants
2.3. Study Design
2.4. Assessments
2.4.1. Structure, Timing, and Order of Assessments
2.4.2. Physical Activity and Fitness Evaluations
2.4.3. Body Temperature Assessment
2.4.4. Resting Cardiovascular Response
2.4.5. Body Composition and Anthropometry
2.4.6. Maximum Isometric Strength
2.4.7. Resistance Strength
2.5. Training Program
2.6. Sauna Bathing Program
2.7. Hydration Control
2.8. Statistical Analysis
3. Results
3.1. Anthropometric and Body Composition
3.2. Metabolic Rate, Body Temperatures, and Cardiovascular Parameters
3.3. Resistance Strength
3.4. Isometric Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McGorm, H.; Roberts, L.A.; Coombes, J.S.; Peake, J.M. Turning up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. Sports Med. 2018, 48, 1311–1328. [Google Scholar] [CrossRef] [PubMed]
- Pryor, J.L.; Johnson, E.C.; Roberts, W.O.; Pryor, R.R. Application of Evidence-Based Recommendations for Heat Acclimation: Individual and Team Sport Perspectives. Temperature 2019, 6, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Lee, M.J.; Lee, H.M.; Lee, J.S. Effect of Low-Intensity Resistance Training with Heat Stress on the HS P72, Anabolic Hormones, Muscle Size, and Strength in Elderly Women. Aging Clin. Exp. Res. 2016, 29, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Pryor, J.L.; Sweet, D.; Rosbrook, P.; Qiao, J.; Hess, H.W.; Looney, D.P. Resistance Training in the Heat: Mechanisms of Hypertrophy and Performance Enhancement. J. Strength Cond. Res. 2024, 38, 1350–1357. [Google Scholar] [CrossRef]
- Liu, Y.; Gampert, L.; Nething, K.; Steinacker, J.M. Response and Function of Skeletal Muscle Heat Shock Protein 70. Front. Biosci. Landmark 2006, 11, 2802–2827. [Google Scholar] [CrossRef]
- Fennel, Z.J.; Ducharme, J.B.; Berkemeier, Q.N.; Specht, J.W.; McKenna, Z.J.; Simpson, S.E.; Nava, R.C.; Escobar, K.A.; Hafen, P.S.; Deyhle, M.R. Effect of Heat Stress on Heat Shock Protein Expression and Hypertrophy-Related Signaling in the Skeletal Muscle of Trained Individuals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2023, 325, R735–R749. [Google Scholar] [CrossRef]
- Tardo-Dino, P.; Taverny, C.; Siracusa, J.; Bourdon, S.; Baugé, S.; Koulmann, N.; Malgoyre, A. Effect of Heat Acclimation on Metabolic Adaptations Induced by Endurance Training in Soleus Rat Muscle. Physiol. Rep. 2021, 9, e14686. [Google Scholar] [CrossRef]
- Fennel, Z.J.; Amorim, F.T.; Deyhle, M.R.; Hafen, P.S.; Mermier, C.M. The Heat Shock Connection: Skeletal Muscle Hypertrophy and Atrophy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 323, R133–R148. [Google Scholar] [CrossRef]
- McGlynn, M.L.; Rosales, A.M.; Collins, C.W.; Slivka, D.R. The Independent Effects of Local Heat Application on Muscle Growth Program Associated mRNA and Protein Phosphorylation. J. Therm. Biol. 2023, 115, 103602. [Google Scholar] [CrossRef]
- Kim, K.; Monroe, J.C.; Gavin, T.P.; Roseguini, B.T. Skeletal Muscle Adaptations to Heat Therapy. J. Appl. Physiol. 2020, 128, 1635–1642. [Google Scholar] [CrossRef]
