The Relationship Between Aerobic Capacity, Lactate Clearance, and Heart Rate Recovery in Ice Hockey Players
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants
2.3. Anthropometric Measures
2.4. VO2max
2.5. Specific Endurance Test
2.6. Heart Rate Measurement
2.7. Lactate Measurement
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stanula, A.; Gabryś, T.; Roczniok, R.; Szmatlan-Gabryś, U.; Ozimek, M.; Mostowik, A. Quantification of the Demands During an Ice-Hockey Game Based on Intensity Zones Determined From the Incremental Test Outcomes. J. Strength Cond. Res. 2016, 30, 176–183. [Google Scholar] [CrossRef]
- Kv, S.; Kumar, M. Ascertaining the Impact of Skill-Based, Intensive Training on the Cardiovascular and Muscular Performance of Male Hockey Players. Phys. Educ. Theory Methodol. 2024, 24, 455–463. [Google Scholar] [CrossRef]
- Stone, N.M.; Kilding, A.E. Aerobic conditioning for team sport athletes. Sports Med. 2009, 39, 615–642. [Google Scholar] [CrossRef]
- International Ice Hockey Federation. IIHF Official Rulebook 2024/25 (Version 1.0); International Ice Hockey Federation: Zurich, Switzerland, 2024. [Google Scholar]
- Vigh-Larsen, J.; Mohr, M. The physiology of ice hockey performance: An update. Scand. J. Med. Sci. Sports 2022, 34, 5–21. [Google Scholar] [CrossRef]
- Montgomery, D.L. Physiology of ice hockey. Sports Med. 1988, 5, 99–126. [Google Scholar] [CrossRef]
- Cox, M.H.; Miles, D.S.; Verde, T.J.; Rhodes, E.C. Applied physiology of ice hockey. Sports Med. 1995, 19, 184–201. [Google Scholar] [CrossRef]
- Quinney, H.A.; Dewart, R.; Game, A.; Snydmiller, G.; Warburton, D.; Bell, G. A 26 year physiological description of a National Hockey League team. Appl. Physiol. Nutr. Metab. 2008, 33, 753–760. [Google Scholar] [CrossRef]
- Carey, D.G.; Drake, M.M.; Pliego, G.J.; Raymond, R.L. Do hockey players need aerobic fitness? Relation between VO2max and fatigue during high-intensity intermittent ice skating. J. Strength Cond. Res. 2007, 21, 963–966. [Google Scholar] [CrossRef]
- Stastny, P.; Musalek, M.; Roczniok, R.; Cleather, D.; Novak, D.; Vagner, M. Testing distance characteristics and reference values for ice-hockey straight sprint speed and acceleration. A systematic review and meta-analyses. Biol. Sport. 2023, 40, 899–918. [Google Scholar] [CrossRef]
- Czuba, M.; Bril, G.; Płoszczyca, K.; Piotrowicz, Z.; Chalimoniuk, M.; Roczniok, R.; Zembroń-Łacny, A.; Gerasimuk, D.; Langfort, J. Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. BioMed Res. Int. 2019, 2019, 1287506. [Google Scholar] [CrossRef]
- Vescovi, J.D.; Murray, T.M.; Vanheest, J.L. Positional performance profiling of elite ice hockey players. Int. J. Sports Physiol. Perform. 2006, 1, 84–94. [Google Scholar] [CrossRef]
- Roczniok, R.; Maszczyk, A.; Stanula, A.; Czuba, M.; Pietraszewski, P.; Kantyka, J.; Starzyński, M. Physiological and physical profiles and on-ice performance approach to predict talent in male youth ice hockey players during draft to hockey team. Isokinet. Exerc. Sci. 2013, 21, 121–127. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.; Ørtenblad, N.; Spriet, L.; Overgaard, K.; Mohr, M. Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sports Med. 2021, 51, 1855–1874. [Google Scholar] [CrossRef]
- Seiler, S.; Haugen, O.; Kuffel, E. Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Med. Sci. Sports Exerc. 2007, 39, 1366–1373. [Google Scholar] [CrossRef]
- McGawley, K.; Bishop, D. Oxygen uptake during repeated-sprint exercise. J. Sci. Med. Sport 2015, 18, 214–218. [Google Scholar] [CrossRef]
- Roczniok, R.; Stastny, P.; Novak, D.; Opath, L.; Terbalyan, A.; Musalek, M. The Relation of On-Ice and Off-Ice Performance at Two Different Performance Levels in Youth Ice-Hockey Players. J. Hum. Kinet. 2024, 93, 193–203. [Google Scholar] [CrossRef]
