Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Grey Relational Analysis (GRA) Method
- (a)
- Data pre-processing or normalisation of results;
- (b)
- Grey relational coefficient calculations;
- (c)
- Grey relational grades calculation;
- (d)
- Calculation for the selection of optimum levels;
- (e)
- Confirmation and verification.
- (a)
- The normalisation or pre-processing of data xij is obtained through the standard mathematical relationship given in Equation (3). The values are inside the range 0–1.
- (b)
- The grey relational coefficient shows the gap between the data and the normalised data. The mathematical relationship for grey relational coefficient calculation is given in Equation (4).
- (c)
- Grey relational grade is obtained by calculating the average values of grey relational coefficients. The standard mathematical relationship used for the calculation of grades is given in Equation (5).
- (d)
- Calculation of optimum levels.
- (e)
- Confirmation and verification to measure the improvement in the process after obtaining the optimal solutions.
2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) Hybrid Method
- (a)
- Input: Four input values were utilised from the selected constraints; they are the hole diameter of the electrode, peak current, pulse on time and dielectric pressure.
- (b)
- Fuzzification: The standard mathematical relationship used for the membership function of a bell-shaped function is given in Equation (6).
- (c)
- Perform AND operator: The normalisation of each node is calculated by the mathematical relationship in Equation (8).
- (d)
- Fuzzy inference and defuzzification: In defuzzification, the fuzzy quantity is converted by the rules and membership functions combination to predict the accurate output results. The standard mathematical relationship used to calculate the defuzzification is given in Equation (9).
- (e)
- Output: The output of ANFIS structure is calculated by the sum of all incoming signals. The mathematical relationship used to calculate the output is given in Equation (10).
3. Results and Discussion
3.1. GRA Method
3.2. ANFIS Method
3.2.1. EWR Analysis
3.2.2. MRR Analysis
3.2.3. Circularity Deviation Analysis
3.2.4. Cylindricity Deviation Analysis
4. Empirical Modelling Using Regression Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Equbal, A.; Equbal, A.; Hussain, V.M.; Equbal, I.; Badruddin, I.A.; Kamangar, S.; Edhacherian, A.; Kan, A.A. A critical review on electro-discharge machining of non-conductive materials. Mach. Sci. Technol. 2024, 28, 1092–1128. [Google Scholar] [CrossRef]
- Crookal, J.R.; Heuvelman, C.J. Electric discharge machining—the state of the art. Ann. CIRP 1971, 20, 113–120. [Google Scholar]
- Snoyes, R. Current trends in non-conventional material removal processes. Ann. CIRP 1986, 35, 467–480. [Google Scholar] [CrossRef]
- Ho, K.H.; Newman, S.T. The state of the art electric discharge machining. Int. J. Mach. Tools Manuf. 2003, 43, 1287–1300. [Google Scholar] [CrossRef]
- Pendokhare, D.G.; Kalita, K.; Chakraborty, S.; Čep, R. A comprehensive review of parametric optimization of electrical discharge machining processes using multi-criteria decision-making techniques. Front. Mech. Eng. 2024, 10, 1404116. [Google Scholar] [CrossRef]
- Kunieda, M.; Furuoya, S.; Tniguchi, N. Improvement of EDM efficiency by supplying oxygen gas into gap. Ann. CIRP 1991, 40, 215–218. [Google Scholar] [CrossRef]
