Preliminary Results on Hydrogen Concentration Time Series in Spring Gases from the Pamir–Western Himalayan Syntaxis: Variability and Tectonic Instability
Abstract
1. Introduction
2. Geological Settings
3. Data Acquisition and Processing Methods
3.1. Data Acquisition
3.2. Missing Data and Handling Approaches
- Decompose the time series: The time series breaks down into trend, seasonal, and residual components using the additive model.
- Missing value imputation:
- The trend component is interpolated by means of linear interpolation.
- The seasonal component is imputed by applying the forward fill method, where each missing value is replaced by the most recent non-missing value. For consecutive missing values, the same preceding value is used until a new non-missing value appears.
- The residual component is imputed by utilizing the mean of the available values.
- 3.
- Reconstruct the series: The interpolated trend, seasonal, and residual components are summed to generate the final imputed time series.
3.3. Earthquake Catalog Selection
3.3.1. Influence Radius as a Selection Criterion
3.3.2. Seismic Energy Density as a Selection Criterion
4. Results
4.1. General Overview of the Data Distribution
4.2. Variation Characteristics of the Observed Time Series
5. Discussion
5.1. Correlation Between H2 Concentration and Meteorological Factors
5.2. Correlation Between H2 Concentration and Seismic Activities
5.2.1. Anomaly Detection in H2 Concentration
5.2.2. H2 Anomalies and Seismic Activity as Tectonic Instability Indicators
5.2.3. Response of H2 Concentration Anomalies to Seismic Events
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kennedy, D.; Norman, C. What don’t we know? Science 2005, 309, 75. [Google Scholar] [CrossRef] [PubMed]
- Beroza, G.; Segou, M.; Mostafa, S.M. Machine learning and earthquake forecasting—Next steps. Nat. Commun. 2021, 12, 4761. [Google Scholar] [CrossRef] [PubMed]
- Wikelski, M.; Mueller, U.; Scocco, P.; Catorci, A.; Desinov, L.V.; Belyaev, M.Y.; Keim, D.; Pohlmeier, W.; Fechteler, G.; Martin, M.P. Potential short-term earthquake forecasting by farm animal monitoring. Ethology 2020, 126, 931–941. [Google Scholar] [CrossRef]
- Claesson, L.; Skelton, A.; Graham, C.; Dietl, C.; Mörth, M.; Torssander, P.; Kockum, I. Hydrogeochemical changes before and after a major earthquake. Geology 2004, 32, 641–644. [Google Scholar] [CrossRef]
- Takahashi, K.; Tsuji, T.; Ikeda, T.; Nimiya, H.; Nagata, Y.; Suemoto, Y. Underground structures associated with horizontal sliding at Uchinomaki hot springs, Kyushu, Japan, during the 2016 Kumamoto earthquake. Earth Planets Space 2019, 71, 87. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Fault on–off versus coseismic fluids reaction. Geosci. Front. 2014, 5, 767–780. [Google Scholar] [CrossRef]
- Smeraglia, L.; Berra, F.; Billi, A.; Boschi, C.; Carminati, E.; Doglioni, C. Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks. Earth Planet. Sci. Lett. 2016, 450, 292–305. [Google Scholar] [CrossRef]
- Hosono, T.; Masaki, Y. Post-seismic hydrochemical changes in regional groundwater flow systems in response to the 2016 Mw 7.0 Kumamoto earthquake. J. Hydrol. 2020, 580, 124340. [Google Scholar] [CrossRef]