- Sabapathy, M.; Tan, F.; Al Hussein, S.; Jaafar, H.; Brocherie, F.; Racinais, S.; Ihsan, M. Effect of Heat Pre-Conditioning on Recovery Following Exercise-Induced Muscle Damage. Curr. Res. Physiol. 2021, 4, 155–162. [Google Scholar] [CrossRef]
- Dunn, R.A.; Luk, H.-Y.; Appell, C.R.; Jiwan, N.C.; Keefe, M.S.; Rolloque, J.-J.S.; Sekiguchi, Y. Eccentric Muscle-Damaging Exercise in the Heat Lowers Cellular Stress Prior to and Immediately Following Future Exertional Heat Exposure. Cell Stress Chaperones 2024, 29, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Nakamura, M.; Ikegami, R. The Effect of Single Bout Treatment of Heat or Cold Intervention on Delayed Onset Muscle Soreness Induced by Eccentric Contraction. Healthcare 2022, 10, 2556. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.J.; Betz, M.W.; Petrick, H.L.; Weber, J.; Senden, J.M.; Hendriks, F.K.; Bels, J.L.; van Loon, L.J.; Snijders, T. Repeated Passive Heat Treatment Increases Muscle Tissue Capillarization, but Does Not Affect Postprandial Muscle Protein Synthesis Rates in Healthy Older Adults. J. Physiol. 2025, 603, 167–186. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, M.L.; Rosales, A.M.; Collins, C.W.; Slivka, D.R. The Combined Influences of Local Heat Application and Resistance Exercise on the Acute mRNA Response of Skeletal Muscle. Front. Physiol. 2024, 15, 1473241. [Google Scholar] [CrossRef]
- Kim, K.; Ro, B.; Damen, F.W.; Gramling, D.P.; Lehr, T.D.; Song, Q.; Goergen, C.J.; Roseguini, B.T. Heat Therapy Improves Body Composition and Muscle Function but Does Not Affect Capillary or Collateral Growth in a Model of Obesity and Hindlimb Ischemia. J. Appl. Physiol. 2021, 130, 355–368. [Google Scholar] [CrossRef]
- Bartolomé, I.; Siquier-Coll, J.; Pérez-Quintero, M.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males. Int. J. Environ. Res. Public Health 2021, 18, 5240. [Google Scholar] [CrossRef]
- Bartolomé, I.; Toro-Román, V.; Siquier-Coll, J.; Muñoz, D.; Robles-Gil, M.C.; Maynar-Mariño, M. Acute Effect of Exposure to Extreme Heat (100 ± 3 °C) on Lower Limb Maximal Resistance Strength. Int. J. Environ. Res. Public. Health 2022, 19, 10934. [Google Scholar] [CrossRef]
- Périard, J.; Racinais, S. Heat Stress in Sport and Exercise; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 3-319-93514-3. [Google Scholar]
- Racinais, S.; Oksa, J. Temperature and Neuromuscular Function. Scand. J. Med. Sci. Sports 2010, 20, 1–18. [Google Scholar] [CrossRef]
- Kukkonen-Harjula, K.; Oja, P.; Laustiola, K.; Vuori, I.; Jolkkonen, J.; Siitonen, S.; Vapaatalo, H. Haemodynamic and Hormonal Responses to Heat Exposure in a Finnish Sauna Bath. Eur. J. Appl. Physiol. 1989, 58, 543–550. [Google Scholar] [CrossRef]
- Kukkonen-Harjula, K.; Kauppinen, K. How the Sauna Affects the Endocrine System. Ann. Clin. Res. 1988, 20, 262–266. [Google Scholar]
- Racinais, S.; Wilson, M.G.; Périard, J.D. Passive Heat Acclimation Improves Skeletal Muscle Contractility in Humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R101–R107. [Google Scholar] [CrossRef]
