From Olive Oil to Pomace: Sustainable Valorization Pathways Linking Food Processing and Human Health
Abstract
1. Introduction
2. Olive Processing, Extraction, and Product Characteristics
2.1. The Olive Processing Chain
2.2. Extraction and Processing Technologies
2.3. Origin and Characteristics of Olive Oil, Leaves, and Pomace
2.3.1. Olive Oil
2.3.2. Olive Leaves
2.3.3. Olive Pomace
2.3.4. Global Perspective and Circular Valorization
3. Phytochemical Composition
3.1. Olive Oil
3.1.1. Oleic Acid
3.1.2. Linoleic Acid
3.1.3. Hydroxytyrosol
3.1.4. Tyrosol
3.1.5. Oleuropein Aglycone
3.1.6. Oleocanthal
3.1.7. Lignans (Pinoresinol, Acetoxypinoresinol)
3.1.8. α-Tocopherol
3.1.9. Squalene
3.2. Olive Leaves
3.2.1. Oleuropein
3.2.2. Verbascoside
3.2.3. Flavonoids (Luteolin, Apigenin, Rutin)
3.2.4. Phenolic Acids (Caffeic, Ferulic, p-Coumaric Acids)
3.2.5. Triterpenoids (Oleanolic, Maslinic Acids)
3.3. Olive Pomace
3.3.1. Residual Lipids (Oleic, Linoleic Acids)
3.3.2. Hydroxytyrosol and Tyrosol
3.3.3. Triterpenoids and Sterols
3.4. Comparative Perspective of Olive by-Products
4. Application
4.1. Health/Therapeutic Application
4.1.1. Cardiovascular Protection
4.1.2. Anti-Inflammatory Effects
4.1.3. Antioxidant Activity
4.1.4. Metabolic and Antidiabetic Effects
4.1.5. Neuroprotective Effects
4.1.6. Anticancer Potential
4.2. Food Applications
4.3. Cosmetic Applications
4.3.1. Olive Oil
4.3.2. Olive Leaves
4.3.3. Olive Pomace
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schicchi, R.; Speciale, C.; Amato, F.; Bazan, G.; Di Noto, G.; Marino, P.; Ricciardo, P.; Geraci, A. The Monumental Olive Trees as Biocultural Heritage of Mediterranean Landscapes: The Case Study of Sicily. Sustainability 2021, 13, 6767. [Google Scholar] [CrossRef]
- Besnard, G.; Terral, J.-F.; Cornille, A. On the origins and domestication of the olive: A review and perspectives. Ann. Bot. 2017, 121, 385–403. [Google Scholar] [CrossRef]
- Rugini, E.; Mencuccini, M.; Biasi, R.; Altamura, M.M. Olive (Olea europaea L.). In Protocol for Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 345–360. [Google Scholar]
- Covas, M.-I.; Konstantinidou, V.; Fitó, M. Olive Oil and Cardiovascular Health. J. Cardiovasc. Pharmacol. 2009, 54, 477–482. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra virgin olive oil: More than a healthy fat. Eur. J. Clin. Nutr. 2018, 72, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Riolo, R.; De Rosa, R.; Simonetta, I.; Tuttolomondo, A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int. J. Mol. Sci. 2022, 23, 16002. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.-H.; Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Caravaca, A.M.G.; Fernández-Gutiérrez, A.; Segura Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Oliveira, A.L.; Costa, C.; Nunes, J.; Vicente, A.A.; Pintado, M. Total and Sustainable Valorisation of Olive Pomace Using a Fractionation Approach. Appl. Sci. 2020, 10, 6785. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, W.J.; Wang, S.C.; Nitin, N. Synergistic antimicrobial activities of phenolic-rich extract derived from olive pomace and UV-A light against bacterial pathogens and their biofilms. Curr. Res. Food Sci. 2025, 10, 101071. [Google Scholar] [CrossRef]
- Nunes, M.; Pimentel, F.; Costa, A.; Alves, R.; Oliveira, M. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innov. Food Sci. Emerg. Technol. 2016, 35. [Google Scholar] [CrossRef]
- FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 August 2025).
- IOC. IOC Statistics Dashboard. 2022–2025. Available online: www.internationaloliveoil.org/what-we-do/statistics/ (accessed on 15 August 2025).
- Europeancommission. Olive Oil in the EU. An Overview of the Production and Marketing of Olive Oil in the EU. Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/olive-oil_en (accessed on 25 August 2025).