- Hosono, T.; Yamada, C.; Manga, M.; Wang, C.Y.; Tanimizu, M. Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nat. Commun. 2020, 11, 2776. [Google Scholar] [CrossRef]
- Siino, M.; Scudero, S.; Cannelli, V.; Piersanti, A.; D’Alessandro, A. Multiple seasonality in soil radon time series. Sci. Rep. 2019, 9, 8610. [Google Scholar] [CrossRef]
- Raleigh, B. Prediction of Haicheng earthquake. Eos Trans. AGU 1977, 58, 236–272. [Google Scholar]
- Skelton, A.; Andrén, M.; Kristmannsdóttir, H.; Stockmann, G.; Mrth, C.M.; Sveinbjrnsdóttir, R.; Jónsson, S.; Sturkell, E.; Gurúnardóttir, H.R.; Hjartarson, H. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752–756. [Google Scholar] [CrossRef]
- Woith, H.; Wang, R.; Maiwald, U.; Pekdeger, A.; Zschau, J. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake. Chem. Geol. 2013, 339, 177–186. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Negarestani, A.; Namvaran, M.; Musavi Nasab, S. An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes. J. Radioanal. Nucl. Chem. 2013, 295, 2249–2262. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Katlamudi, M.; Barman, C.; Lakshmi, G.U. Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert Huang Transform. J. Environ. Radioact. 2020, 222, 106353. [Google Scholar] [CrossRef]
- Sciarra, A.; Cantucci, B.; Coltorti, M. Learning from soil gas change and isotopic signatures during 2012 Emilia seismic sequence. Sci. Rep. 2017, 7, 14187. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Guo, L.; Yang, D.; Fang, Z.; Chen, T.; Ren, H.; Yu, B. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics 2014, 619, 79–85. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, X.; Yan, Y.; He, M.; Li, J.; Dong, J.; Liu, F.; Ouyang, S.; Li, Y.; Tian, L. Earthquake-induced impulsive release of water in the fractured aquifer system: Insights from the long-term hydrochemical monitoring of hot springs in the Southeast Tibetan Plateau. Appl. Geochem. 2023, 148, 105553. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Tian, J.; Zhou, J.; He, M.; Li, J.; Dong, J.; Yan, Y.; Liu, F.; Yao, B. Volatile characteristics and fluxes of He-CO2 systematics in the southeastern Tibetan Plateau: Constraints on regional seismic activities. J. Hydrol. 2023, 617, 129042. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, X.; Liao, L.; Tian, J.; Li, Y.; Shi, Z.; Liu, F.; Ouyang, S. Hydrogeochemical characteristic of geothermal water and precursory anomalies along the Xianshuihe Fault Zone, Southwestern China. Water 2022, 14, 550. [Google Scholar] [CrossRef]
- Chaudhuri, H.; Bari, W.; Iqbal, N.; Bhandari, R.K.; Ghose, D.; Sen, P.; Sinha, B. Long range gas-geochemical anomalies of a remote earthquake recorded simultaneously at distant monitoring stations in India. Geochem. J. 2011, 45, 137–156. [Google Scholar] [CrossRef]
- Horiguchi, K.; Shimo, Y.; Matsuda, J.I. The 3He/4He ratios in hot spring gases after the Iwate-Miyagi Nairiku earthquake in 2008. Geochim. Cosmochim. Acta Suppl. 2009, 73, A550. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, X.; Liao, M.; He, M.; Zeng, Z.; Yan, Y.; Yao, B.; Wang, Y.; Cui, S.; Xing, G. Tectonic variations in NS-trending rifts, southern Tibetan Plateau: Insights from hydrothermal emissions and seismic activities. J. Asian Earth Sci. 2025, 287, 106599. [Google Scholar] [CrossRef]