- Song, K.Y.; Chung, D.K.; Park, M.S.; Chu, C.N. Electrical discharge machining using a strip electrode. Prec Eng. 2017, 37, 738–745. [Google Scholar] [CrossRef]
- Lin, G.; Li, L.; Zhao, W.S.; Rajurkar, K.P. Performance of bunched-electrode in EDM. Key Eng. Mater. 2010, 447–448, 282–286. [Google Scholar] [CrossRef]
- Murugesan, S.; Balamurugan, K. Optimization by grey relational analysis of EDM parameters in machining Al-15% SiC MMC using multihole electrodes. J. Appl. Sci. 2012, 12, 963–970. [Google Scholar] [CrossRef]
- Li, L.; Gu, L.; Xi, X.; Zhao, W. Influence of flushing on performance of EDM with bunched electrode. Int. J. Adv. Manuf. Technol. 2012, 58, 187–194. [Google Scholar] [CrossRef]
- Dhanabalan, S.; Sivakumar, K.; Narayanan, C.S. Optimization of machining parameters of EDM while machining Inconel 718 for form tolerance and orientation tolerance. Ind. J. Eng. Mater. Sci. 2013, 20, 391–397. [Google Scholar]
- Kumar, S.; Dhanabalan, S. Influence on machinability and form tolerance of Inconel 718 in EDM using different diameter multi hole electrodes. SN Appl. Sci. J. 2019, 1, 396. [Google Scholar] [CrossRef]
- Fantoni, G.; Khalaf Alrubaye, I.D.; Baccelli, L. Effect of manufacturing new U-shaped electrode on die sinking EDM process performance. Mach. Sci. Technol. 2024, 28, 1039–1067. [Google Scholar] [CrossRef]
- Klocke, F.; Lung, D.; Antonoglou, G.; Thomaidis, D. The effect of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies. J. Mech. Work. Technol. 2004, 149, 191–197. [Google Scholar] [CrossRef]
- Ong, P.; Haow, C.; Rahim, M.Z.B.; Lee, W.K.; Sia, C.K.; Haikal bin Ahmad, M.A. Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond. J. Intell. Manuf. 2020, 31, 227–247. [Google Scholar] [CrossRef]
- Saffaran, A.; Moghaddam, M.A.; Kolaham, F. Optimization of back propagation neural network-based models in EDM process using particle swarm optimization and simulated annealing algorithms. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 73. [Google Scholar]
- Ubaid, A.M.; Aghdeab, S.H.; Abdulameer, A.G.; Al-Juboori, L.A.; Dweiri, F.T. Multidimensional optimization of electrical discharge machining for high speed steel (AISI M2) using Taguchi-fuzzy approach. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 1021–1045. [Google Scholar] [CrossRef]
- Zainal, N.; Sithambranathan, M.; Khattak, U.F.; Zain, A.M.; Mostafa, S.A.; Deris, A.M. Optimization of Electrical Discharge Machining Process by Metaheuristic Algorithms. Qubahan Acad. J. 2024, 4, 277–289. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, C.; Zhao, D.; Dong, H. Research on optimization of electrical parameters of EDM based on a neural network algorithm. Intell. Decis. Technol. 2023, 18, 2671–2685. [Google Scholar]
- Arya, S.; Pandey, P.M. Electric discharge machine process parameters optimization for additively manufactured copper–graphene tool. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2025, 09544089251313687. [Google Scholar] [CrossRef]
- Gillani, F.; Zahid, T.; Bibi, S.; Khan, R.S.U.; Bhutta, M.R.; Ghafoor, U. Parametric Optimization for Quality of Electric Discharge Machined Profile by Using Multi-Shape Electrode. Materials 2022, 15, 2205. [Google Scholar] [CrossRef]
- Dewangan, K.; Swapnil, S. Investigation and Optimization of Wire EDM Process Parameters for Inconel 925 Superalloy Using the Taguchi Gray Relation. Lect. Not. Mech. Eng. 2023, 1, 149–162. [Google Scholar]
