Diagnostic Accuracy of Presepsin, sMR, and Established Inflammatory Biomarkers in Critically Ill Children with Sepsis or Systemic Inflammatory Response Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
- Group I (n = 42): Septic patients presenting with systemic inflammatory response syndrome (SIRS) of confirmed or suspected infectious etiology, fulfilling at least two diagnostic criteria, one of which was an abnormal body temperature or leukocyte count.
- Group II (n = 11): Critical patients with SIRS attributed to non-infectious causes.
- Group III (n = 27): Patients without a history or clinical evidence of infectious syndrome or SIRS, serving as controls.
2.2. Physical Examination
2.3. Laboratory Methods
2.3.1. Hematological Analysis
2.3.2. Biochemical Indicators
2.3.3. Innovative Markers of Inflammation
2.3.4. Microbiological Tests
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Diagnostic Applicability of Presepsin and sMR: Reference Values and Comparative Analysis
- Comparison of results of sick children with a control group
- Comparison between patients from Group I and Group II
- Diagnostic potential through modeling combinations of biomarkers
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRP | C-reactive protein |
PCT | Procalcitonin |
sMR | Soluble mannose receptor |
SIRS | Systemic inflammatory response syndrome |
ESR | Erythrocyte sedimentation rate |
PICU | Pediatric intensive care unit |
PRISM III | Pediatric Risk of Mortality III |
pSOFA | Pediatric Sequential Organ Failure Assessment |
PELOD-2 | Pediatric Logistic Organ Dysfunction-2 |
PSS | Phoenix Sepsis Score |
ELISA | Enzyme-linked immunosorbent assay |
SD | Standard deviation |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
PPV | Positive and predictive value |
NPV | Negative predictive value |
CI | Confidence interval |
Cut-off | Cut-off point |
CBC | Complete blood count |
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Carrol, E.D.; Ranjit, S.; Menon, K.; Bennett, T.D.; Sanchez-Pinto, L.N.; Zimmerman, J.J.; Souza, D.C.; Sorce, L.R.; Randolph, A.G.; Ishimine, P.; et al. Operationalizing Appropriate Sepsis Definitions in Children Worldwide: Considerations for the Pediatric Sepsis Definition Taskforce. Pediatr. Crit. Care Med. 2023, 24, e263–e271. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Cicchinelli, S.; Pignataro, G.; Gemma, S.; Piccioni, A.; Picozzi, D.; Ojetti, V.; Franceschi, F.; Candelli, M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int. J. Mol. Sci. 2024, 25, 962. [Google Scholar] [CrossRef] [PubMed]
- Rajaee, A.; Barnett, R.; Cheadle, W.G. Pathogen- and Danger-Associated Molecular Patterns and the Cytokine Response in Sepsis. Surg. Infect. 2018, 19, 107–116. [Google Scholar] [CrossRef]
- Parlato, M.; Cavaillon, J.M. Host response biomarkers in the diagnosis of sepsis: A general overview. Methods Mol. Biol. 2015, 1237, 149–211. [Google Scholar] [CrossRef]
- Slaats, J.; Ten Oever, J.; Van De Veerdonk, F.L.; Netea, M.G. IL-1β/IL-6/CRP and IL-18/ferritin: Distinct Inflammatory Programs in Infections. PLoS Pathog. 2016, 12, e1005973. [Google Scholar] [CrossRef]