- Sugisaki, R. Geochemical features of gases and rocks along active faults. Geochem. J. 1980, 14, 101–112. [Google Scholar] [CrossRef]
- Sugisaki, R.; Ido, M.; Takeda, H.; Isobe, Y.; Hayashi, Y.; Nakamura, N.; Satake, H.; Mizutani, Y. Origin of Hydrogen and Carbon Dioxide in Fault Gases and Its Relation to Fault Activity. J. Geol. 1983, 91, 239–258. [Google Scholar] [CrossRef]
- Wakita, H.; Nakamura, Y.; Kita, I.; Fujii, N.; Notsu, K. Hydrogen release: New indicator of fault activity. Science 1980, 210, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Kita, I.; Matsuo, S.; Wakita, H. H2 generation by reaction between H2O and crushed rock: An experimental study on H2 degassing from the active fault zone. J. Geophys. Res. Solid Earth 1982, 87, 10789–10795. [Google Scholar] [CrossRef]
- Freund, F.T.; Freund, M.M. Paradox of peroxy defects and positive holes in rocks. Part I: Effect of temperature. J. Asian Earth Sci. 2015, 114, 373–383. [Google Scholar] [CrossRef]
- Dogan, T.; Mori, T.; Tsunomori, F.; Notsu, K.J.P.; Geophysics, A. Soil H2 and CO2 Surveys at Several Active Faults in Japan. In Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume II; Pageoph Topical Volumes; Pérez, N.M., Gurrieri, S., King, C.-Y., Taran, Y., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 164, pp. 2449–2463. [Google Scholar]
- Hirose, T.; Kawagucci, S.; Suzuki, K. Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere. Geophys. Res. Lett. 2011, 38, 245–255. [Google Scholar] [CrossRef]
- Sato, M.; Sutton, A.; McGee, K. Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, Central California. Pure Appl. Geophys. 1984, 122, 376–391. [Google Scholar] [CrossRef]
- Zhou, X.; Du, J.; Chen, Z.; Cheng, J.; Li, Y. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochem. Trans. 2010, 11, 5. [Google Scholar] [CrossRef]
- Mcgee, K.A.; Casadevall, T.J.; Sato, M.; Sutton, A.J.; Clark, M.D. Hydrogen gas monitoring at Long Valley Caldera, California; Open-File Report 82–930; United States Department of the Interior Geological Survey: Reston, VA, USA, 1982. [CrossRef]
- Zhou, X.; Yan, Y.; Fang, W.; Wang, W.; Shi, H.; Li, P. Short-Term Seismic Precursor Anomalies of Hydrogen Concentration in Luojishan Hot Spring Bubbling Gas, Eastern Tibetan Plateau. Front. Earth Sci. 2021, 8, 586279. [Google Scholar] [CrossRef]
- Mechie, J.; Yuan, X.; Schurr, B.; Schneider, F.; Sippl, C.; Ratschbacher, L.; Minaev, V.; Gadoev, M.; Oimahmadov, I.; Abdybachaev, U.; et al. Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophys. J. Int. 2012, 188, 385–407. [Google Scholar] [CrossRef]
- Schwab, M.; Ratschbacher, L.; Siebel, W.; McWilliams, M.; Minaev, V.; Lutkov, V.; Chen, F.; Stanek, K.; Nelson, B.; Frisch, W.; et al. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics 2004, 23, TC4002. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Zubovich, A.V.; Wang, X.; Scherba, Y.G.; Schelochkov, G.G.; Reilinger, R.; Reigber, C.; Mosienko, O.I.; Molnar, P.; Michajljow, W.; Makarov, V.I. GPS velocity field for the Tien Shan and surrounding regions. Tectonics 2010, 29, TC6014. [Google Scholar] [CrossRef]