- Dammak, I.; Neves, M.; Souilem, S.; Isoda, H.; Sayadi, S.; Nakajima, M. Material Balance of Olive Components in Virgin Olive Oil Extraction Processing. Food Sci. Technol. Res. 2015, 21, 193–205. [Google Scholar] [CrossRef]
- Mohammadnejad, P.; Haghbeen, K.; Rasouli, H. Treatment and Valorization of Olive Mill Wastewater; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Enaime, G.; Dababat, S.; Wichern, M.; Lübken, M. Olive mill wastes: From wastes to resources. Environ. Sci. Pollut. Res. 2024, 31, 20853–20880. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; de la Lama-Calvente, D.; García-González, M.; Moreno-Fernández, J.; Jiménez-Rodríguez, A.; Borja, R.; Rincón-Llorente, B. Integral Valorization of Two-Phase Olive Mill Solid Waste (OMSW) and Related Washing Waters by Anaerobic Co-digestion of OMSW and the Microalga Raphidocelis subcapitata Cultivated in These Effluents. J. Agric. Food Chem. 2022, 70, 3219–3227. [Google Scholar] [CrossRef]
- Fernández-Hernández, A.; Civantos, C.; Roig, A.; Sánchez-Monedero, M. Compost prepared with two phase olive mill waste “alperujo” as growing media. Acta Hortic. 2013, 1013, 217–224. [Google Scholar] [CrossRef]
- Sygouni, V.; Pantziaros, A.G.; Iakovides, I.C.; Sfetsa, E.; Bogdou, P.I.; Christoforou, E.A.; Paraskeva, C.A. Treatment of Two-Phase Olive Mill Wastewater and Recovery of Phenolic Compounds Using Membrane Technology. Membranes 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Barazani, O.; Dag, A.; Dunseth, Z. The history of olive cultivation in the southern Levant. Front. Plant Sci. 2023, 14, 1131557. [Google Scholar] [CrossRef]
- Khdair, A.; Abu-Rumman, G. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes 2020, 8, 671. [Google Scholar] [CrossRef]
- Ahmad, R.; Ayoub, S. A comparative study of hand-held harvesting machine with traditional methods used for olive harvesting in jordan. In Proceedings of the 5th International Conference of Olivebioteq 2014, Amman, Jordan, 3–6 November 2014. [Google Scholar]
- Dantas Palmeira, J.; Araújo, D.; C. Mota, C.; Alves, R.C.; P. P. Oliveira, M.B.; Ferreira, H.M.N. Fermentation as a Strategy to Valorize Olive Pomace, a By-Product of the Olive Oil Industry. Fermentation 2023, 9, 442. [Google Scholar] [CrossRef]
- Fernández-Prior, Á.; Cardoso, J.C.; Bermúdez-Oria, A.; Reyes, Á.T.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Application of a Cold-Pressing Treatment to Improve Virgin Olive Oil Production and the Antioxidant Phenolic Profile of Its by-Products. Antioxidants 2023, 12, 1162. [Google Scholar] [CrossRef]
- Bouknana, D.; Serghini Caid, H.; Hammouti, B.; Rmili, R.; Hamdani, I. Diagnostic study of the olive oil industry in the Eastern region of Morocco. Mater. Today Proc. 2021, 45, 7782–7788. [Google Scholar] [CrossRef]
- Cravotto, C.; Fabiano-Tixier, A.S.; Claux, O.; Rapinel, V.; Tomao, V.; Stathopoulos, P.; Skaltsounis, A.L.; Tabasso, S.; Jacques, L.; Chemat, F. Higher Yield and Polyphenol Content in Olive Pomace Extracts Using 2-Methyloxolane as Bio-Based Solvent. Foods 2022, 11, 1357. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Mourtzinos, I.; Tyśkiewicz, K.; Milovanovic, S. An Eco-Friendly Supercritical CO2 Recovery of Value-Added Extracts from Olea europaea Leaves. Foods 2024, 13, 1836. [Google Scholar] [CrossRef]
- Bartella, L.; Mazzotti, F.; Talarico, I.R.; Santoro, I.; Di Donna, L. Hydroxytyrosol-Fortified Foods Obtained by Supercritical Fluid Extraction of Olive Oil. Antioxidants 2021, 10, 1619. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, B.; De Montijo-Prieto, S.; Jiménez-Valera, M.; Carrasco-Pancorbo, A.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Niknam, S.M.; Kashaninejad, M.; Escudero, I.; Sanz, M.T.; Beltrán, S.; Benito, J.M. Valorization of olive mill solid residue through ultrasound-assisted extraction and phenolics recovery by adsorption process. J. Clean. Prod. 2021, 316, 128340. [Google Scholar] [CrossRef]
- Cifá, D.; Skrt, M.; Pittia, P.; Di Mattia, C.; Poklar Ulrih, N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 2018, 6, 1128–1137. [Google Scholar] [CrossRef]
- Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef]
- Boli, E.; Prinos, N.; Louli, V.; Pappa, G.; Stamatis, H.; Magoulas, K.; Voutsas, E. Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents. Separations 2022, 9, 255. [Google Scholar] [CrossRef]
- Macedo, G.A.; Santana, Á.L.; Crawford, L.M.; Wang, S.C.; Dias, F.F.G.; de Moura Bell, J.M.L.N. Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace. LWT 2021, 138, 110621. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, P.C.; Rana, J.; Joshi, V. Improving the Olive Oil Yield and Quality Through Enzyme-Assisted Mechanical Extraction, Antioxidants and Packaging. J. Food Process. Preserv. 2014, 39, 157–166. [Google Scholar] [CrossRef]
- Chih, H.J.; James, A.P.; Jayasena, V.; Dhaliwal, S.S. Addition of enzymes complex during olive oil extraction improves oil recovery and bioactivity of Western Australian Frantoio olive oil. Int. J. Food Sci. Technol. 2012, 47, 1222–1228. [Google Scholar] [CrossRef]
