Sex Differences in the High Jump Kinematics of U18 Adolescent Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Acquisition
2.3. Data Analysis
- the maximum height of the BCM trajectory (HMAX), as well as the height of the BCM at the instant of the final touchdown (HTD) and take-off (H0),
- the vertical displacement of the BCM from the time of take-off to the highest point of its trajectory (H1), as the difference in the vertical axis of the BCM position at these instances,
- the vertical distance between the crossbar and the highest point of the BCM trajectory (H2), as the difference in the vertical axis of the highest point of the BCM trajectory and the position of the center of the crossbar at the instant of HMAX,
- the distance between the toes of the take-off leg and the respective upright post (TP), as the horizontal distance on the Y-axis between the two points at the time of foot placement,
- the distance between the toes of the take-off leg and the center of the crossbar (TB), as the horizontal distance on the X-axis between the two points at the time of foot placement,
- the last step (1L) length (S), as the distance in the XY plane of the toes of the supporting leg between the take-off from the last step and the full foot contact at the take-off phase,
- the direction of the step with respect to the longitudinal axis of the crossbar (Sang), as the angle formed in the XY plane between the Y-axis and the line connecting the position of the toes of the supporting leg in the last step and the take-off phase,
- the horizontal velocity (VH) as the resultant velocity of the BCM in the X- and Y-axes at the instants of foot placement (TD) and take-off (TO), as well as the take-off at the last step (VH-TO-1L),
- the vertical velocity (VZ), as the velocity of the BMS in the Z-axis at the instants of TD and TO,
- the take-off angle of the BCM (AngPr), as the value of the arctangent of the ratio of the vertical to the horizontal take-off velocity of the BCM,
- the inclination of the take-off leg (LEGang), as the angle formed by the line connecting the lateral malleolus and the hip with the XY plane at the instant of foot placement for the take-off phase,
- the inclination of the torso (TORang), as the angle formed by the line connecting the hip of the take-off leg and the neck with the Z-axis at the instant of foot placement for the take-off phase,
- the angle of the knee (KNEEang) joint for both the support and the swing (SW) leg, as the angle formed between the thigh and the shank,
- the knee joint range of motion (ROM) from TD to its maximum flexion (MKF) and from MKF to the instant of take-off,
2.4. Statistical Analysis
3. Results
3.1. Spatio-Temporal Parameters
3.2. Body Center of Mass Velocity Parameters
3.3. Angular Kinematic Parameters
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1L | last step |
3D | three-dimensional |
3D-DLT | three-dimensional direct linear transformation |
AngPr | take-off angle |
BCM | body center of mass |
H0 | BCM height at the instant of take-off |
H1 | vertical BCM displacement from H0 to HMAX |
H2 | vertical distance of the BCM from the middle of the crossbar at the instant of HMAX |
HMAX | maximum height of the BCM trajectory |
HTD | BCM height at the instant of final touchdown |
KNEEang | angle of the knee joint |
LEGang | the inclination of the take-off leg |
MKF | maximum knee flexion |
RMS | root mean square |
ROM | knee joint range of motion |