- Racinais, S.; Wilson, M.G.; Gaoua, N.; Périard, J.D. Heat Acclimation Has a Protective Effect on the Central but Not Peripheral Nervous System. J. Appl. Physiol. 2017, 123, 816–824. [Google Scholar] [CrossRef]
- Kurth, J.D.; Klenosky, D.B. Validity Evidence for a Daily, Online-Delivered, Adapted Version of the International Physical Activity Questionnaire Short Form (IPAQ-SF). Meas. Phys. Educ. Exerc. Sci. 2021, 25, 127–136. [Google Scholar] [CrossRef]
- Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Toro-Román, V.; Grijota, F.J.; Maynar-Mariño, M. Heart Rate and Body Temperature Evolution in an Interval Program of Passive Heat Acclimation at High Temperatures (100 ± 2 °C) in a Sauna. Int. J. Environ. Res. Public Health 2023, 20, 2082. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Parati, G.; McManus, R.J.; Head, G.A.; Myers, M.G.; Whelton, P.K. Guidelines for Blood Pressure Measurement: Development over 30 Years. J. Clin. Hypertens. 2018, 20, 1089–1091. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M. Bioelectrical Impedance Analysis—Part II: Utilization in Clinical Practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Norton, K.I. Standards for Anthropometry Assessment. Kinanthropometry Exerc. Physiol. 2018, 4, 68–137. [Google Scholar]
- Miller, T.A. NSCA’s Guide to Tests and Assessments; Human Kinetics: Champaign, IL, USA, 2012; ISBN 1-4925-8278-6. [Google Scholar]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Danc. 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect Size Estimates: Current Use, Calculations, and Interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [Google Scholar] [CrossRef]
- Coolican, H. Research Methods and Statistics in Psychology; Psychology Press: Hove, UK, 2017; ISBN 0-203-76983-X. [Google Scholar]
- Miyatake, N.; Miyachi, M.; Tabata, I.; Sakano, N.; Hirao, T.; Numata, T. Relationship between Muscle Strength and Anthropometric, Body Composition Parameters in Japanese Adolescents. Health 2012, 4, 1–5. [Google Scholar] [CrossRef]
- Potteiger, J.A.; Smith, D.L.; Maier, M.L.; Foster, T.S. Relationship between Body Composition, Leg Strength, Anaerobic Power, and on-Ice Skating Performance in Division I Men’s Hockey Athletes. J. Strength Cond. Res. 2010, 24, 1755–1762. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Freitas, T.T.; Bishop, C.; Pareja-Blanco, F.; McGuigan, M.R. Maximum Strength, Relative Strength, and Strength Deficit: Relationships with Performance and Differences between Elite Sprinters and Professional Rugby Union Players. Int. J. Sports Physiol. Perform. 2021, 16, 1148–1153. [Google Scholar] [CrossRef]
- Toigo, M.; Boutellier, U. New Fundamental Resistance Exercise Determinants of Molecular and Cellular Muscle Adaptations. Eur. J. Appl. Physiol. 2006, 97, 643–663. [Google Scholar] [CrossRef]
- Ogura, Y.; Naito, H.; Tsurukawa, T.; Ichinoseki-Sekine, N.; Saga, N.; Sugiura, T.; Katamoto, S. Microwave Hyperthermia Treatment Increases Heat Shock Proteins in Human Skeletal Muscle. Br. J. Sports Med. 2007, 41, 453–455. [Google Scholar] [CrossRef]