- Hadj-Taieb, N.; Grati, N.; Ayadi, M.; Attia, I.; Bensalem, H.; Gargouri, A. Optimisation of olive oil extraction and minor compounds content of Tunisian olive oil using enzymatic formulations during malaxation. Biochem. Eng. J. 2012, 62, 79–85. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Vuong, Q.V.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves. Antioxidants 2014, 3, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Fernandez, A.; Garrido, Y.; López, E.; De los Ríos, A.; Quesada-Medina, J.; Hernández-Fernández, F. Recovering Polyphenols in Aqueous Solutions from Olive Mill Wastewater and Olive Leaf for Biological Applications. Processes 2023, 11, 2668. [Google Scholar] [CrossRef]
- Olmo-Cunillera, A.; Ribas-Agustí, A.; Lozano-Castellón, J.; Pérez, M.; Ninot, A.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. High hydrostatic pressure enhances the formation of oleocanthal and oleacein in ‘Arbequina’ olive fruit. Food Chem. 2024, 437, 137902. [Google Scholar] [CrossRef]
- Dias, S.; Pino-Hernández, E.; Gonçalves, D.; Rego, D.; Redondo, L.; Alves, M. Challenges and Opportunities for Pilot Scaling-Up Extraction of Olive Oil Assisted by Pulsed Electric Fields: Process, Product, and Economic Evaluation. Appl. Sci. 2024, 14, 3638. [Google Scholar] [CrossRef]
- Güngör, F.Ö.; Ocak, Ö.Ö.; Ünal, M.K. Effect of ozone treatment on the physical, microbiological and sensorial properties of Spanish-style table olives. Grasas Aceites 2020, 71, e348. [Google Scholar] [CrossRef]
- López-García, E.; Romero-Gil, V.; Arroyo-López, F.N.; Benítez-Cabello, A. Impact of lactic acid bacteria inoculation on fungal diversity during Spanish-style green table olive fermentations. Int. J. Food Microbiol. 2024, 417, 110689. [Google Scholar] [CrossRef]
- Mitrea, L.; Teleky, B.-E.; Plosca, M.-P.; Nemes, S.-A.; Pascuta, M.-S.; Ranga, F.; Leopold, L.; Martău, A.-G.; Călinoiu, L.-F.; Ștefănescu, B.-E.; et al. Enhancing eco-friendly coatings: Aqueous olive leaves extract fortifies macroalgae-based packaging materials. LWT 2024, 209, 116805. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S.; Hashim, A.F.; Youssef, A.M. Valorization of edible films based on chitosan/hydroxyethyl cellulose/olive leaf extract and TiO2-NPs for preserving sour cream. Int. J. Biol. Macromol. 2024, 268, 131727. [Google Scholar] [CrossRef]
- Vitaskos, V.; Demestichas, K.; Karetsos, S.; Costopoulou, C. Blockchain and Internet of Things Technologies for Food Traceability in Olive Oil Supply Chains. Sensors 2024, 24, 8189. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Safarzadeh Markhali, F. Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes. Processes 2021, 9, 953. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Xin, X.; Zhu, S.; Niu, E.; Wu, Q.; Li, T.; Liu, D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front. Nutr. 2022, 9, 854680. [Google Scholar] [CrossRef]
- Zhang, C.; Xin, X.; Zhang, J.; Zhu, S.; Niu, E.; Zhou, Z.; Liu, D. Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. Molecules 2022, 27, 1292. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Garcia-Oliveira, P.; Carpena, M.; Barral-Martinez, M.; Chamorro, F.; Echave, J.; Garcia-Perez, P.; Cao, H.; Xiao, J.; Simal-Gandara, J.; et al. Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies. Trends Food Sci. Technol. 2021, 116, 1084–1104. [Google Scholar] [CrossRef]
- Antónia Nunes, M.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Fatoki, T.H.; Akintayo, C.O.; Ibraheem, O. Bioinformatics exploration of olive oil: Molecular targets and properties of major bioactive constituents. OCL 2021, 28, 36. [Google Scholar] [CrossRef]
- Seidita, A.; Soresi, M.; Giannitrapani, L.; Di Stefano, V.; Citarrella, R.; Mirarchi, L.; Cusimano, A.; Augello, G.; Carroccio, A.; Iovanna, J.L.; et al. The clinical impact of an extra virgin olive oil enriched mediterranean diet on metabolic syndrome: Lights and shadows of a nutraceutical approach. Front. Nutr. 2022, 9, 980429. [Google Scholar] [CrossRef]
- Pastor, R.; Bouzas, C.; Tur, J.A. Beneficial effects of dietary supplementation with olive oil, oleic acid, or hydroxytyrosol in metabolic syndrome: Systematic review and meta-analysis. Free Radic. Biol. Med. 2021, 172, 372–385. [Google Scholar] [CrossRef]
- Rodrigues, N.; Casal, S.; Pinho, T.; Cruz, R.; Peres, A.M.; Baptista, P.; Pereira, J.A. Fatty Acid Composition from Olive Oils of Portuguese Centenarian Trees Is Highly Dependent on Olive Cultivar and Crop Year. Foods 2021, 10, 496. [Google Scholar] [CrossRef]
- El Qarnifa, S.; El Antari, A.; Hafidi, A. Effect of Maturity and Environmental Conditions on Chemical Composition of Olive Oils of Introduced Cultivars in Morocco. J. Food Qual. 2019, 2019, 1854539. [Google Scholar] [CrossRef]