- Niehues, T. C-reactive protein and other biomarkers—The sense and non-sense of using inflammation biomarkers for the diagnosis of severe bacterial infection. LymphoSign J. 2018, 5, 35–47. [Google Scholar] [CrossRef]
- Bourika, V.; Rekoumi, E.A.; Giamarellos-Bourboulis, E.J. Biomarkers to guide sepsis management. Ann. Intensive Care 2025, 15, 103. [Google Scholar] [CrossRef]
- Chenevier-Gobeaux, C.; Borderie, D.; Weiss, N.; Mallet-Coste, T.; Claessens, Y.E. Presepsin (sCD14-ST), an innate immune response marker in sepsis. Clin. Chim. Acta 2015, 450, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Rødgaard-Hansen, S.; Rafique, A.; Christensen, P.A.; Maniecki, M.B.; Sandahl, T.D.; Nexø, E.; Møller, H.J. A soluble form of the macrophage-related mannose receptor (MR/CD206) is present in human serum and elevated in critical illness. Clin. Chem. Lab. Med. (CCLM) 2014, 52, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Sakyi, S.A.; Enimil, A.; Adu, D.K.; Ephraim, R.D.; Danquah, K.O.; Fondjo, L.; Baidoe-Ansah, D.; Adoba, P.; Toboh, E.; Afranie, B.O. Individual and combined bioscore model of presepsin, procalcitonin, and high sensitive C—Reactive protein as biomarkers for early diagnosis of paediatric sepsis. Heliyon 2020, 6, e04841. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef]
- Baudelet, J.B.; Leteutre, S. PELOD-2 Score Calulator [Internet]. ESPNIC. Available online: https://www.espnic.eu/education/clinical-tools/ (accessed on 31 August 2023).
- Schlapbach, L. Phoenix Sepsis Score Calculator [Internet]. MDCalc. Available online: https://www.mdcalc.com/calc/10509/phoenix-sepsis-score?uuid=4d87fb25-7ec7-4a93-bdf5-0c10fffc049f&utm_source=mdcalc (accessed on 7 March 2024).
- Herklotz, R.; Lüthi, U.; Ottiger, C.; Huber, A.R. Referenzbereiche in der Hämatologie. Ther. Umsch. 2006, 63, 5–24. [Google Scholar] [CrossRef]
- Gomez, B.; Mintegi, S.; Bressan, S.; Da Dalt, L.; Gervaix, A.; Lacroix, L.; on behalf of the European Group for Validation of the Step-by-Step Approach. Validation of the “Step-by-Step” Approach in the Management of Young Febrile Infants. Pediatrics 2016, 138, e20154381. [Google Scholar] [CrossRef]
- Kuppermann, N.; Dayan, P.S.; Levine, D.A.; Vitale, M.; Tzimenatos, L.; Tunik, M.G.; Saunders, M.; Ruddy, R.M.; Roosevelt, G.; Rogers, A.J.; et al. A Clinical Prediction Rule to Identify Febrile Infants 60 Days and Younger at Low Risk for Serious Bacterial Infections. JAMA Pediatr. 2019, 173, 342. [Google Scholar] [CrossRef] [PubMed]
- Norman-Bruce, H.; Umana, E.; Mills, C.; Mitchell, H.; McFetridge, L.; McCleary, D.; Waterfield, T. Diagnostic test accuracy of procalcitonin and C-reactive protein for predicting invasive and serious bacterial infections in young febrile infants: A systematic review and meta-analysis. Lancet Child Adolesc. Health 2024, 8, 358–368. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Horn, P.S.; Pesce, A.J. Reference intervals: An update. Clin. Chim. Acta 2003, 334, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Khera, D.; Toteja, N.; Singh, S.; Singh, S.; Kumar, P.; Sharma, P.; Singh, K. Is There a Role of Presepsin as a Novel Biomarker in Pediatric Sepsis? Indian J. Crit. Care Med. 2022, 26, 712–716. [Google Scholar] [CrossRef]