- Kakigi, R.; Naito, H.; Ogura, Y.; Kobayashi, H.; Saga, N.; Ichinoseki-Sekine, N.; Yoshihara, T.; Katamoto, S. Heat Stress Enhances mTOR Signaling after Resistance Exercise in Human Skeletal Muscle. J. Physiol. Sci. 2011, 61, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Leppäluoto, J.; Tuominen, M.; Väänänen, A.; Karpakka, J.; Vuor, J. Some Cardiovascular and Metabolic Effects of Repeated Sauna Bathing. Acta Physiol. Scand. 1986, 128, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Judelson, D.A.; Maresh, C.M.; Yamamoto, L.M.; Farrell, M.J.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of Hydration State on Resistance Exercise-Induced Endocrine Markers of Anabolism, Catabolism, and Metabolism. J. Appl. Physiol. 2008, 105, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Coyle, E.F. Influence of Body Water and Blood Volume on Thermoregulation and Exerc Ise Performance in the Heat. Exerc. Sport Sci. Rev. 1999, 27, 167–218. [Google Scholar] [CrossRef]
- Périard, J.D.; Travers, G.J.; Racinais, S.; Sawka, M.N. Cardiovascular Adaptations Supporting Human Exercise-Heat Acclimation. Auton. Neurosci. 2016, 196, 52–62. [Google Scholar] [CrossRef]
- Pethick, W.A.; Murray, H.J.; McFadyen, P.; Brodie, R.; Gaul, C.A.; Stellingwerff, T. Effects of Hydration Status during Heat Acclimation on Plasma Volume and Performance. Scand. J. Med. Sci. Sports 2019, 29, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Schumann, M.; Ronnestad, B. Concurrent Aerobic and Strength Training, Scientific Basics and Practical Applications; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Zając, A.; Chalimoniuk, M.; Maszczyk, A.; Gołaś, A.; Lngfort, J. Central and Peripheral Fatigue during Resistance Exercise—A Critical Review. J. Hum. Kinet. 2015, 49, 159. [Google Scholar] [CrossRef] [PubMed]
- Stetler, R.A.; Gan, Y.; Zhang, W.; Liou, A.K.; Gao, Y.; Cao, G.; Chen, J. Heat Shock Proteins: Cellular and Molecular Mechanisms in the Central Nervous System. Prog. Neurobiol. 2010, 92, 184–211. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Park, C.S.; Abbassi, N.R.; Tang, S.-J. Roles of Glutamate Receptors and the Mammalian Target of Rapamycin (mTOR) Signaling Pathway in Activity-Dependent Dendritic Protein Synthesis in Hippocampal Neurons. J. Biol. Chem. 2006, 281, 18802–18815. [Google Scholar] [CrossRef]
- Lee, C.-C.; Huang, C.-C.; Wu, M.-Y.; Hsu, K.-S. Insulin Stimulates Postsynaptic Density-95 Protein Translation via the Phosphoinositide 3-Kinase-Akt-Mammalian Target of Rapamycin Signaling Pathway. J. Biol. Chem. 2005, 280, 18543–18550. [Google Scholar] [CrossRef]
- Yarrow, J.F.; White, L.J.; McCoy, S.C.; Borst, S.E. Training Augments Resistance Exercise Induced Elevation of Circulating Brain Derived Neurotrophic Factor (BDNF). Neurosci. Lett. 2010, 479, 161–165. [Google Scholar] [CrossRef]
- Cui, Z.-P. Effect of Early Rehabilitation Training on the Serum NGF, NSE, BDNF, and Motor Function in Patients with Acute Cerebral Infarction. J. Hainan Med. Univ. 2017, 23, 21–24. [Google Scholar]