S | last step length |
Sang | the direction of the step with respect to the longitudinal axis of the crossbar |
TB | horizontal distance in the X-axis between the crossbar and the toes of the take-off leg |
TD | instant of touchdown |
TIME | duration of the take-off phase |
TO | instant of take-off |
TORang | the inclination of the torso |
TP | horizontal distance in the Y-axis between the respective upright post and the toes of the take-off leg |
VH | horizontal BCM velocity |
VZ | vertical BCM velocity |
References
- Dapena, J. The evolution of high jumping technique: Biomechanical analysis. In Scientific Proceedings of the XX International Symposium on Biomechanics in Sports; Gianikellis, K.E., Ed.; Universidad de Extremadura: Extremadura, Spain, 2002; pp. 3–7. [Google Scholar]
- Lippi, G.; Banfi, G.; Favaloro, E.J.; Rittweger, J.; Maffulli, N. Updates on improvement of human athletic performance: Focus on world records in athletics. Br. Med. Bull. 2008, 87, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Balmer, N.; Pleasence, P.; Nevill, A. Evolution and revolution: Gauging the impact of technological and technical innovation on Olympic performance. J. Sports Sci. 2012, 30, 1075–1083. [Google Scholar] [CrossRef]
- Schiffer, J. The high jump. New Stud. Athl. 2009, 24, 9–22. [Google Scholar]
- Theodorou, A.; Skordilis, E. Consequences of the new competition rules for the high jump at the European Team Championships. New Stud. Athl. 2009, 24, 23–30. [Google Scholar]
- Kollias, I.A. Biomechanics of Sport Movement; Kyriakidis Bros Publishers: Thessaloniki, Greece, 2019. [Google Scholar]
- Conrad, A.; Ritzdorf, W. Biomechanical analysis of the high jump. In Scientific Research Project at the Games of the XXIVth Olympiad, Seoul 1988; Brüggemann, G.P., Glad, B., Eds.; International Amateur Athletic Federation: London, UK, 1990; pp. 177–217. [Google Scholar]
- Dapena, J. The high jump. In Biomechanics in Sport; Zatsiorsky, V., Ed.; Blackwell Publishing: Oxford, UK, 2000; pp. 284–311. [Google Scholar]
- Ae, M.; Sakatani, M.; Yokoi, T.; Hashihara, Y.; Shibukawa, K. Biomechanical analysis of the preparatory motion for takeoff in the Fosbury Flop. Int. J. Sport Biomech. 1986, 2, 66–77. [Google Scholar] [CrossRef]
- Brüggemann, G.P.; Conrad, T. High Jump. In Biomechanical Research in Track and Field: 1st World Junior Championships, Athens 1986; Susanka, P., Brüggemann, G.P., Tsarouchas, E., Eds.; S.E.G.A.S.-Ε.Κ.A.Ε.: Athens, Greece, 1986; pp. 121–148. [Google Scholar]
- Brüggemann, G.P.; Loch, M. The high jump. New Stud. Athl. 1992, 7, 67–72. [Google Scholar]
- Brüggemann, G.P.; Arampatzis, A. Men’s high jump. New Stud. Athl. 1997, 12, 66–69. [Google Scholar]
- Iiboshi, A.; Ae, M.; Tkamatsu, J.; Nagasawa, M.; Tang, H.P.; Yuuki, M. Techniques of elite high jumpers at the 3rd IAAF World Championships in Athletics. In Abstracts of the XIV ISB Congress; I.S.B.: Paris, France, 1993; pp. 608–609. [Google Scholar]
- Isoletho, J.; Virmavirta, M.; Kyröläinen, H.; Komi, P. Biomechanical analysis of the high jump at the 2005 IAAF World Championships in Athletics. New Stud. Athl. 2007, 22, 17–27. [Google Scholar]
- Killing, W. Zweimal bronze für Deutschlands Höhenjäger. Leichtathlet. Train. 2009, 20, 26–35. [Google Scholar]
- Nicholson, G.; Jongerius, N.; Tucker, C.B.; Thomas, A.; Merlino, S.; Bissas, A. The association between hip-shoulder separation angles and technique characteristics in world-class high jumpers. Front. Sports Act. Living 2022, 4, 873526. [Google Scholar] [CrossRef]