- González-Rodríguez, M.; Ait Edjoudi, D.; Cordero-Barreal, A.; Farrag, M.; Varela-García, M.; Torrijos-Pulpón, C.; Ruiz-Fernández, C.; Capuozzo, M.; Ottaiano, A.; Lago, F.; et al. Oleocanthal, an Antioxidant Phenolic Compound in Extra Virgin Olive Oil (EVOO): A Comprehensive Systematic Review of Its Potential in Inflammation and Cancer. Antioxidants 2023, 12, 2112. [Google Scholar] [CrossRef]
- López-Biedma, A.; Sánchez-Quesada, C.; Delgado-Rodríguez, M.; Gaforio, J.J. The biological activities of natural lignans from olives and virgin olive oils: A review. J. Funct. Foods 2016, 26, 36–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zeng, Q.; Deng, Y.; Xie, P.; Zhang, C.; Huang, L. A new insight into synergistic effects between endogenous phenolic compounds additive and α-tocopherol for the stability of olive oil. Food Chem. 2023, 427, 136667. [Google Scholar] [CrossRef] [PubMed]
- Pacetti, D.; Scortichini, S.; Boarelli, M.C.; Fiorini, D. Simple and rapid method to analyse squalene in olive oils and extra virgin olive oils. Food Control 2019, 102, 240–244. [Google Scholar] [CrossRef]
- Zantedeschi, S.; Valenti, F.; Maraldi, M.; Martinez, G.A.; Tura, M.; Valli, E.; Gallina Toschi, T. Effect of blending olive leaves and olive mill wastewater on the potential biogas production. Biomass Bioenergy 2025, 202, 108201. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2017, 98. [Google Scholar] [CrossRef]
- Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci. 2014, 15, 18508–18524. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Kopar, M.; Erim, F.B. Oleuropein levels of Anatolian olive leaves and correlated antioxidant, antidiabetic, and anti-inflammatory activities. J. Chem. Metrol. 2020, 14, 133–141. [Google Scholar] [CrossRef]
- Marčetić, M.; Bufan, B.; Drobac, M.; Antić Stanković, J.; Arsenović Ranin, N.; Milenković, M.T.; Božić, D.D. Multifaceted Biological Properties of Verbascoside/Acteoside: Antimicrobial, Cytotoxic, Anti-Inflammatory, and Immunomodulatory Effects. Antibiotics 2025, 14, 697. [Google Scholar] [CrossRef]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef]
- Lockyer, S.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Olive leaf phenolics and cardiovascular risk reduction: Physiological effects and mechanisms of action. Nutr. Aging 2012, 1, 125–140. [Google Scholar] [CrossRef]
- López-Salas, L.; Expósito-Almellón, X.; Valencia-Isaza, A.; Fernández-Arteaga, A.; Quirantes-Piné, R.; Borrás-Linares, I.; Lozano-Sánchez, J. Eco-Friendly Extraction of Olive Leaf Phenolics and Terpenes: A Comparative Performance Analysis Against Conventional Methods. Foods 2025, 14, 3030. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, M.; García-Béjar, B.; Burgos-Ramos, E.; Silva, P. Valorization of Olive Oil and Wine Industry Byproducts: Challenges and Opportunities in Sustainable Food Applications. Foods 2025, 14, 2475. [Google Scholar] [CrossRef] [PubMed]
- González-Rámila, S.; Sarriá, B.; Seguido, M.; García-Cordero, J.; Bravo-Clemente, L.; Mateos, R. Effect of Olive Pomace Oil on Cardiovascular Health and Associated Pathologies. Nutrients 2022, 14, 3927. [Google Scholar] [CrossRef]
- Greco, M.; Fuertes-Rabanal, M.; Frey, C.; Grosso, C.D.; Coculo, D.; Moretti, P.; Saldarelli, P.; Agresti, S.; Caliandro, R.; Mélida, H.; et al. Phenolic compounds-enriched extract recovered from two-phase olive pomace serves as plant immunostimulants and broad-spectrum antimicrobials against phytopathogens including Xylella fastidiosa. Plant Stress 2024, 14, 100655. [Google Scholar] [CrossRef]
- Claro-Cala, C.M.; Quintela, J.C.; Pérez-Montero, M.; Miñano, J.; Alvarez de Sotomayor, M.; Herrera, M.D.; Rodríguez-Rodríguez, R. Pomace Olive Oil Concentrated in Triterpenic Acids Restores Vascular Function, Glucose Tolerance and Obesity Progression in Mice. Nutrients 2020, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, T.; Cecchi, L.; Sani, G.; Digiglio, I.; Adinolfi, B.; Ciaccheri, L.; Zanoni, B.; Melani, F.; Mulinacci, N. Seasonal and Cultivar-Dependent Phenolic Dynamics in Tuscan Olive Leaves: A Two-Year Study by HPLC-DAD-MS for Food By-Product Valorization. Separations 2025, 12, 192. [Google Scholar] [CrossRef]
- Ünlü, A.E. Green and Non-conventional Extraction of Bioactive Compounds from Olive Leaves: Screening of Novel Natural Deep Eutectic Solvents and Investigation of Process Parameters. Waste Biomass Valorization 2021, 12, 5329–5346. [Google Scholar] [CrossRef]
- Castillo-Rivas, A.; Álvarez-Mateos, P.; García-Martín, J.F. Revalorization of Olive Stones from Olive Pomace: Phenolic Compounds Obtained by Microwave-Assisted Extraction. Agronomy 2025, 15, 1761. [Google Scholar] [CrossRef]
- Soares, T.F.; Alves, R.C.; Oliveira, M.B.P.P. From Olive Oil Production to By-Products: Emergent Technologies to Extract Bioactive Compounds. Food Rev. Int. 2024, 40, 3342–3369. [Google Scholar] [CrossRef]