- Roczniok, R.; Terbalyan, A.; Manilewska, D.; Mikrut, G.; Mika, T.; Stastny, P. Interval training using a slide board is superior to cycloergometer regarding aerobic capacity and specific fitness in elite ice hockey players. Baltic J. Health Phys. Act. 2024, 16, 1. [Google Scholar] [CrossRef]
- Bentley, D.J.; Newell, J.; Bishop, D. Incremental exercise test design and analysis. Sports Med. 2007, 37, 575–586. [Google Scholar] [CrossRef]
- Gaynor, M.; Sawyer, A.; Jenkins, S.; Wood, J. Variable agreement between wearable heart rate monitors during exercise in cystic fibrosis. ERJ Open Res. 2019, 5. [Google Scholar] [CrossRef]
- Chalchat, E.; Gaston, A.-F.; Charlot, K.; Peñailillo, L.; Valdés, O.; Tardo-Dino, P.-E.; Nosaka, K.; Martin, V.; Garcia-Vicencio, S.; Siracusa, J. Appropriateness of indirect markers of muscle damage following lower limbs eccentric-biased exercises: A systematic review with meta-analysis. PLoS ONE 2022, 17, e0271233. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Schneider, C.; Hanakam, F.; Wiewelhove, T.; Döweling, A.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Heart Rate Monitoring in Team Sports—A Conceptual Framework for Contextualizing Heart Rate Measures for Training and Recovery Prescription. Front. Physiol. 2018, 9, 639. [Google Scholar] [CrossRef]
- Tomlin, D.; Wenger, H. The Relationship Between Aerobic Fitness and Recovery from High Intensity Intermittent Exercise. Sports Med. 2001, 31, 1–11. [Google Scholar] [CrossRef]
- Burr, J.F.; Slysz, J.T.; Boulter, M.S.; Warburton, D.E. Influence of Active Recovery on Cardiovascular Function during Ice Hockey. Sports Med. Open 2015, 1, 27. [Google Scholar] [CrossRef]
- Lau, S.; Berg, K.; Latin, R.W.; Noble, J. Comparison of Active and Passive Recovery of Blood Lactate and Subsequent Performance of Repeated Work Bouts in Ice Hockey Players. J. Strength Cond. Res. 2001, 15, 367–371. [Google Scholar]
- Facioli, T.; Philbois, S.; Gastaldi, A.; Almeida, D.; Maida, K.; Rodrigues, J.; Sánchez-Delgado, J.; Souza, H. Study of heart rate recovery and cardiovascular autonomic modulation in healthy participants after submaximal exercise. Sci. Rep. 2021, 11, 83071. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.; Bangsbo, J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand. J. Med. Sci. Sports 2010, 20, 11–23. [Google Scholar] [CrossRef]
- Yamagishi, T.; Babraj, J. Influence of recovery intensity on oxygen demand and repeated sprint performance. J. Sports Med. Phys. Fit. 2016, 56, 1103–1112. [Google Scholar]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef]
- Stanley, J.; Peake, J.; Buchheit, M. Cardiac Parasympathetic Reactivation Following Exercise: Implications for Training Prescription. Sports Med. 2013, 43, 1259–1277. [Google Scholar] [CrossRef]
- Ament, W.; Verkerke, G. Exercise and Fatigue. Sports Med. 2009, 39, 389–422. [Google Scholar] [CrossRef]
- Billat, L.V. Interval training for performance: A scientific and empirical practice. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef]
- Šťastný, P.; Lehnert, M.; Zaatar, A.; Svoboda, Z.; Xaverová, Z.; Pietraszewski, P. The Gluteus Medius Vs. Thigh Muscles Strength Ratio and Their Relation to Electromyography Amplitude During a Farmer’s Walk Exercise. J. Hum. Kinet. 2015, 45, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 1996, 80, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Hussien, R.; Brooks, G.A. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: Evidence of a mitochondrial lactate oxidation complex. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1237–E1244. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Kitaoka, Y.; Matsunaga, Y.; Hatta, H. Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle. Physiol. Rep. 2019, 7, e14224. [Google Scholar] [CrossRef]
