Stochastic Path Planning with Obstacle Avoidance for UAVs Using Covariance Control
Abstract
1. Introduction
2. Problem Statement
2.1. Deterministic Dynamics
2.2. Stochastic Dynamics
2.3. Stochastic Optimal Control Problem
3. Convex Formulation
3.1. Discretization
3.2. Lossless Covariance Propagation
3.3. Convexification of the Maximum Control Norm Constraint
3.4. Convexification of the Collision Avoidance Constraint
3.5. State Trust Region
3.6. Cost Function and Final Problem Formulation
4. Numerical Results
4.1. Case Study 1: Ellipsoidal Obstacles
Validation in a 6-DOF Environment
4.2. Case Study 2: Cylindrical Obstacles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Implementation Details of 6-DOF Simulations and Geometric Attitude Control
Appendix A.1. Complete UAV Model
Appendix A.2. Geometric Attitude Controller
Appendix A.3. Actuator Allocation
References
- Ait Saadi, A.; Soukane, A.; Meraihi, Y.; Benmessaoud Gabis, A.; Mirjalili, S.; Ramdane-Cherif, A. UAV Path Planning Using Optimization Approaches: A Survey. Arch. Comput. Methods Eng. 2022, 29, 4233–4284. [Google Scholar] [CrossRef]
- LaValle, S. Rapidly-Exploring Random Trees: A New Tool for Path Planning; TR 98-11; Computer Science Department, Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Fortune, S. A sweepline algorithm for Voronoi diagrams. In Proceedings of the Second Annual Symposium on Computational Geometry, SCG ’86, New York, NY, USA, 2–4 June 1986; pp. 313–322. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Welzl, E. Constructing the visibility graph for n-line segments in O(n2) time. Inf. Process. Lett. 1985, 20, 167–171. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy, 1st ed.; Association for Computing Machinery: New York, NY, USA, 2022; pp. 287–290. [Google Scholar] [CrossRef]
- Kavraki, L.; Latombe, J.C. Randomized preprocessing of configuration for fast path planning. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; Volume 3, pp. 2138–2145. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Dai, R.; Fotedar, S.; Radmanesh, M.; Kumar, M. Quality-aware UAV coverage and path planning in geometrically complex environments. Ad. Hoc. Netw. 2018, 73, 95–105. [Google Scholar] [CrossRef]
- Sujit, P.B.; Beard, R. Multiple UAV path planning using anytime algorithms. In Proceedings of the 2009 American Control Conference, St. Louis, MI, USA, 10–12 June 2009; pp. 2978–2983. [Google Scholar] [CrossRef]
- Li, B.; Qi, X.; Yu, B.; Liu, L. Trajectory Planning for UAV Based on Improved ACO Algorithm. IEEE Access 2020, 8, 2995–3006. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl. Based Syst. 2018, 158, 54–64. [Google Scholar] [CrossRef]
- Choudhury, S.; Bhardwaj, M.; Arora, S.; Kapoor, A.; Ranade, G.; Scherer, S.; Dey, D. Data-driven planning via imitation learning. Int. J. Robot. Res. 2018, 37, 1632–1672. [Google Scholar] [CrossRef]
- Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [Google Scholar] [CrossRef]
- Pham, H.X.; La, H.M.; Feil-Seifer, D.; Nguyen, L.V. Autonomous UAV Navigation Using Reinforcement Learning. arXiv 2018, arXiv:1801.05086. [Google Scholar] [CrossRef]
- Federici, L.; Furfaro, R.; Zavoli, A.; Matteis, G.D. Robust Waypoint Guidance of a Hexacopter on Mars using Meta-Reinforcement Learning. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Eren, U.; Prach, A.; Koçer, B.B.; Raković, S.V.; Kayacan, E.; Açıkmeşe, B. Model Predictive Control in Aerospace Systems: Current State and Opportunities. J. Guid. Control Dyn. 2017, 40, 1541–1566. [Google Scholar] [CrossRef]
- Mesbah, A. Stochastic Model Predictive Control: An Overview and Perspectives for Future Research. IEEE Control Syst. Mag. 2016, 36, 30–44. [Google Scholar] [CrossRef]