- Hassuna, N.A.; Elgezawy, E.; Mousa, S.O.; AbdelAziz, R.A.; Ibrahem, R.A.; Wahed, W.Y.A.; Nasif, K.A.; Hefzy, E.M. Diagnostic value of monocyte chemoattractant Protein-1, soluble mannose receptor, Presepsin, and Procalcitonin in critically ill children admitted with suspected sepsis. BMC Pediatr. 2021, 21, 458. [Google Scholar] [CrossRef]
- Marik, P.E.; Stephenson, E. The ability of Procalcitonin, lactate, white blood cell count and neutrophil-lymphocyte count ratio to predict blood stream infection. Analysis of a large database. J. Crit. Care 2020, 60, 135–139. [Google Scholar] [CrossRef]
- De Rop, L.; De Burghgraeve, T.; De Sutter, A.; Buntinx, F.; Verbakel, J.Y. Point-of-care C-reactive protein test results in acute infections in children in primary care: An observational study. BMC Pediatr. 2022, 22, 633. [Google Scholar] [CrossRef]
- Pontrelli, G.; De Crescenzo, F.; Buzzetti, R.; Jenkner, A.; Balduzzi, S.; Carducci, F.C.; Amodio, D.; De Luca, M.; Chiurchiù, S.; Davies, E.H.; et al. Accuracy of serum procalcitonin for the diagnosis of sepsis in neonates and children with systemic inflammatory syndrome: A meta-analysis. BMC Infect Dis. 2017, 17, 302. [Google Scholar] [CrossRef]
- Simon, L.; Saint-Louis, P.; Amre, D.K.; Lacroix, J.; Gauvin, F. Procalcitonin and C-reactive protein as markers of bacterial infection in critically ill children at onset of systemic inflammatory response syndrome. Pediatr. Crit. Care Med. 2008, 9, 407–413. [Google Scholar] [CrossRef]
- Downes, K.J.; Weiss, S.L.; Gerber, J.S.; Klieger, S.B.; Fitzgerald, J.C.; Balamuth, F.; Kubis, S.E.; Tolomeo, P.; Bilker, W.B.; Han, X.; et al. A Pragmatic Biomarker-Driven Algorithm to Guide Antibiotic Use in the Pediatric Intensive Care Unit: The Optimizing Antibiotic Strategies in Sepsis (OASIS) Study. J. Pediatr. Infect. Dis. Soc. 2016, 6, 134. [Google Scholar] [CrossRef]
- Downes, K.J.; Fitzgerald, J.C.; Weiss, S.L. Utility of Procalcitonin as a Biomarker for Sepsis in Children. J. Clin. Microbiol. 2020, 58, e01851-19. [Google Scholar] [CrossRef] [PubMed]
- Arkader, R.; Troster, E.J.; Lopes, M.R.; Júnior, R.R.; Carcillo, J.A.; Leone, C.; Okay, T.S. Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Arch. Dis. Child. 2006, 91, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.J.; Prescott, H.C. Sepsis and Septic Shock. N. Engl. J. Med. 2024, 391, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, Z.D.; Song, J.; Shao, J. Diagnostic Value of Presepsin for Sepsis: A Systematic Review and Meta-Analysis. Medicine 2015, 94, e2158. [Google Scholar] [CrossRef] [PubMed]
- Marie Relster, M.; Gaini, S.; Møller, H.J.; Johansen, I.S.; Pedersen, C. The macrophage activation marker sMR as a diagnostic and prognostic marker in patients with acute infectious disease with or without sepsis. Scand. J. Clin. Lab. Investig. 2018, 78, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Van Der Zande, H.J.P.; Nitsche, D.; Schlautmann, L.; Guigas, B.; Burgdorf, S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front. Immunol. 2021, 12, 765034. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group I Median (IQR) | Group II Median (IQR) | Group III Median (IQR) | p (I vs II) | p (II vs III) | p (I vs III) |