- Garrido-Romero, M.; Díez-Municio, M.; Moreno, F.J. Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health. Foods 2025, 14, 2413. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Zhong, Y.; Peng, Y.; Qian, C. Olive oil consumption and risk of cardiovascular disease and all-cause mortality: A meta-analysis of prospective cohort studies. Front. Nutr. 2022, 9, 1041203. [Google Scholar] [CrossRef]
- Salvo, A.; Tuttolomondo, A. The Role of Olive Oil in Cardiometabolic Risk. Metabolites 2025, 15, 190. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Alami, M.; Zoubdane, N.; Sidibé, H.; Berrougui, H.; Fülöp, T.; Nguyen, M.; Khalil, A. High-Tyrosol/Hydroxytyrosol Extra Virgin Olive Oil Enhances Antioxidant Activity in Elderly Post-Myocardial Infarction Patients. Antioxidants 2025, 14, 867. [Google Scholar] [CrossRef]
- Huang, Y.; He, W.; Zhao, M.; McClements, D.J.; Xu, Y.; Li, L.; Dong, W.; Hu, X.; Li, C. Unraveling the Health Contributions of Five Key Bioactives in Virgin Olive Oil: A Dose-Based Comparative Review. Trends Food Sci. Technol. 2025, 105274. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Razmpoosh, E.; Abdollahi, S.; Mousavirad, M.; Clark, C.C.T.; Soltani, S. The effects of olive leaf extract on cardiovascular risk factors in the general adult population: A systematic review and meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2022, 14, 151. [Google Scholar] [CrossRef]
- Tamburini, B.; Di Liberto, D.; Pratelli, G.; Rizzo, C.; Barbera, L.L.; Lauricella, M.; Carlisi, D.; Maggio, A.; Palumbo Piccionello, A.; D’Anneo, A.; et al. Extra Virgin Olive Oil Polyphenol-Enriched Extracts Exert Antioxidant and Anti-Inflammatory Effects on Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients. Antioxidants 2025, 14, 171. [Google Scholar] [CrossRef] [PubMed]
- Carpi, S.; Scoditti, E.; Massaro, M.; Polini, B.; Manera, C.; Digiacomo, M.; Esposito Salsano, J.; Poli, G.; Tuccinardi, T.; Doccini, S.; et al. The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-κB Activation. Nutrients 2019, 11, 2855. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, A.; Giordani, C.; Bonacci, S.; Giuliani, A.; Ramini, D.; Matacchione, G.; Sabbatinelli, J.; Di Valerio, S.; Pacetti, D.; Procopio, A.D.; et al. Anti-Inflammatory Effects of Olive Leaf Extract and Its Bioactive Compounds Oleacin and Oleuropein-Aglycone on Senescent Endothelial and Small Airway Epithelial Cells. Antioxidants 2023, 12, 1509. [Google Scholar] [CrossRef]
- Ben Attia, T.; Bahri, S.; Ben Younes, S.; Nahdi, A.; Ben Ali, R.; Bel Haj Kacem, L.; El May, M.V.; López-Maldonado, E.A.; Mhamdi, A. In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats. Biology 2024, 13, 896. [Google Scholar] [CrossRef]
- Karković Marković, A.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed]
- Assar, D.H.; Ragab, A.E.; Abdelsatar, E.; Salah, A.S.; Salem, S.M.R.; Hendam, B.M.; Al Jaouni, S.; Al Wakeel, R.A.; AbdEl-Kader, M.F.; Elbialy, Z.I. Dietary Olive Leaf Extract Differentially Modulates Antioxidant Defense of Normal and Aeromonas hydrophila-Infected Common Carp (Cyprinus carpio) via Keap1/Nrf2 Pathway Signaling: A Phytochemical and Biological Link. Animals 2023, 13, 2229. [Google Scholar] [CrossRef]
- Radić, K.; Vinković Vrček, I.; Pavičić, I.; Čepo, D.V. Cellular Antioxidant Activity of Olive Pomace Extracts: Impact of Gastrointestinal Digestion and Cyclodextrin Encapsulation. Molecules 2020, 25, 5027. [Google Scholar] [CrossRef]
- Hadrich, F.; Bouallagui, Z.; Junkyu, H.; Isoda, H.; Sayadi, S. The α-Glucosidase and α-Amylase Enzyme Inhibitory of Hydroxytyrosol and Oleuropein. J. Oleo Sci. 2015, 64, 835–843. [Google Scholar] [CrossRef]
- Hadrich, F.; Mahmoudi, A.; Chamkha, M.; Isoda, H.; Sayadi, S. Olive Leaves Extract and Oleuropein Improve Insulin Sensitivity in 3T3-L1 Cells and in High-Fat Diet-Treated Rats via PI3K/AkT Signaling Pathway. Oxid. Med. Cell. Longev. 2023, 2023, 6828230. [Google Scholar] [CrossRef]
- Santangelo, C.; Filesi, C.; Varì, R.; Scazzocchio, B.; Filardi, T.; Fogliano, V.; D’Archivio, M.; Giovannini, C.; Lenzi, A.; Morano, S.; et al. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: A possible involvement of reduced levels of circulating visfatin. J. Endocrinol. Investig. 2016, 39, 1295–1301. [Google Scholar] [CrossRef]
- Liva, K.; Panagiotopoulos, A.A.; Foscolou, A.; Amerikanou, C.; Vitali, A.; Zioulis, S.; Argyri, K.; Panoutsopoulos, G.I.; Kaliora, A.C.; Gioxari, A. High Polyphenol Extra Virgin Olive Oil and Metabolically Unhealthy Obesity: A Scoping Review of Preclinical Data and Clinical Trials. Clin. Pract. 2025, 15, 54. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Costa, C.M.; Bonifácio-Lopes, T.; Silva, S.; Veiga, M.; Monforte, A.R.; Nunes, J.; Vicente, A.A.; Pintado, M. Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocoll. 2021, 112, 106312. [Google Scholar] [CrossRef]