- Blackmore, L.; Ono, M.; Williams, B.C. Chance-Constrained Optimal Path Planning With Obstacles. IEEE Trans. Robot. 2011, 27, 1080–1094. [Google Scholar] [CrossRef]
- Barr, N.M.; Gangsaas, D.; Schaeffer, D.R. Wind Models for Flight Simulator Certification of Landing and Approach Guidance and Control Systems; Technical Report FAA-RD-74-206; Federal Aviation Administration: Washington, DC, USA, 1974. [Google Scholar]
- Zhu, H.; Alonso-Mora, J. Chance-Constrained Collision Avoidance for MAVs in Dynamic Environments. IEEE Robot. Autom. Lett. 2019, 4, 776–783. [Google Scholar] [CrossRef]
- Chai, R.; Tsourdos, A.; Savvaris, A.; Wang, S.; Xia, Y.; Chai, S. Fast Generation of Chance-Constrained Flight Trajectory for Unmanned Vehicles. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1028–1045. [Google Scholar] [CrossRef]
- Lew, T.; Bonalli, R.; Pavone, M. Chance-Constrained Sequential Convex Programming for Robust Trajectory Optimization. In Proceedings of the 2020 European Control Conference (ECC), Petersburg, Russia, 12–15 May 2020; pp. 1871–1878. [Google Scholar] [CrossRef]
- Hotz, A.; Skelton, R.E. Covariance Control Theory. Int. J. Control 1987, 46, 13–32. [Google Scholar] [CrossRef]
- Chen, Y.; Georgiou, T.T.; Pavon, M. Optimal Steering of a Linear Stochastic System to a Final Probability Distribution, Part I. IEEE Trans. Autom. Control 2016, 61, 1158–1169. [Google Scholar] [CrossRef]
- Chen, Y.; Georgiou, T.T.; Pavon, M. Optimal Steering of a Linear Stochastic System to a Final Probability Distribution, Part II. IEEE Trans. Autom. Control 2016, 61, 1170–1180. [Google Scholar] [CrossRef]
- Bakolas, E. Optimal covariance control for stochastic linear systems subject to integral quadratic state constraints. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 7231–7236. [Google Scholar] [CrossRef]
- Bakolas, E. Optimal covariance control for discrete-time stochastic linear systems subject to constraints. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 1153–1158. [Google Scholar] [CrossRef]
- Garzelli, A.; Benedikter, B.; Yadav, K.D.; Suarez, A.; Ollero, A. Convex Optimization for Covariance Control in Rendezvous and Docking Operations. In Proceedings of the 75th International Astronautical Congress (IAC), Milan, Italy, 14–18 October 2024. [Google Scholar]
- Garzelli, A.; Benedikter, B.; Zavoli, A.; Fernandez-Miranda, A.S.; Baturone, A.O. Gaussian Process-Based Covariance Control for Autonomous On-Orbit Servicing. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025. [Google Scholar] [CrossRef]
- Benedikter, B.; Zavoli, A.; Wang, Z.; Pizzurro, S.; Cavallini, E. Convex Approach to Covariance Control with Application to Stochastic Low-Thrust Trajectory Optimization. J. Guid. Control Dyn. 2022, 45, 2061–2075. [Google Scholar] [CrossRef]
- Ridderhof, J.; Pilipovsky, J.; Tsiotras, P. Chance-Constrained Covariance Control for Low-Thrust Minimum-Fuel Trajectory Optimization. In Proceedings of the 2020 AAS/AIAA Astrodynamics Specialist Conference, Virtually, 9–12 August 2020. [Google Scholar]
- Oguri, K.; Lantoine, G. Stochastic sequential convex programming for robust low-thrust trajectory design under uncertainty. In Proceedings of the 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC, USA, 7–11 August 2022. [Google Scholar]
- Ridderhof, J.; Tsiotras, P. Minimum-Fuel Closed-Loop Powered Descent Guidance with Stochastically Derived Throttle Margins. J. Guid. Control Dyn. 2021, 44, 537–547. [Google Scholar] [CrossRef]
- Benedikter, B.; Zavoli, A.; Wang, Z.; Pizzurro, S.; Cavallini, E. Convex Approach to Stochastic Control for Autonomous Rocket Pinpoint Landing. In Proceedings of the 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC, USA, 7–11 August 2022. [Google Scholar]
