Editorial for the Special Issue Applied and Innovative Computational Intelligence Systems (3rd Edition)
1. Introduction
2. Applied and Innovative Computational Intelligence Systems
3. An Overview of the Published Articles
4. Conclusions
Funding
Conflicts of Interest
References
- Almasri, F. Exploring the Impact of Artificial Intelligence in Teaching and Learning of Science: A Systematic Review of Empirical Research. Res. Sci. Educ. 2024, 54, 977–997. [Google Scholar] [CrossRef]
- Naddaf, M. This AI ‘thinks’ like a human—After training on 160 psychology studies. Nature, 2025; online ahead of print. [Google Scholar] [CrossRef]
- Belghiti Alaoui, S.; El Kari, B.; Chaibi, Y.; Chalh, Z.; Benslimane, M. Bio-Inspired Algorithms in Robotics Systems: An Overview. In Big Data and Internet of Things; Springer Nature: Cham, Switzerland, 2024; pp. 496–513. [Google Scholar] [CrossRef]
- Delipetrev, B.; Tsinaraki, C.; Kostić, U. AI Watch, Historical Evolution of Artificial Intelligence: Analysis of the Three Main Paradigm Shifts in AI; Publications Office: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Valenzuela, O.; Catala, A.; Anguita, D.; Rojas, I. New Advances in Artificial Neural Networks and Machine Learning Techniques. Neural Process. Lett. 2023, 55, 5269–5272. [Google Scholar] [CrossRef]
- Tseng, V.S.; Ying, J.J.C.; Wong, S.T.; Cook, D.J.; Liu, J. Computational Intelligence Techniques for Combating COVID-19: A Survey. IEEE Comput. Intell. Mag. 2020, 15, 10–22. [Google Scholar] [CrossRef]
- Monroe, D. Neurosymbolic AI. Commun. ACM 2022, 65, 11–13. [Google Scholar] [CrossRef]
- Nikravesh, M. Evolution of Fuzzy Logic: From Intelligent Systems and Computation to Human Mind. In Forging New Frontiers: Fuzzy Pioneers I; Springer: Berlin/Heidelberg, Germany, 2007; pp. 37–53. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjel, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Chaabene, S.; Boudaya, A.; Bouaziz, B.; Chaari, L. An overview of methods and techniques in multimodal data fusion with application to healthcare. Int. J. Data Sci. Anal. 2025. [Google Scholar] [CrossRef]
- Hussain, M.; O’Nils, M.; Lundgren, J.; Mousavirad, S.J. A Comprehensive Review on Deep Learning-Based Data Fusion. IEEE Access 2024, 12, 180093–180124. [Google Scholar] [CrossRef]
- Khan, I.U.; Ouaissa, M.; Ouaissa, M.; Fayaz, M.; Ullah, R. Artificial Intelligence for Intelligent Systems: Fundamentals, Challenges, and Applications; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Iqbal, R.; Doctor, F.; More, B.; Mahmud, S.; Yousuf, U. Big Data analytics and Computational Intelligence for Cyber–Physical Systems: Recent trends and state of the art applications. Future Gener. Comput. Syst. 2020, 105, 766–778. [Google Scholar] [CrossRef]
- Bhuyan, B.P.; Ramdane-Cherif, A.; Tomar, R.; Singh, T.P. Neuro-symbolic artificial intelligence: A survey. Neural Comput. Appl. 2024, 36, 12809–12844. [Google Scholar] [CrossRef]
- Lu, Z.; Afridi, I.; Kang, H.J.; Ruchkin, I.; Zheng, X. Surveying neuro-symbolic approaches for reliable artificial intelligence of things. J. Reliab. Intell. Environ. 2024, 10, 257–279. [Google Scholar] [CrossRef]
- Bhamidipaty, V.; Bhamidipaty, D.L.; S.M, F.; Bhamidipaty, K.; Botchu, R. Intelligent health care: Applications of artificial intelligence and machine learning in computational medicine. In Blockchain and Digital Twin for Smart Hospitals; Elsevier: Amsterdam, The Netherlands, 2025; pp. 133–169. [Google Scholar] [CrossRef]
- Kalita, A.J.; Boruah, A.; Das, T.; Mazumder, N.; Jaiswal, S.K.; Zhuo, G.Y.; Gogoi, A.; Kakoty, N.M.; Kao, F.J. Artificial Intelligence in Diagnostic Medical Image Processing for Advanced Healthcare Applications. In Biomedical Imaging; Springer Nature: Singapore, 2024; pp. 1–61. [Google Scholar] [CrossRef]
- Bhambri, P.; Khang, A. Computational Intelligence in Manufacturing Technologies. In Impact and Potential of Machine Learning in the Metaverse; IGI Global: Hershey, PA, USA, 2024; pp. 327–356. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. J. Ind. Integr. Manag. 2021, 7, 83–111. [Google Scholar] [CrossRef]