- Conterno, L.; Martinelli, F.; Tamburini, M.; Fava, F.; Mancini, A.; Sordo, M.; Pindo, M.; Martens, S.; Masuero, D.; Vrhovsek, U.; et al. Measuring the impact of olive pomace enriched biscuits on the gut microbiota and its metabolic activity in mildly hypercholesterolaemic subjects. Eur. J. Nutr. 2019, 58, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, P.; Polissidis, A.; Kythreoti, G.; Sagnou, M.; Stefanatou, A.; Theoharides, T.C. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int. J. Mol. Sci. 2024, 25, 11040. [Google Scholar] [CrossRef] [PubMed]
- Boronat, A.; Serreli, G.; Rodríguez-Morató, J.; Deiana, M.; de la Torre, R. Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants 2023, 12, 1472. [Google Scholar] [CrossRef]
- Goldsmith, C.; Bond, D.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.; Roach, P.; Scarlett, C. The Olive Biophenols Oleuropein and Hydroxytyrosol Selectively Reduce Proliferation, Influence the Cell Cycle, and Induce Apoptosis in Pancreatic Cancer Cells. Int. J. Mol. Sci. 2018, 19, 1937. [Google Scholar] [CrossRef]
- Saad, B.; Kmail, A. Olive Oil Polyphenols in Cancer: Molecular Mechanisms and Therapeutic Promise. Immuno 2025, 5, 36. [Google Scholar] [CrossRef]
- Pessoa, H.R.; Zago, L.; Difonzo, G.; Pasqualone, A.; Caponio, F.; Ferraz da Costa, D.C. Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms. Molecules 2024, 29, 4249. [Google Scholar] [CrossRef]
- Sánchez-Tena, S.; Reyes-Zurita, F.J.; Díaz-Moralli, S.; Vinardell, M.P.; Reed, M.; García-García, F.; Dopazo, J.; Lupiáñez, J.A.; Günther, U.; Cascante, M. Maslinic Acid-Enriched Diet Decreases Intestinal Tumorigenesis in ApcMin/+ Mice through Transcriptomic and Metabolomic Reprogramming. PLoS ONE 2013, 8, e59392. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef]
- Giacintucci, V.; Di Mattia, C.; Sacchetti, G.; Neri, L.; Pittia, P. Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions. Food Chem. 2016, 213, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Luzi, F.; Pannucci, E.; Clemente, M.; Grande, E.; Urciuoli, S.; Romani, A.; Torre, L.; Puglia, D.; Bernini, R.; Santi, L. Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules 2021, 26, 2104. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; De Feo, V.; Cruz, A.G.; d’Acierno, A. Antibacterial Activity of Three Extra Virgin Olive Oils of the Campania Region, Southern Italy, Related to Their Polyphenol Content and Composition. Microorganisms 2019, 7, 321. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Pasqualone, A.; Silletti, R.; Cosmai, L.; Summo, C.; Paradiso, V.M.; Caponio, F. Use of olive leaf extract to reduce lipid oxidation of baked snacks. Food Res. Int. 2018, 108, 48–56. [Google Scholar] [CrossRef]
- Selim, S.; Albqmi, M.; Al-Sanea, M.M.; Alnusaire, T.S.; Almuhayawi, M.S.; AbdElgawad, H.; Al Jaouni, S.K.; Elkelish, A.; Hussein, S.; Warrad, M.; et al. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Front. Nutr. 2022, 9, 1008349. [Google Scholar] [CrossRef]
- Panou, A.A.; Karabagias, I.K. Olive Leaf Extracts as a Medicinal Beverage: Origin, Physico-Chemical Properties, and Bio-Functionality. Beverages 2025, 11, 66. [Google Scholar] [CrossRef]
- Gonçalves, M.; Vale, N.; Silva, P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants 2024, 13, 762. [Google Scholar] [CrossRef]
- Aouidi, F.; Okba, A.; Hamdi, M. Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. J. Sci. Food Agric. 2017, 97, 3195–3203. [Google Scholar] [CrossRef]
- Barukčić, I.; Filipan, K.; Lisak Jakopović, K.; Božanić, R.; Blažić, M.; Repajić, M. The Potential of Olive Leaf Extract as a Functional Ingredient in Yoghurt Production: The Effects on Fermentation, Rheology, Sensory, and Antioxidant Properties of Cow Milk Yoghurt. Foods 2022, 11, 701. [Google Scholar] [CrossRef]
- Tavakoli, H.; Hosseini, O.; Jafari, S.M.; Katouzian, I. Evaluation of Physicochemical and Antioxidant Properties of Yogurt Enriched by Olive Leaf Phenolics within Nanoliposomes. J. Agric. Food Chem. 2018, 66, 9231–9240. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional compounds from olive pomace to obtain high-added value foods—A review. J. Sci. Food Agric. 2020, 101, 15–26. [Google Scholar] [CrossRef]
- Vitali Čepo, D.; Radić, K.; Jurmanović, S.; Jug, M.; Grdić Rajković, M.; Pedisić, S.; Moslavac, T.; Albahari, P. Valorization of Olive Pomace-Based Nutraceuticals as Antioxidants in Chemical, Food, and Biological Models. Molecules 2018, 23, 2070. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Chiarello, E.; Di Nunzio, M.; Bordoni, A.; Gianotti, A. Colonic In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich Olive Fiber. Nutrients 2021, 13, 787. [Google Scholar] [CrossRef]
- Nunzio, M.; Picone, G.; Pasini, F.; Chiarello, E.; Caboni, M.; Capozzi, F.; Gianotti, A.; Bordoni, A. Olive oil by-product as functional ingredient in bakery products. Food Res. Int. 2020, 131, 108940. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Campos, D.; Oliveira, A.; Nunes, J.; Vicente, A.A.; Pintado, M. Study of olive pomace antioxidant dietary fibre powder throughout gastrointestinal tract as multisource of phenolics, fatty acids and dietary fibre. Food Res. Int. 2021, 142, 110032. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Panagopoulou, E.; Kyzas, G. Olive Pomace Bioactives for Functional Foods and Cosmetics. AIMS Agric. Food 2024, 9, 743–766. [Google Scholar] [CrossRef]