- Robinson, A.C.; Yin, A.; Manning, C.E.; Harrison, T.M.; Zhang, S.H.; Wang, X.F. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geol. Soc. Am. Bull. 2004, 116, 953–973. [Google Scholar] [CrossRef]
- Thiede, R.C.; Sobel, E.R.; Chen, J.; Schoenbohm, L.M.; Stockli, D.F.; Sudo, M.; Strecker, M.R. Late Cenozoic extension and crustal doming in the India-Eurasia collision zone: New thermochronologic constraints from the NE Chinese Pamir. Tectonics 2013, 32, 763–779. [Google Scholar] [CrossRef]
- Chevalier, M.L.; Pan, J.; Li, H.; Liu, D.; Wang, M. Quantification of both normal and right-lateral late Quaternary activity along the Kongur Shan extensional system, Chinese Pamir. Terra Nova 2015, 27, 379–391. [Google Scholar] [CrossRef]
- Li, T.; Schoenbohm, L.M.; Chen, J.; Yuan, Z.; Feng, W.; Li, W.; Xu, J.; Owen, L.A.; Sobel, E.R.; Zhang, B.; et al. Cumulative and Coseismic (During the 2016 Mw 6.6 Aketao Earthquake) Deformation of the Dextral-Slip Muji Fault, Northeastern Pamir Orogen. Tectonics 2019, 38, 3975–3989. [Google Scholar] [CrossRef]
- Deng, J.; Han, F.; Li, T.; Zhang, B.; Xu, J.; Yao, Y. Late-Quaternary slip sense and rate of the Muji fault, northeastern Pamir. Quat. Sci. 2020, 40, 114–123. [Google Scholar]
- Chen, J.; Li, T.; Sun, J.; Fang, L.; Yao, Y.; Li, Y.; Wang, H.; Fu, B. Coseismic surface ruptures and seismogenic Muji fault of the 25 November 2016 Arketao Mw 6.6 earthquake in northern Pamir. Seismol. Geol. 2016, 38, 1160–1174. [Google Scholar]
- Yang, H.; Wu, X.; Cui, H.; Wang, W.; Cheng, Y.; Gong, X.; Luo, X.; Lin, Q. Formation Mechanism of Muji Travertine in the Pamirs Plateau, China. Minerals 2024, 14, 1192. [Google Scholar] [CrossRef]
- Chen, Z.; Song, X.; Sun, M.; Yu, H.; Guo, X.; Yin, X.; Song, Q. Microstructure, geochemical and genesis of coated grains in the Muji Basin, Xinjiang. Quat. Sci. 2023, 43, 173–186. [Google Scholar]
- Dudek, G. STD: A Seasonal-Trend-Dispersion Decomposition of Time Series. IEEE Trans. Knowl. Data Eng. 2023, 35, 10339–10350. [Google Scholar] [CrossRef]
- Quan, J.; Zhan, W.; Chen, Y.; Wang, M.; Wang, J. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands. J. Geophys. Res. Atmos. 2016, 121, 2638–2657. [Google Scholar] [CrossRef]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.L.; Shcherbakov, R.; Klein, W.; Sammis, C. Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 2003, 41, 1019. [Google Scholar] [CrossRef]
- Dobrovolsky, I.; Zubkov, S.; Miachkin, V. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Wang, C.Y. Liquefaction beyond the near field. Seismol. Res. Lett. 2007, 78, 512–517. [Google Scholar] [CrossRef]
- Kautz, C.H.; Heron, P.R.; Loverude, M.E.; McDermott, L.C. Student understanding of the ideal gas law, Part I: A macroscopic perspective. Am. J. Phys. 2005, 73, 1055–1063. [Google Scholar] [CrossRef]
- Henry, W. III. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philos. Trans. R. Soc. Lond. 1803, 93, 29–274. [Google Scholar] [CrossRef]
- Hannan, E.J. Multiple Time Series; John Wiley & Sons: New York, NY, USA, 1970. [Google Scholar]