- Gettatelli, F.; Zavoli, A.; Benedikter, B.; Furfaro, R. Stationkeeping of Earth-Moon L2 Libration Point Orbits via Optimal Covariance Control. In Proceedings of the 2023 AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, USA, 13–17 August 2023. [Google Scholar]
- Benedikter, B.; Zavoli, A.; Colasurdo, G.; Pizzurro, S.; Cavallini, E. Stochastic Control of Launch Vehicle Upper Stage with Minimum-Variance Splash-Down. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022. [Google Scholar]
- Oguri, K.; Lantoine, G.; Sweetser, T.H. Robust Solar Sail Trajectory Design under Uncertainty with Application to NEA Scout Mission. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Ridderhof, J.; Tsiotras, P.; Johnson, B.J. Stochastic Entry Guidance. J. Guid. Control Dyn. 2022, 45, 320–334. [Google Scholar] [CrossRef]
- Okamoto, K.; Tsiotras, P. Optimal Stochastic Vehicle Path Planning Using Covariance Steering. IEEE Robot. Autom. Lett. 2019, 4, 2276–2281. [Google Scholar] [CrossRef]
- D’Angelo, S.; Pagano, F.; Longobardi, F.; Ruggiero, F.; Lippiello, V. Efficient Development of Model-Based Controllers in PX4 Firmware: A Template-Based Customization Approach. In Proceedings of the 2024 International Conference on Unmanned Aircraft Systems (ICUAS), Chania, Crete, Greece, 4–7 June 2024; pp. 1155–1162. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.M.; Li, Y. A Survey of Autonomous Control for UAV. In Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; Volume 2, pp. 267–271. [Google Scholar] [CrossRef]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Liu, X.; Lu, P.; Pan, B. Survey of Convex Optimization for Aerospace Applications. Astrodynamics 2017, 1, 23–40. [Google Scholar] [CrossRef]
- Açıkmeşe, B.; Blackmore, L. Lossless Convexification of a Class of Optimal Control Problems with Non-Convex Control Constraints. Automatica 2011, 47, 341–347. [Google Scholar] [CrossRef]
- Bonalli, R.; Cauligi, A.; Bylard, A.; Pavone, M. GuSTO: Guaranteed Sequential Trajectory optimization via Sequential Convex Programming. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6741–6747. [Google Scholar] [CrossRef]
- Liu, X.; Lu, P. Solving Nonconvex Optimal Control Problems by Convex Optimization. J. Guid. Control Dyn. 2014, 37, 750–765. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Benedikter, B.; Zavoli, A. A Convex Approach to Multi-phase Trajectory Optimization of eVTOL Vehicles for Urban Air Mobility. In Proceedings of the AIAA SCITECH 2022 Forum, Virtual, 3–7 January 2022. [Google Scholar] [CrossRef]
- Dueri, D.; Mao, Y.; Mian, Z.; Ding, J.; Açikmeşe, B. Trajectory optimization with inter-sample obstacle avoidance via successive convexification. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, 12–15 December 2017; pp. 1150–1156. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Long, T. Minimum-Time Trajectory Planning for Multi-Unmanned-Aerial-Vehicle Cooperation Using Sequential Convex Programming. J. Guid. Control Dyn. 2017, 40, 2976–2982. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X. UAV Collision Avoidance Using Mixed-Integer Second-Order Cone Programming. J. Guid. Control Dyn. 2022, 45, 1732–1738. [Google Scholar] [CrossRef]
- Liu, F.; Rapakoulias, G.; Tsiotras, P. Optimal Covariance Steering for Discrete-Time Linear Stochastic Systems. IEEE Trans. Autom. Control 2025, 70, 2289–2304. [Google Scholar] [CrossRef]
- CVX Research, Inc. CVX: Matlab Software for Disciplined Convex Programming, Version 2.2. Available online: https://cvxr.com/cvx (accessed on 24 July 2025).