- Brooks, G.A.; Dubouchaud, H.; Brown, M.; Sicurello, J.P.; Butz, C.E. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc. Natl. Acad. Sci. USA 1999, 96, 1129–1134. [Google Scholar] [CrossRef]
- Green, H.J.; Batada, A.; Cole, B.; Burnett, M.E.; Kollias, H.; McKay, S.; Roy, B.; Schertzer, J.; Smith, I.; Tupling, S. Cellular Responses in Skeletal Muscle to a Season of Ice Hockey. Appl. Physiol. Nutr. Metab. 2010, 35, 657–670. [Google Scholar] [CrossRef]
- Coote, J.H. Recovery of heart rate following intense dynamic exercise. Exp. Physiol. 2010, 95, 431–440. [Google Scholar] [CrossRef]
- Sasso, J.; Ivanchikov, S.; Coates, K.; Stewart, L.; Wright, S.; Seiler, S.; Shave, R.; Eves, N. Investigating the Role of Exercise Pattern in Acute Cardiovagal Recovery. Med. Sci. Sports Exerc. 2024, 56, 1–10. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Schoffelen, P.F.M.; den Hoed, M.; van Breda, E.; Plasqui, G. Test-retest variability of VO2max using total-capture indirect calorimetry reveals linear relationship of VO2 and Power. Scand. J. Med. Sci. Sports 2019, 29, 213–222. [Google Scholar] [CrossRef]
- Mongin, D.; Chabert, C.; Extremera, M.; Hue, O.; Courvoisier, D.; Carpena, P.; Galvan, P. Decrease of heart rate variability during exercise: An index of cardiorespiratory fitness. PLoS ONE 2021, 17, e0273981. [Google Scholar] [CrossRef]
- Zuniga, J.M.; Housh, T.J.; Camic, C.L.; Bergstrom, H.C.; Traylor, D.A.; Schmidt, R.J.; Johnson, G.O. Metabolic parameters for ramp versus step incremental cycle ergometer tests. Appl. Physiol. Nutr. Metab. 2012, 37, 1110–1117. [Google Scholar] [CrossRef]
Variable | Me (IQR) Min–Max | Variable | Me (IQR) Min–Max |
---|---|---|---|
WR [W] | 324.00 (44.38) 261–382 | Lar 4′ [mmol/L] | 12.56 (1.90) 9.44–15.72 |
HR [1/min] | 180.25 (10.75) 167–199 | Lar 8′ [mmol/L] | 10.16 (2.28) 6.10–13.54 |
VO2max [mL/min/kg] | 48.10 (4.35) 40.65–64.43 | ΔLa4–8min [mmol/L] | 2.48 (0.95) 1.51–3.68 |
VE [l/min] | 129.13 (21.20) 83.40–188.40 | Δ%HRmax I | 29.57 (4.22) 26.32–34.38 |
BF [1/min] | 51.85 (10.42) 37.40–70.20 | Δ%HRmax II | 25.78 (1.97) 22.61–30.29 |
6 × 30 m-I [s] | 34.63 (2.48) 33.02–40.40 | Δ%HRmax III | 22.22 (4.35) 17.49–25.79 |
6 × 30 m-VI [s] | 36.11 (2.58) 34.11–42.34 | Δ%HRmax | 25.79 (3.01) 21.78–30.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roczniok, R.; Terbalyan, A.; Stastny, P.; Zielonka, H.; Manilewska, D.; Ornowski, K.; Blaha, M.; Pietraszewski, P. The Relationship Between Aerobic Capacity, Lactate Clearance, and Heart Rate Recovery in Ice Hockey Players. Appl. Sci. 2025, 15, 10310. https://doi.org/10.3390/app151910310
Roczniok R, Terbalyan A, Stastny P, Zielonka H, Manilewska D, Ornowski K, Blaha M, Pietraszewski P. The Relationship Between Aerobic Capacity, Lactate Clearance, and Heart Rate Recovery in Ice Hockey Players. Applied Sciences. 2025; 15(19):10310. https://doi.org/10.3390/app151910310
Chicago/Turabian StyleRoczniok, Robert, Artur Terbalyan, Petr Stastny, Hanna Zielonka, Daria Manilewska, Kajetan Ornowski, Martin Blaha, and Przemysław Pietraszewski. 2025. "The Relationship Between Aerobic Capacity, Lactate Clearance, and Heart Rate Recovery in Ice Hockey Players" Applied Sciences 15, no. 19: 10310. https://doi.org/10.3390/app151910310
APA StyleRoczniok, R., Terbalyan, A., Stastny, P., Zielonka, H., Manilewska, D., Ornowski, K., Blaha, M., & Pietraszewski, P. (2025). The Relationship Between Aerobic Capacity, Lactate Clearance, and Heart Rate Recovery in Ice Hockey Players. Applied Sciences, 15(19), 10310. https://doi.org/10.3390/app151910310