- Read, D.E.; Herbert, K.R.; Gorman, A.M. Heat Shock Enhances NGF-Induced Neurite Elongation Which Is Not Mediated by Hsp25 in PC12 Cells. Brain Res. 2008, 1221, 14–23. [Google Scholar] [CrossRef]
Evaluation 1 Initial | Evaluation 2 Final | Evaluation 3 Detraining | ||||
---|---|---|---|---|---|---|
HG (N = 14) | NG (N = 15) | HG (N = 14) | NG (N = 15) | HG (N = 14) | NG (N = 15) | |
Fitness (hours/week) | 5.21 (4.35–5.77) | 5.55 (4.66–6.10) | 5.01 (4.22–5.50) | 5.16 (4.44–5.79) | 5.45 (4.37–6.15) | 5.17 (3.92–5.98) |
Body weight (Kg) | 76.30 (71.00–79.00) | 65.40 (59.45–72.90) ■ | 77.40 (70.90–79.90) | 65.75 (58.40–73.05) ■ | 77.40 (72.7–79.7) ❖ | 65.40 (59.05–72.65) |
BMI (Kg/m2) | 23.82 (22.93–24.87) | 21.55 (20.42–23.26) ■ | 24.13 (22.53–24.93) | 21.89 (20.39–23.39) | 24.81 (23.04–24.95) | 21.43 (20.42–23.26) ■ |
Sf. Abdominal (mm) | 19.50 (14.50–23.2) | 13.50 (11.75–20.60) | 19.00 (13.00–21.80) | 13.00 (10.50–18.50) | 18.45 (13.10–23.00) ❖ | 13.25 (9.55–16.40) |
Sf. Suprailiac (mm) | 15.00 (8.70–18.00) | 9.50 (7.65–13.10) ■ | 14.00 (8.80–18.00) | 8.60 (6.00–12.45) ■ | 11.00 (9.00–15.10) ❖ | 10.10 (4.90–18.45) |
Sf. Subscapular (mm) | 11.50 (10.50–13–10) | 10.00 (9.25–10.10) ■ | 10.50 (10.00–11.00) | 9.40 (8.50–10.00) | 9.90 (9.30–10.50) ❖ | 9.50 (7.70–10.35) |
Sf. Tricipital (mm) | 11.20 (10.00–13.00) | 10.10 (8.75–12.10) | 11.00 (10.00–12.00) | 9.79 (7.50–12.90) | 10.00 (8.80–13.00) | 9.50 (6.50–14.45) |
Sf. Thigh (mm) | 17.50 (12.50–23.00) | 17.40 (11.40–21.75) | 16.50 (12.80–24.20) * | 18.10 (13.45–21.00) | 21.00 (15.50–26.00) ❖ | 16.00 (12.00–21.00) |
Sf. Leg (mm) | 11.54 (8.10–13.90) | 13.00 (8.80–13.60) | 9.77 (7.20–11.00) | 12.80 (8.60–16.75) * | 8.47 (6.90–10.00) ❖ | 12.10 (7.35–12.85) |
Σ 6 Skinfolds (mm) | 83.12 (69.90–92.40) | 75.27 (69.10–83.80) ■ | 80.33 (66.18–94.90) | 74.90 (66.00–88.40) | 79.75 (62.32–85.78) ❖❖ | 75.15 (67.32–89.77) |
Perim. Arm (cm) | 32.50 (31.00–33.30) | 28.60 (26.75–31.50) | 32.90 (31.50–35.00) | 28.20 (27.25–31.50) ■ | 32.70 (31.70–35.00) | 27.40 (27.00–31.45) ■ |
Perim. Thigh (cm) | 53.50 (46.50–54.00) | 48.50 (40.05–49.25) | 56.50 (50.50–57.20) * | 48.32 (43.75–50.40) ■ | 54.20 (50.20–59.00) ❖ | 49.20 (48.85–52.90) |
Perim. Leg (cm) | 37.50 (34.50–39.20) | 37.00 (35.10–42.55) | 38.20 (37.50–39.00) * | 36.00 (35.10–38.15) | 38.10 (35.30–38.50) ❖ | 35.00 (34.15–35.85) ■ ❖ |
Fat mass (kg) | 11.10 (10.00–14.70) | 8.50 (5.85–11.05) | 11.80 (10.60–16.40) | 8.63 (5.75–11.10) ■ | 11.40 (10.10–15.70) | 8.89 (6.00–10.30) |
Fat mass (%) | 14.80 (14.10–18.60) | 12.60 (9.85–15.55) | 15.20 (14.70–20.50) | 12.75 (9.60–15.35) | 15.00 (14.30–19.60) | 12.30 (10.05–14.75) |
Muscle mass (kg) | 36.23 (32.40–39.50) | 32.80 (28.40–38.60) | 37.35 (33.16–40.10) * | 32.40 (27.55–38.15) ■ | 37.60 (33.89–39.98) ❖ | 32.50 (26.99–39.12) ■ |
Muscle mass (%) | 48.58 (44.35–52.19) | 49.30 (43.80–51.78) | 49.24 (44.89–53.15) | 49.90 (42.57–52.00) | 49.73 (45.12–53.89) ❖ | 49.47 (42.60–52.20) |
Body water (kg) | 47.10 (44.70–47.90) | 40.30 (38.80–45.45) ■ | 46.50 (44.10–48.10) | 40.60 (38.30–45.35) | 47.60 (44.40.48.20) | 40.40 (38.15–45.65) ■ |