---|---|---|---|---|---|---|
Leukocytes (109/L) | 12.79 (8.60–17.41) | 12.29 (11.02–23.85) | 6.66 (5.67–8.12) | 0.4387 | <0.0001 | <0.0001 |
CRP (mg/L) | 17.20 (1.43–101.80) | 6.73 (0.12–21.00) | 0.60 (0.12–0.60) | 0.1515 | 0.0111 | <0.0001 |
Procalcitonin (ng/mL) | 1.57 (0.38–5.78) | 0.95 (0.43–1.67) | 0.05 (0.04–0.06) | 0.1344 | <0.0001 | <0.0001 |
Presepsin (pg/mL) | 228.10 (145.30–351.70) | 347.00 (59.43–1136.00) | 15.97 (3.52–51.10) | >0.9999 | 0.0009 | <0.0001 |
sMR (ng/mL) | 231.90 (191.20–307.20) | 238.80 (138.90–349.60) | 117.70 (106.50–125.60) | 0.7547 | 0.0024 | <0.0001 |
Biomarker | Leukocytes (109/L) | CRP (mg/L) | Procalcitonin (ng/mL) | Presepsin (pg/mL) | sMR (ng/mL) |
---|---|---|---|---|---|
AUC 95% CI | 0.422 (0.22–0.61) | 0.643 (0.47–0.82) | 0.649 (0.47–0.82) | 0.471 (0.27–0.66) | 0.530 (0.34–0.72) |
Cut-off | 29.75 | 34.33 | 2.33 | 147.97 | 112.63 |
Sensitivity % | 11 | 42 | 40 | 81 | 100 |
Specificity % | 100 | 90 | 100 | 36 | 18 |
PPV % | 100 | 82 | 100 | 56 | 55 |
NPV % | 53 | 61 | 62 | 65 | 100 |
p | 0.4387 | 0.1515 | 0.1344 | >0.9999 | 0.7547 |
Model | AUC | 95% CI | p |
---|---|---|---|
CRP + procalcitonin | 0.71 | 0.55–0.87 | 0.0087 |
CRP + sMR | 0.68 | 0.52–0.84 | 0.0322 |
CRP + presepsin | 0.56 | 0.37–0.75 | 0.5300 |
Procalcitonin + sMR | 0.74 | 0.59–0.89 | 0.0015 |
Procalcitonin + presepsin | 0.64 | 0.47–0.81 | 0.1142 |
Presepsin + CRP + procalcitonin | 0.69 | 0.53–0.86 | 0.0133 |
sMR + CRP + procalcitonin | 0.78 | 0.63–0.93 | 0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadzhieva-Hristova, A.; Gerova, D.; Shefket, S.; Halilova, M.; Krumova, D.; Stoeva, T.; Iotova, V. Diagnostic Accuracy of Presepsin, sMR, and Established Inflammatory Biomarkers in Critically Ill Children with Sepsis or Systemic Inflammatory Response Syndrome. Appl. Sci. 2025, 15, 10089. https://doi.org/10.3390/app151810089
Hadzhieva-Hristova A, Gerova D, Shefket S, Halilova M, Krumova D, Stoeva T, Iotova V. Diagnostic Accuracy of Presepsin, sMR, and Established Inflammatory Biomarkers in Critically Ill Children with Sepsis or Systemic Inflammatory Response Syndrome. Applied Sciences. 2025; 15(18):10089. https://doi.org/10.3390/app151810089
Chicago/Turabian StyleHadzhieva-Hristova, Adriana, Daniela Gerova, Sevim Shefket, Mergyul Halilova, Darina Krumova, Temenuga Stoeva, and Violeta Iotova. 2025. "Diagnostic Accuracy of Presepsin, sMR, and Established Inflammatory Biomarkers in Critically Ill Children with Sepsis or Systemic Inflammatory Response Syndrome" Applied Sciences 15, no. 18: 10089. https://doi.org/10.3390/app151810089
APA StyleHadzhieva-Hristova, A., Gerova, D., Shefket, S., Halilova, M., Krumova, D., Stoeva, T., & Iotova, V. (2025). Diagnostic Accuracy of Presepsin, sMR, and Established Inflammatory Biomarkers in Critically Ill Children with Sepsis or Systemic Inflammatory Response Syndrome. Applied Sciences, 15(18), 10089. https://doi.org/10.3390/app151810089