- Li, H.; He, H.; Liu, C.; Akanji, T.; Gutkowski, J.; Li, R.; Ma, H.; Wan, Y.; Wu, P.; Li, D.; et al. Dietary polyphenol oleuropein and its metabolite hydroxytyrosol are moderate skin permeable elastase and collagenase inhibitors with synergistic cellular antioxidant effects in human skin fibroblasts. Int. J. Food Sci. Nutr. 2022, 73, 460–470. [Google Scholar] [CrossRef]
- Kimura, Y.; Sumiyoshi, M. Olive Leaf Extract and Its Main Component Oleuropein Prevent Chronic Ultraviolet B Radiation-Induced Skin Damage and Carcinogenesis in Hairless Mice. J. Nutr. 2009, 139, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Wanitphakdeedecha, R.; Ng, J.N.C.; Junsuwan, N.; Phaitoonwattanakij, S.; Phothong, W.; Eimpunth, S.; Manuskiatti, W. Efficacy of olive leaf extract-containing cream for facial rejuvenation: A pilot study. J. Cosmet. Dermatol. 2020, 19, 1662–1666. [Google Scholar] [CrossRef] [PubMed]
- Riéffel, R.C.; Agostini, L.; Rodrigues, N.P.; Berlitz, S.J.; Marczak, L.D.F.; Külkamp-Guerreiro, I.C. Sustainable Olive Pomace Extracts for Skin Barrier Support. Pharmaceutics 2025, 17, 962. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Alves, R.C.; Oliveira, M.B.P.P. Exploring Olive Pomace for Skincare Applications: A Review. Cosmetics 2023, 10, 35. [Google Scholar] [CrossRef]
Extraction Method | Application (Oil/Leaves/Pomace) | Principle | Advantages | Limitations | References |
---|---|---|---|---|---|
Cold pressing | Olive oil | Crushing and pressing without heat | Preserves quality and bioactives | Lower yield | [26] |
Two-phase/Three-phase centrifugation | Olive oil & pomace | Decanter separation of oil, water, and solids | High industrial efficiency, scalable | Generates wastewater (3-phase) | [27] |
Solvent extraction | Pomace, leaves | Organic solvents dissolve lipids/phenolics | Maximizes recovery | Solvent residues, environmental issues | [28] |
Supercritical CO2 extraction | Oil, leaves | CO2 under high pressure/temperature as solvent | Solvent-free, preserves thermolabile compounds | High cost, complex equipment | [29,30] |
Ultrasound-assisted extraction (UAE) | Leaves, pomace | Acoustic cavitation enhances the release | Faster, higher yield, energy-efficient | Scale-up challenges | [31,32,33] |
Microwave-assisted extraction (MAE) | Leaves, pomace | Microwave energy heats intracellular water | Efficient polyphenol recovery | Risk of thermal degradation | [34,35,36] |
Enzyme-assisted extraction (EAE) | Oil, leaves, pomace | Hydrolytic enzymes degrade cell walls | Improves yield and bioactive recovery | Cost, optimization needed | [36,37,38,39] |
Aqueous extraction | Leaves | Water-based extraction | Eco-friendly, simple | Less efficient for lipophilic compounds | [40,41] |
High-Pressure Processing (HPP) | Olive oil, table olives | Non-thermal high-pressure treatment inactivates microbes/enzymes | Preserves bioactives, enhances safety, extends shelf life | High cost, specialized equipment | [42] |
Pulsed Electric Fields (PEFs) | Olive oil extraction, pomace | Short electrical pulses | Improves oil yield & phenolic extraction, energy-efficient | Scale-up challenges, equipment cost | [43] |
Ozone treatment | Table olives | Oxidizing gas destroys microbes and pesticides | Effective microbial inactivation | Potential oxidation of sensitive compounds | [44] |
Fermentation & Bioprocessing | Table olive | Microbial or enzymatic transformation of by-products | Produces bioactive-rich extracts, sustainable valorization | Requires optimization and safety validation | [45] |
Nanotechnology | Olive leaves extracts | Encapsulation in nanocomposite films | Enhances stability & delivery of polyphenols | High cost | [46,47] |
Smart Packaging (IoT, sensors, RFID) | Olive oil | Embedded sensors for quality monitoring & traceability | Real-time monitoring, improves consumer trust | High cost, infrastructure required | [48] |
By-Product | Main Bioactives (mg GAE/g DW or Equivalent) | Typical Extraction Yield | Economic/Technological Feasibility | References |
---|---|---|---|---|
Olive Leaves | 16,674.0–50,594.3 mg/kg total phenolics; oleuropein 4570.0–27,547.7 mg/kg | High (UAE, MAE, SC-CO2) | Readily scalable; commercialized extracts and teas | [77,78] |
Olive Pomace | 2.24 g GAE/100 g dried matrix (DM) total phenolics; oil 13.66% DM; protein 6.64% DM | Moderate; requires drying/solvent extraction | Viable in biorefineries; drying cost is the main limitation | [9,28] |
Olive Stones | Mostly lignocellulose; low phenolics | Low; limited use for bioactive recovery | Better suited for energy, biochar, biocomposites | [79] |
Olive Mill Wastewater | High concentration of phenolics | High with membrane filtration/adsorption | Costly handling; strict regulations needed | [80] |