- Ambrosino, F.; Thinová, L.; Briestenský, M.; Šebela, S.; Sabbarese, C. Detecting time series anomalies using hybrid methods applied to Radon signals recorded in caves for possible correlation with earthquakes. Acta Geod. Geophys. 2020, 55, 405–420. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Katlamudi, M.; Gakka, U.L. Singular spectrum analysis on soil radon time series (222 Rn) in Kachchh, Gujarat, India: Detection of periodic oscillations and earthquake precursors. Arab. J. Geosci. 2020, 13, 973. [Google Scholar] [CrossRef]
- Janik, M.; Bossew, P.; Kurihara, O. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data. Sci. Total Environ. 2018, 630, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.A.; Çelebi, F.V.; Alsolai, H.; Qureshi, S.A.; Rafique, M.; Alzahrani, J.S.; Mahgoub, H.; Hamza, M.A. Anomalies Prediction in Radon Time Series for Earthquake Likelihood Using Machine Learning-Based Ensemble Model. IEEE Access 2022, 10, 37984–37999. [Google Scholar] [CrossRef]
- Tareen, A.D.K.; Nadeem, M.S.A.; Kearfott, K.J.; Abbas, K.; Khawaja, M.A.; Rafique, M. Descriptive analysis and earthquake prediction using boxplot interpretation of soil radon time series data. Appl. Radiati. Isot. 2019, 154, 108861. [Google Scholar] [CrossRef] [PubMed]
- Barkat, A.; Ali, A.; Hayat, U.; Crowley, Q.G.; Rehman, K.; Siddique, N.; Haidar, T.; Iqbal, T. Time series analysis of soil radon in Northern Pakistan: Implications for earthquake forecasting. Appl. Geochem. 2018, 97, 197–208. [Google Scholar] [CrossRef]
- Fu, C.C.; Walia, V.; Yang, T.F.; Lee, L.C.; Liu, T.K.; Chen, C.H.; Kumar, A.; Lin, S.J.; Lai, T.H.; Wen, K.L. Preseismic anomalies in soil-gas radon associated with 2016 M 6.6 Meinong earthquake, Southern Taiwan. Terr. Atmos. Ocean. Sci. 2017, 28, 787–798. [Google Scholar] [CrossRef]
- Külahcı, F.; Çiçek, Ş. Time-series analysis of water and soil radon anomalies to identify micro–macro-earthquakes. Arab. J. Geosci. 2015, 8, 5239–5246. [Google Scholar] [CrossRef]
- Ambrosino, F.; Pugliese, M.; Roca, V.; Sabbarese, C. Innovative methodologies for the analysis of radon time series. Nuovo C. C 2018, 41, 223–228. [Google Scholar]
- Barman, C.; Ghose, D.; Sinha, B.; Deb, A. Detection of earthquake induced radon precursors by Hilbert Huang Transform. J. Appl. Geophys. 2016, 133, 123–131. [Google Scholar] [CrossRef]
- Yang, T.; Fu, C.C.; Walia, V.; Chen, C.H.; Chyi, L.; Liu, T.K.; Song, S.R.; Lee, M.; Lin, C.W.; Lin, C.C. Seismo-geochemical variations in SW Taiwan: Multi-parameter automatic gas monitoring results, Terrestrial Fluids, Earthquakes and Volcanoes. Pure Appl. Geophys. 2006, 163, 693–709. [Google Scholar] [CrossRef]
- Soldati, G.; Cannelli, V.; Piersanti, A. Monitoring soil radon during the 2016–2017 central Italy sequence in light of seismicity. Sci. Rep. 2020, 10, 13137. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.C.; Yang, T.F.; Chen, C.H.; Lee, L.C.; Wu, Y.M.; Liu, T.K.; Walia, V.; Kumar, A.; Lai, T.H. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications. J. Asian Earth Sci. 2017, 149, 64–77. [Google Scholar] [CrossRef]
- Hartmann, J.; Levy, J.K. Hydrogeological and Gasgeochemical Earthquake Precursors—A Review for Application. Nat. Hazards 2005, 34, 279–304. [Google Scholar] [CrossRef]
- Barbieri, M.; Franchini, S.; Barberio, M.D.; Billi, A.; Boschetti, T.; Giansante, L.; Gori, F.; Jónsson, S.; Petitta, M.; Skelton, A. Changes in groundwater trace element concentrations before seismic and volcanic activities in Iceland during 2010–2018. Sci. Total Environ. 2021, 793, 148635. [Google Scholar] [CrossRef]