- Lee, J.; Singh, J.; Azamfar, M.; Pandhare, V. Industrial AI and predictive analytics for smart manufacturing systems. In Smart Manufacturing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 213–244. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zhan, Z.H.; Kwong, S.; Zhang, J. Evolutionary Computation for Intelligent Transportation in Smart Cities: A Survey [Review Article]. IEEE Comput. Intell. Mag. 2022, 17, 83–102. [Google Scholar] [CrossRef]
- Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [Google Scholar] [CrossRef]
- Das, S.; Mutsuddi, I.; Ray, N. Artificial Intelligence in Adaptive Education: A Transformative Approach. In Advancing Adaptive Education; IGI Global: Hershey, PA, USA, 2024; pp. 21–50. [Google Scholar] [CrossRef]
- Ikegwu, A.C.; Nweke, H.F.; Anikwe, C.V. Recent trends in computational intelligence for educational big data analysis. Iran J. Comput. Sci. 2023, 7, 103–129. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, A.Y.Q.; Lu, O.H.T. Artificial intelligence in intelligent tutoring systems toward sustainable education: A systematic review. Smart Learn. Environ. 2023, 10, 41. [Google Scholar] [CrossRef]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2021, 55, 3503–3568. [Google Scholar] [CrossRef]
- Chamola, V.; Hassija, V.; Sulthana, A.R.; Ghosh, D.; Dhingra, D.; Sikdar, B. A Review of Trustworthy and Explainable Artificial Intelligence (XAI). IEEE Access 2023, 11, 78994–79015. [Google Scholar] [CrossRef]
- Hospedales, T.M.; Antoniou, A.; Micaelli, P.; Storkey, A.J. Meta-Learning in Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5149–5169. [Google Scholar] [CrossRef]
- Son, J.; Lee, S.; Kim, G. When Meta-Learning Meets Online and Continual Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, B.; Saha, G.; Roy, K. Continual Learning: A Review of Techniques, Challenges, and Future Directions. IEEE Trans. Artif. Intell. 2024, 5, 2526–2546. [Google Scholar] [CrossRef]
- Vettoruzzo, A.; Bouguelia, M.R.; Vanschoren, J.; Rögnvaldsson, T.; Santosh, K. Advances and Challenges in Meta-Learning: A Technical Review. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 4763–4779. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.; Marta, A.; Mestre, P.; Beirão, J.; Cunha, A. Data Augmentation with Generative Methods for Inherited Retinal Diseases: A Systematic Review. Appl. Sci. 2025, 15, 3084. [Google Scholar] [CrossRef]
- Ramos, C.M.Q.; Pinto, K. How Gastronomic Image Shapes Tourism Competitiveness: An Approach with Sentiment Analysis. Appl. Sci. 2024, 14, 9524. [Google Scholar] [CrossRef]
- Lauande, M.G.M.; Braz Junior, G.; de Almeida, J.D.S.; Silva, A.C.; Gil da Costa, R.M.; Teles, A.M.; da Silva, L.L.; Brito, H.O.; Vidal, F.C.B.; do Vale, J.G.A.; et al. Building a DenseNet-Based Neural Network with Transformer and MBConv Blocks for Penile Cancer Classification. Appl. Sci. 2024, 14, 10536. [Google Scholar] [CrossRef]
- Jiang, L.; Qin, X.; Zhang, J.; Li, J. Multimodal Seed Data Augmentation for Low-Resource Audio Latin Cuengh Language. Appl. Sci. 2024, 14, 9533. [Google Scholar] [CrossRef]
- Zhu, X.; Xia, X.; Wu, Y.; Zhao, W. Enhancing Explainable Recommendations: Integrating Reason Generation and Rating Prediction through Multi-Task Learning. Appl. Sci. 2024, 14, 8303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, P.J.S.; Rodrigues, J.M.F.; Portalés, C. Editorial for the Special Issue Applied and Innovative Computational Intelligence Systems (3rd Edition). Appl. Sci. 2025, 15, 9426. https://doi.org/10.3390/app15179426
Cardoso PJS, Rodrigues JMF, Portalés C. Editorial for the Special Issue Applied and Innovative Computational Intelligence Systems (3rd Edition). Applied Sciences. 2025; 15(17):9426. https://doi.org/10.3390/app15179426
Chicago/Turabian StyleCardoso, Pedro J. S., João M. F. Rodrigues, and Cristina Portalés. 2025. "Editorial for the Special Issue Applied and Innovative Computational Intelligence Systems (3rd Edition)" Applied Sciences 15, no. 17: 9426. https://doi.org/10.3390/app15179426
APA StyleCardoso, P. J. S., Rodrigues, J. M. F., & Portalés, C. (2025). Editorial for the Special Issue Applied and Innovative Computational Intelligence Systems (3rd Edition). Applied Sciences, 15(17), 9426. https://doi.org/10.3390/app15179426