- Brüggemann, G.P.; Arampatzis, A. Sport Performance Limits: Long jump and high jump. Kινησιολογία 1997, 2, 103–114. [Google Scholar]
- Coh, M.; Supej, M. Biomechanical model of the take-off action in the high jump—A case study. New Stud. Athl. 2008, 23, 63–73. [Google Scholar]
- Dapena, J. Mechanics of translation in the Fosbury-flop. Med. Sci. Sports Exerc. 1980, 12, 37–44. [Google Scholar] [CrossRef]
- Dapena, J.; Mcdonald, C.; Cappaert, J. A regression analysis of high jumping technique. Int. J. Sport Biomech. 1990, 6, 246–261. [Google Scholar] [CrossRef]
- Dapena, J. Biomechanical studies in the high jump and the implications to coaching. Track Field Q Rev. 1992, 92, 34–38. [Google Scholar]
- Lees, A.; Rojas, J.; Cepero, M.; Soto, V.; Gutierrez, M. How the free limbs are used by elite high jumpers in generating vertical velocity. Ergonomics 2000, 43, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Greig, M.P.; Yeadon, M.R. The influence of touchdown parameters on the performance of a high jumper. J. Appl. Biomech. 2000, 16, 367–378. [Google Scholar] [CrossRef]
- Tan, J.C.C.; Yeadon, M.R. Why do high jumpers use a curved approach? J. Sports Sci. 2005, 23, 775–780. [Google Scholar] [CrossRef]
- Dapena, J.; Chung, C.S. Vertical and radial motions of the body during the take-off phase of high jumping. Med. Sci. Sports Exerc. 1988, 20, 290–302. [Google Scholar] [CrossRef]
- Hay, J.G. The Biomechanics of Sports Techniques, 3rd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Pavlovic, R. The differences of kinematic parameters high jump between male and female finalists World Championship Daegu, 2011. Turk. J. Kinesiol. 2017, 3, 60–69. [Google Scholar]
- Frutos, J.B.; Elvira, J.L.L.; Andrés, J.M.P. Diferencias de género en salto de altura según categorías de edad. Apunt. Educ. Fís. Deporte. 2013, 111, 62–69. [Google Scholar] [CrossRef]
- Bermejo, J.; Palao, J.M.; Elvira, J.L.L. Effect of age on high jump take-off biomechanics. Port. J. Sport Sci. 2011, 11 (Suppl. 2), 155–158. [Google Scholar]
- Laffaye, G. Fosbury flop: Predicting performance with a three-variable model. J. Strength Cond. Res. 2011, 25, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
- Panoutsakopoulos, V. Junior triple jumpers: Kinematic differences between male and female. Mod. Athl. Coach 2009, 47, 7–13. [Google Scholar]
- Panoutsakopoulos, V.; Papaiakovou, G.; Kollias, I.A. A biomechanical analysis and assessment of the technique elements of the last strides, the touchdown and the takeoff of junior male and female long jumpers. Inq. Sport Phys. Edu. 2009, 7, 333–343. [Google Scholar]
- Kollias, I.A. Sources of error and their elimination in the use of DLT with the basic recording tools for the analysis of human body in motion. Exerc. Societ. J. Sport Sci. 1997, 18, 9–26. [Google Scholar]
- Plagenhoef, S. Patterns of Human Motion: A Cinematographic Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Winter, D.A.; Sidwall, H.D.; Hobson, D.A. Measurement and reduction of noise in kinematics of locomotion. J. Biomech. 1974, 7, 157–159. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Publishers: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Lenhard, W.; Lenhard, A. Hypothesis Tests for Comparing Correlations. Psychometrica 2014. Available online: https://www.psychometrica.de/correlation.html (accessed on 29 June 2025).