- Prashant, T.; Shankar, S. Multi-objective optimization of Machining Parameters using GRA while performing Electric Discharge Machining of Inconel-800. AIP Conf. Proc. 2025, 3185, 020085. [Google Scholar]
- Thakur, S.S.; Pradhan, S.K.; Sharma, A.; Sonia, P.; Sehgal, S.; Ramu, G. Multi-functional Inconel 625 micro-machining and process optimization using ANFIS. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 09544089241249843. [Google Scholar]
- Kar, S.K.; Mishra, P.K.; Sahu, A.K.; Mahapatra, S.S.; Thomas, J. Multi-objective optimization of wire-EDM of Inconel 625 by using desirability function approach. Int. J. Interact. Des. Manuf. 2023, 17, 931–938. [Google Scholar]
- Kumar, S.; Dhanabalan, S.; Polini, W.; Corrado, A. Form variation management of products in Inconel 718 obtained through EDM process with circular shape brass electrodes. Int. J. Mach. Mach. Mater. 2022, 24, 165–186. [Google Scholar]
- Kumar, S.; Dhanabalan, S.; Polini, W.; Corrado, A. Statistical analysis of electrical discharge machining performance variables to measure form deviation and machinability using non-dominating sorting genetic algorithm-II and fuzzy logic system. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 09544089241230283. [Google Scholar]
- Corrado, A.; Polini, W. Assembly design in aeronautic field: From assembly jigs to tolerance analysis. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 2652–2663. [Google Scholar]
- Rahman, M.; Seah, W.K.H.; Teo, T.T. The machinability of Inconel 718. J. Mater. Process. Technol. 1997, 63, 199–204. [Google Scholar]
- Hossain, S.J.; Ahmad, N. Adaptive neuro-fuzzy inference system (ANFIS) based surface roughness prediction model for ball end milling operation. J. Mech. Eng. Res. 2012, 4, 112–129. [Google Scholar] [CrossRef]
- Jang, J.R. ANFIS, Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Kar, S.; Das, S.; Kanti, P. Applications of neuro fuzzy systems: A brief review and future outline. Appl. Soft Comp. J. 2014, 15, 243–259. [Google Scholar] [CrossRef]
- Abraham, A. Adaptation of Fuzzy Inference System Using Neural Learning. In Fuzzy Systems Engineering. Studies in Fuzziness and Soft Computing; Nedjah, N., Macedo Mourelle, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; p. 181. [Google Scholar]
- Caydas, U.; Hascalık, A.; Ekici, S. An adaptive Neuro-fuzzy inference system (ANFIS) model for wire-EDM. Exp. Syst. Appl. 2009, 36, 6135–6139. [Google Scholar] [CrossRef]
- Anwar, S.; Nasr, M.M.; Alkahtani, M.; Altamimi, A. Predicting surface roughness and exit chipping size in BK7 glass during rotary ultrasonic machining by ANFIS. In Proceedings of the International Conference on Industrial Engineering and Operation Management, Rabat, Morocco, 11–13 April 2017. [Google Scholar]
- Sommer, C.; Sommer, S. Complete EDM Handbook; Reliable EDM: Houston, TX, USA, 2013. [Google Scholar]
EDM Process Parameter | Symbol | Values |
---|---|---|
Hole diameter of electrode (d) [mm] | A | 0.08–0.16–0.20 |
Peak current (Ip) [A] | B | 4.0–8.0–12.0 |
Pulse on time (Ton) [µs] | C | 200–400–600 |
Dielectric pressure (Dp) [kg/m2] | D | 0.10–0.20–0.30 |
No. | Hole Diameter (d) [mm] | Peak Current (Ip) [A] | Pulse on Time (Ton) [µs] | Dielectric Pressure (Dp) [kg/m2] |
---|---|---|---|---|
1 | 0.08 | 4.0 | 200 | 0.10 |
2 | 0.08 | 8.0 | 400 | 0.20 |
3 | 0.08 | 12.0 | 600 | 0.30 |
4 | 0.16 | 4.0 | 400 | 0.30 |
5 | 0.16 | 8.0 | 600 | 0.10 |
6 | 0.16 | 12.0 | 200 | 0.20 |