- Barberio, M.D.; Gori, F.; Barbieri, M.; Billi, A.; Caracausi, A.; De Luca, G.; Franchini, S.; Petitta, M.; Doglioni, C. New observations in Central Italy of groundwater responses to the worldwide seismicity. Sci. Rep. 2020, 10, 17850. [Google Scholar] [CrossRef]
- Franchini, S.; Agostini, S.; Barberio, M.D.; Barbieri, M.; Billi, A.; Boschetti, T.; Pennisi, M.; Petitta, M. HydroQuakes, central Apennines, Italy: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron. J. Hydrol. 2021, 598, 125754. [Google Scholar] [CrossRef]
- Li, B.; Shi, Z.; Wang, G.; Liu, C. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China. J. Hydrol. 2019, 579, 124175. [Google Scholar] [CrossRef]
- Onda, S.; Sano, Y.; Takahata, N.; Kagoshima, T.; Miyajima, T.; Shibata, T.; Pinti, D.L.; Lan, T.; Kim, N.K.; Kusakabe, M. Groundwater oxygen isotope anomaly before the M6. 6 Tottori earthquake in Southwest Japan. Sci. Rep. 2018, 8, 4800. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, G.; Manga, M.; Wang, C.Y. Mechanism of co-seismic water level change following four great earthquakes–insights from co-seismic responses throughout the Chinese mainland. Earth Planet. Sci. Lett. 2015, 430, 66–74. [Google Scholar] [CrossRef]
Variable | H2 Con. | WT | AT | AP |
---|---|---|---|---|
Mean | 0.82 | 8.12 | 7.05 | 664.56 |
Standard error | 0.01 | 0.01 | 0.09 | 0.03 |
Median | 0.47 | 8.00 | 6.87 | 664.96 |
Mode | 0.14 | 7.88 | 17.88 | 665.71 |
Standard deviation | 1.19 | 0.72 | 13.25 | 3.96 |
Coefficient of variation | 143.96% | 8.90% | 187.85% | 0.59% |
Variance | 1.41 | 0.52 | 175.46 | 15.69 |
Kurtosis | 104.27 | −0.16 | −0.89 | 0.81 |
Skewness | 7.04 | 0.51 | 0.03 | −0.62 |
Minimum | 0.11 | 6.06 | −26.64 | 645.60 |
Maximum | 33.65 | 10.63 | 40.54 | 674.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Li, J.; Wang, Y.; He, M.; Cui, S.; Yao, B.; Zeng, Z.; Dong, J.; Ju, C.; Lu, C.; et al. Preliminary Results on Hydrogen Concentration Time Series in Spring Gases from the Pamir–Western Himalayan Syntaxis: Variability and Tectonic Instability. Appl. Sci. 2025, 15, 9736. https://doi.org/10.3390/app15179736
Tian J, Li J, Wang Y, He M, Cui S, Yao B, Zeng Z, Dong J, Ju C, Lu C, et al. Preliminary Results on Hydrogen Concentration Time Series in Spring Gases from the Pamir–Western Himalayan Syntaxis: Variability and Tectonic Instability. Applied Sciences. 2025; 15(17):9736. https://doi.org/10.3390/app15179736
Chicago/Turabian StyleTian, Jiao, Jingchao Li, Yuwen Wang, Miao He, Shihan Cui, Bingyu Yao, Zhaojun Zeng, Jinyuan Dong, Changhui Ju, Chang Lu, and et al. 2025. "Preliminary Results on Hydrogen Concentration Time Series in Spring Gases from the Pamir–Western Himalayan Syntaxis: Variability and Tectonic Instability" Applied Sciences 15, no. 17: 9736. https://doi.org/10.3390/app15179736
APA StyleTian, J., Li, J., Wang, Y., He, M., Cui, S., Yao, B., Zeng, Z., Dong, J., Ju, C., Lu, C., & Zhou, X. (2025). Preliminary Results on Hydrogen Concentration Time Series in Spring Gases from the Pamir–Western Himalayan Syntaxis: Variability and Tectonic Instability. Applied Sciences, 15(17), 9736. https://doi.org/10.3390/app15179736