- Grant, M.; Boyd, S. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control; Blondel, V., Boyd, S., Kimura, H., Eds.; Lecture Notes in Control and Information Sciences; Springer Limited: London, UK, 2008; pp. 95–110. [Google Scholar]
- Toh, K.C.; Todd, M.J.; Tutuncu, R.H. SDPT3: A MATLAB software package for semidefinite programming. Optim. Methods Softw. 1999, 11, 545–581. [Google Scholar] [CrossRef]
- Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE(3). In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
m | UAV mass | 1 kg |
drag parameter | 0.5 kg/m | |
g | gravitational acceleration | 9.8 m/s2 |
maximum thrust | 10 N | |
maximum tilt angle | 45° | |
N | number of discretization nodes | 101 |
disturbance intensity scale | 2 × 10−2 m/s3/2 | |
initial position | [1, 1, 2] m | |
final position | [6, 6, 2.2] m | |
initial velocity | [0, 0, 0] m/s | |
final velocity | [0, 0, 0] m/s | |
p | probability level | 0.95 |
initial/final position covariance | 10−4 m2 | |
initial/final velocity covariance | 10−4 m2 s−2 |
Quantity | CL Solution | CL MC | Units |
---|---|---|---|
J | 101.59 | 100.4578 | Ns |
- | −4.938 × 10−4 | ||
- | −1.50 × 10−3 | ||
- | 4.169 × 10−4 | ||
- | −1.60 × 10−3 | ||
- | −2.737 × 10−4 | ||
- | −4.688 × 10−4 | ||
0.880 × 10−4 | 0.888 × 10−4 | ||
0.899 × 10−4 | 0.869 × 10−4 | ||
0.985 × 10−4 | 1.040 × 10−4 | ||
0.6716 × 10−4 | 0.694 × 10−4 | ||
0.676 × 10−4 | 0.854 × 10−4 | ||
0.826 × 10−4 | 0.854 × 10−4 |
Quantity | 6-DOF OL | 6-DOF CL | Units |
---|---|---|---|
J | 100.44 | 101.75 | N |
−0.700 × 10−1 | −7.232 × 10−4 | ||
−0.728 × 10−1 | −4.10 × 10−4 | ||
0.972 × 10−1 | 5.50 × 10−3 | ||
−0.114 × 10−1 | −0.110 × 10−1 | ||
−0.114 × 10−1 | −0.76 × 10−2 | ||
0.39 × 10−2 | −0.86 × 10−2 | ||
0.27 × 10−2 | 0.917 × 10−4 | ||
0.26 × 10−2 | 0.9163 × 10−4 | ||
0.39 × 10−2 | 1.023 × 10−4 | ||
0.107 × 10−3 | 0.651 × 10−4 | ||
0.117 × 10−3 | 0.628 × 10−4 | ||
0.134 × 10−3 | 0.799 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garzelli, A.; Benedikter, B.; Zavoli, A.; Martínez de Dios, J.R.; Suarez, A.; Ollero, A. Stochastic Path Planning with Obstacle Avoidance for UAVs Using Covariance Control. Appl. Sci. 2025, 15, 10469. https://doi.org/10.3390/app151910469
Garzelli A, Benedikter B, Zavoli A, Martínez de Dios JR, Suarez A, Ollero A. Stochastic Path Planning with Obstacle Avoidance for UAVs Using Covariance Control. Applied Sciences. 2025; 15(19):10469. https://doi.org/10.3390/app151910469
Chicago/Turabian StyleGarzelli, Alessandro, Boris Benedikter, Alessandro Zavoli, José Ramiro Martínez de Dios, Alejandro Suarez, and Anibal Ollero. 2025. "Stochastic Path Planning with Obstacle Avoidance for UAVs Using Covariance Control" Applied Sciences 15, no. 19: 10469. https://doi.org/10.3390/app151910469
APA StyleGarzelli, A., Benedikter, B., Zavoli, A., Martínez de Dios, J. R., Suarez, A., & Ollero, A. (2025). Stochastic Path Planning with Obstacle Avoidance for UAVs Using Covariance Control. Applied Sciences, 15(19), 10469. https://doi.org/10.3390/app151910469