7 | 0.24 | 4.0 | 600 | 0.20 |
8 | 0.24 | 8.0 | 200 | 0.30 |
9 | 0.24 | 12.0 | 400 | 0.10 |
No. | MRR (mm3/min) | EWR (g/min) | Circularity (mm) | Cylindricity (mm) | ||||
---|---|---|---|---|---|---|---|---|
µ | σ | µ | σ | µ | σ | µ | σ | |
1 | 0.009 | 0.0002 | 0.002 | 0.0002 | 0.0183 | 0.002 | 0.0441 | 0.002 |
2 | 0.045 | 0.001 | 0.001 | 0.0002 | 0.1042 | 0.03 | 0.0125 | 0.001 |
3 | 0.086 | 0.003 | 0.002 | 0.0001 | 0.0216 | 0.001 | 0.0613 | 0.002 |
4 | 0.013 | 0.003 | 0.0005 | 0.00001 | 0.085 | 0.002 | 0.0533 | 0.003 |
5 | 0.048 | 0.002 | 0.0017 | 0.0003 | 0.0625 | 0.002 | 0.0003 | 0.00001 |
6 | 0.099 | 0.003 | 0.0002 | 0.00002 | 0.0043 | 0.0003 | 0.0272 | 0.001 |
7 | 0.022 | 0.002 | 0.0027 | 0.0002 | 0.1294 | 0.02 | 0.0482 | 0.003 |
8 | 0.059 | 0.003 | 0.0074 | 0.0003 | 0.0011 | 0.0003 | 0.0528 | 0.002 |
9 | 0.074 | 0.003 | 0.0078 | 0.0002 | 0.032 | 0.001 | 0.0345 | 0.003 |
No. | Normalisation | Grey Relational Coefficients | Grades | ||||||
---|---|---|---|---|---|---|---|---|---|
MRR | EWR | Circularity | Cylindricity | MRR | EWR | Circularity | Cylindricity | ||
1 | 0 | 0.763 | 0.866 | 0.282 | 0.333 | 0.679 | 0.789 | 0.410 | 0.553 |
2 | 0.400 | 0.895 | 0.196 | 0.800 | 0.455 | 0.826 | 0.384 | 0.714 | 0.595 |
3. | 0.856 | 0.763 | 0.840 | 0 | 0.776 | 0.679 | 0.758 | 0.333 | 0.636 |
4 | 0.044 | 0.961 | 0.346 | 0.131 | 0.344 | 0.927 | 0.433 | 0.365 | 0.517 |
5 | 0.433 | 0.803 | 0.521 | 1 | 0.469 | 0.717 | 0.511 | 1.000 | 0.674 |
6 | 1 | 1 | 0.975 | 0.559 | 1.000 | 1.000 | 0.952 | 0.531 | 0.871 |
7 | 0.144 | 0.671 | 0 | 0.215 | 0.369 | 0.603 | 0.333 | 0.389 | 0.424 |
8 | 0.556 | 0.053 | 1 | 0.139 | 0.529 | 0.345 | 1.000 | 0.367 | 0.561 |
9 | 0.722 | 0 | 0.759 | 0.439 | 0.643 | 0.333 | 0.675 | 0.471 | 0.531 |
Process Parameters | Level 1 | Level 2 | Level 3 |
---|---|---|---|
A | 0.595 | 0.687 | 0.505 |
B | 0.498 | 0.610 | 0.679 |
C | 0.661 | 0.547 | 0.578 |
D | 0.586 | 0.630 | 0.571 |
Average grey relational value = 0.59566 |
Optimal Value | Experimentation | |
---|---|---|
Level | A2B3C1D2 | A2B3C1D2 |
MRR [mm3/min] | 0.048 | 0.099 |
EWR [g/min] | 0.0017 | 0.0002 |
Circularity [mm] | 0.0625 | 0.0043 |
Cylindricity [mm] | 0.0003 | 0.0272 |
Grade | 0.67417 | 0.87096 |
Improvement in grey relational grade: 0.1968 |
Output Response | EWR | MRR | Circularity | Cylindricity |
---|---|---|---|---|
Training Method | Hybrid | Hybrid | Hybrid | Hybrid |
MF’s | trimf | trimf | trimf | trimf |
No. of Mf’s | 3 3 3 3 | 3 3 3 3 | 3 3 3 3 | 3 3 3 3 |
No. of epochs | 300 | 300 | 300 | 300 |
Output function | Constant | Constant | Constant | Constant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Dhanabalan, S.; Polini, W.; Corrado, A. Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process. Appl. Sci. 2025, 15, 10445. https://doi.org/10.3390/app151910445
Kumar S, Dhanabalan S, Polini W, Corrado A. Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process. Applied Sciences. 2025; 15(19):10445. https://doi.org/10.3390/app151910445
Chicago/Turabian StyleKumar, Sandeep, Subramanian Dhanabalan, Wilma Polini, and Andrea Corrado. 2025. "Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process" Applied Sciences 15, no. 19: 10445. https://doi.org/10.3390/app151910445
APA StyleKumar, S., Dhanabalan, S., Polini, W., & Corrado, A. (2025). Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process. Applied Sciences, 15(19), 10445. https://doi.org/10.3390/app151910445