Body water (%) | 62.50 (59.60–63.00) | 64.90 (61.80–65.90) | 62.00 (58.20–62.50) | 64.80 (62.05–65.70) | 62.20 (58.90–62.70) | 64.30 (62.40–65.85) |
Evaluation 1 Initial | Evaluation 2 Final | Evaluation 3 Detraining | ||||
---|---|---|---|---|---|---|
HG (N = 14) | NG (N = 15) | HG (N = 14) | NG (N = 15) | HG (N = 14) | NG (N = 15) | |
Metabolic Rate (Kcal/d) | 1908.00 (1840.00–1910.00) | 1716.00 (1254.75–1320.00) | 1917.67 (1896.00–1922.00) | 1719.00 (1263.65–1315.50) | 1903.00 (1825.00–1919.00) | 1717.00 (1257.75–1318.50) ■ |
Int. Temp. (°C) | 36.40 (35.60–36.20) | 36.62 (35.23–35.7) | 36.60 (35.15–35.50) | 36.41 (35.00–36.10) | 36.60 (35.44–36.10) | 36.40 (35.30–35.87) |
Ext. Temp (°C) | 36.20 (35.50–36.38) | 36.71 (35.15–35.90) | 36.65 (35.40–36.24) | 36.42 (35.15–36.00) | 36.72 (35.30–36.25) | 36.65 (35.22–36.25) |
SBP (mmHg) | 124.21 (117.50–134.25) | 126.70 (123.00–155.00) | 126.15 (118.15–132.66) | 128.80 (136.67–126.00–148.00) | 126.12 (115.90–135.63) | 126.76 (137.33–116.00–157.00) |
DBP (mmHg) | 76.10 (55.50–84.25) | 81.37 (64.00–95.00) | 74.52 (54.00–85.50) | 77.43 (66.00–82.00) | 75.00 (52.50–81.75) | 78.80 (67.00–93.00) |
RHr (bpm) | 68.50 (49.00–55.00) | 71.43 (60.00–103.00) | 67.00 (52.25–79.50) | 69.33 (57.00–72.00) | 67.00 (46.50–80.25) | 66.89 (56.00–78.00) |
Squat reps (N°) | 4.86 (4.12–5.10) | 5.20 (4.22–5.30) | 4.71 (4.00–5.50) | 4.40 (4.10–5.20) | 4.57 (4.44–5.30) | 4.60 (4.02–5.55) |
Leg Press Reps (N°) | 4.86 (4.25–6.00) | 4.80 (4.00–5.57) | 4.00 (3.76–5.00) | 4.40 (3.51–4.97) | 5.43 (4.60–6.00) | 4.40 (3.90–6.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomé, I.; García, Á.; Siquier-Coll, J.; Gil, M.C.R.; Grijota, F.J.; Maynar-Mariño, M. Effect of a Four-Week Extreme Heat (100 ± 2 °C) Sauna Baths Program in Combination with Resistance Training on Lower Limb Strength and Body Composition: A Blinded, Randomized Study. Appl. Sci. 2025, 15, 10762. https://doi.org/10.3390/app151910762
Bartolomé I, García Á, Siquier-Coll J, Gil MCR, Grijota FJ, Maynar-Mariño M. Effect of a Four-Week Extreme Heat (100 ± 2 °C) Sauna Baths Program in Combination with Resistance Training on Lower Limb Strength and Body Composition: A Blinded, Randomized Study. Applied Sciences. 2025; 15(19):10762. https://doi.org/10.3390/app151910762
Chicago/Turabian StyleBartolomé, Ignacio, Ángel García, Jesús Siquier-Coll, María Concepción Robles Gil, Francisco J. Grijota, and Marcos Maynar-Mariño. 2025. "Effect of a Four-Week Extreme Heat (100 ± 2 °C) Sauna Baths Program in Combination with Resistance Training on Lower Limb Strength and Body Composition: A Blinded, Randomized Study" Applied Sciences 15, no. 19: 10762. https://doi.org/10.3390/app151910762
APA StyleBartolomé, I., García, Á., Siquier-Coll, J., Gil, M. C. R., Grijota, F. J., & Maynar-Mariño, M. (2025). Effect of a Four-Week Extreme Heat (100 ± 2 °C) Sauna Baths Program in Combination with Resistance Training on Lower Limb Strength and Body Composition: A Blinded, Randomized Study. Applied Sciences, 15(19), 10762. https://doi.org/10.3390/app151910762