Olive-Derived Ingredient | Food Product | Incorporation/Dose | Main Effects | Explanation | References |
---|---|---|---|---|---|
Olive oil (hydroxytyrosol-enriched) | Functional oils, dressings, mayonnaise, sauces | Enrichment with hydroxytyrosol | ↑ Oxidative stability, ↓ peroxide formation, maintained color and flavor | Hydroxytyrosol acts as a powerful antioxidant, inhibiting lipid peroxidation, without altering the sensory properties. | [107,108,109] |
Olive oil phenolics (oleocanthal) | Minimally processed foods | Natural presence | Antibacterial activity vs. Listeria monocytogenes, E. coli; ↑ microbial safety | Polyphenols disrupt bacterial membranes, reducing pathogen survival in fresh food. | [110] |
Olive leaf powder | Baked goods | Incorporated into doughs with fats | Delays lipid oxidation, extends shelf life | Phenolics eliminate free radicals, slowing rancidity and preserving the quality of the product. | [111,112] |
Olive leaf extract (oleuropein-rich) | Functional beverages, teas | Direct addition | ↑ Antioxidant capacity, flavor contribution | Oleuropein provides strong radical scavenging activity but also imparts herbal/bitter aromatic notes. | [113,114] |
Olive leaf extract (oleuropein) | Minced beef | Incorporated in formulations | ↓ Lipid and myoglobin oxidation; 25–65% reduction in TBARS, 43–65% reduction in metmyoglobin | Oleuropein prevents oxidation by scavenging radicals. | [115] |
Olive leaf extract | Yogurt | 3–5% addition | ↑ Total phenolic content (~91 mg GAE/L), ↑ antioxidant capacity (~613 µmol TE/L), good sensory acceptability | The extract increases phenolics and antioxidant levels without exceeding the threshold of bitterness, ensuring consumer acceptance. | [116] |
Encapsulated olive leaf bioactives (nanoliposomes) | Yogurt | Entrapment 70–88% | ↑ Stability and antioxidant activity, ↓ syneresis, better texture and color retention | Encapsulation protects the phenolics, controls their release and improves the structure of the yogurt. | [117] |
Olive pomace fiber | Bakery, cereals, snacks | Incorporated into flour-based products | ↑ Water retention, texture, dietary fiber; sustained polyphenol release during digestion | Insoluble fiber increases water retention capacity, while fiber-polyphenol interactions delay release during digestion. | [118,119] |
Olive pomace phenolic extract | Active packaging, edible coatings | Films and coatings | Scavenges free radicals, ↓ microbial growth, extends shelf life of meat, cheese, fruits | Gradual release of phenolics into food surface enhances antioxidant | [119] |
Olive pomace fiber (polyphenol-rich) | Bread | Substitution with defatted pomace fiber | ↑ Prebiotic potential: promotes Bifidobacteriaceae and Lactobacillales; ↓ harmful metabolites in colon model | Fermentable fiber and phenolics modulate the gut microbiota, favoring beneficial strains. | [120] |
Olive pomace powder (fermented bread) | Bread | Incorporation into dough | ↑ Phenolic content, anti-inflammatory activity (depends on fermentation) | Fermentation increases the bioavailability of phenolics compounds and bioactive peptides, increasing the anti-inflammatory effects. | [121] |
Pulp-enriched olive pomace powder (POPP) | Simulated GI digestion model | Retains ≥ 50% phenolics | ↑ Bioaccessibility of unsaturated fatty acids; targeted delivery to colon | The fibrous matrix protects the phenolics compounds during digestion, releasing them into the colon, where they exert their bioactivity. | [122] |
Olive pomace-enriched biscuits | Biscuits (8-week RCT) | Enrichment with pomace | ↑ Phenolic metabolites (DOPAC, homovanillic acid), ↓ oxidized LDL, ↑ beneficial gut microbiota | The phenolics compounds in olive pomace undergo microbial biotransformation, reducing oxidative stress and modulating intestinal flora. | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bubulac, L.; Bogdan-Andreescu, C.F.; Voica, D.V.; Cristea, B.M.; Chiș, M.S.; Slăvescu, D.A. From Olive Oil to Pomace: Sustainable Valorization Pathways Linking Food Processing and Human Health. Appl. Sci. 2025, 15, 10717. https://doi.org/10.3390/app151910717
Bubulac L, Bogdan-Andreescu CF, Voica DV, Cristea BM, Chiș MS, Slăvescu DA. From Olive Oil to Pomace: Sustainable Valorization Pathways Linking Food Processing and Human Health. Applied Sciences. 2025; 15(19):10717. https://doi.org/10.3390/app151910717
Chicago/Turabian StyleBubulac, Lucia, Claudia Florina Bogdan-Andreescu, Daniela Victorița Voica, Bogdan Mihai Cristea, Maria Simona Chiș, and Dan Alexandru Slăvescu. 2025. "From Olive Oil to Pomace: Sustainable Valorization Pathways Linking Food Processing and Human Health" Applied Sciences 15, no. 19: 10717. https://doi.org/10.3390/app151910717
APA StyleBubulac, L., Bogdan-Andreescu, C. F., Voica, D. V., Cristea, B. M., Chiș, M. S., & Slăvescu, D. A. (2025). From Olive Oil to Pomace: Sustainable Valorization Pathways Linking Food Processing and Human Health. Applied Sciences, 15(19), 10717. https://doi.org/10.3390/app151910717