- Panoutsakopoulos, V.; Theodorou, A.; Kollias, I. Three-dimensional kinematic analysis of the technique of top Greek male high jumpers. Κινησιολογία-Βιολογική Κατεύθυνση 2014, 5, 71–84. [Google Scholar]
- Panoutsakopoulos, V.; Kollias, I. 3-D biomechanical analysis of women’s high jump. New Stud. Athl. 2012, 27, 31–48. [Google Scholar]
- Ritzdorf, W.; Conrad, A.; Loch, M. Intraindividual comparison of the jumps of Stefka Kostadinova at the II World Championships in Athletics Rome 1987 and the Games of the XXIV Olympiad Seoul 1988. New Stud. Athl. 1989, 4, 35–41. [Google Scholar]
- Watanabe, T. New methodological approach for distancing the takeoff point further from the bar when high jumping using the flop technique. Jpn. J. Phys. Educ. Hlth. Sport Sci. 2014, 59, 297–314. [Google Scholar] [CrossRef]
- Atta, I.I.; Bursais, A.K.; Alibrahim, M.S.; Alhumaid, M.M.; Hassan, A.K.; Frikha, M.; Al-Nuaim, A. Biomechanical determinants of elite high jump performance in Egypt: Part 2, the percentage contributions of biomechanical indicators and special factors to achievement level. J. Phys. Edu. Sport 2025, 25, 764–772. [Google Scholar] [CrossRef]
- Panoutsakopoulos, V.; Kotzamanidou, M.C.; Manou, V. Sex differences exist in the relationship between vertical jump performance biomechanical parameters and hamstring/quadriceps ratio in adolescent U18 track and field athletes. Sports 2024, 12, 295. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Sławinska, T.; Ignasiak, Z.; Rożek, K.; Kochan, K.; Domaradzki, J.; Fugiel, J. Sex differences in growth and performance of track and field athletes 11–15 years. J. Hum. Kinet. 2010, 24, 79–85. [Google Scholar] [CrossRef]
- Rao, C.R.; Kishore, Y.; Rao, J.R. Biomechanical analysis of centre of mass height during the takeoff phase in fosbury flop high jump of national level participants. Int. J. Mod. Commun. Technol. Res. 2014, 2, 265758. [Google Scholar]
- Mateos-Padorno, C.; García-Manso, J.M.; Martínez-Patiño, M.J.; Valverde-Esteve, T. Analysis of effectiveness of free segment actions and antero-posterior and lateral body displacements during the take-off phase of high jump (flop style). Int. J. Perform. Anal. Sport 2019, 19, 14–27. [Google Scholar] [CrossRef]
- Atta, I.I.; Bursais, A.K.; Alibrahim, M.S.; Al-Nuaim, A. Biomechanical determinants of elite high jump performance in Egypt: Part 1-analysis of kinematic variables and performance. J. Phys. Edu. Sport 2024, 24, 1936–1944. [Google Scholar] [CrossRef]
- Adashevskiy, V.M.; Iermakov, S.S.; Marchenko, A.A. Biomechanics aspects of technique of high jump. Phys. Edu. Stud. 2013, 2, 11–18. [Google Scholar] [CrossRef]
- Tobe, N.; Kariyama, Y.; Hayashi, R.; Kigoshi, K.; Ogata, M. Characteristics of joint kinetics of the lower limb during take-off motion in high jump. Jpn. J. Phys. Educ. Health Sport Sci. 2019, 64, 625–635. [Google Scholar] [CrossRef]
- Zushi, A.; Tobe, N.; Zushi, K.; Yoshida, T. Assessment of takeoff execution ability in high jumpers by rebound jump. Jpn. J. Phys. Educ. Health Sport Sci. 2023, 68, 117–130. [Google Scholar] [CrossRef]
- Fujimori, T.; Sado, N. Mechanical properties of the gastrocnemius muscle-tendon unit in male athletic high jumpers. Physiol. Rep. 2025, 13, e70370. [Google Scholar] [CrossRef] [PubMed]
- Ae, M.; Nagahara, R.; Ohshima, Y.; Koyama, H.; Takamoto, M.; Shibayama, K. Biomechanical analysis of the top three male high jumpers at the 2007 World Championships in Athletics. New Stud. Athl. 2008, 23, 45–52. [Google Scholar]
- Laffaye, G. Le saut en hauteur en Fosbury et les facteurs de performance. Sci. Motr. 2001, 42, 3–15. [Google Scholar]
- Boden, E.; Braunstein, B.; Heinrich, K.; Sanno, M.; Stäudle, B.; Ritzdorf, W.; Brüggemann, G.-P.; Albracht, K.; Goldmann, J.-P. Leg- and joint stiffness in male elite high jump: The influence of stiffness on sports performance. ISBS Proc. Arch. 2017, 35, 748–750. [Google Scholar]
- Ljubičić, S. Kinematic analysis of high jump using the scissors technique. Stud. Sport 2024, 18, 173–182. [Google Scholar] [CrossRef]
- Sado, N.; Yoshioka, S.; Fukashiro, S. Non-extension movements inducing over half the mechanical energy directly contributing to jumping height in human running single-leg jump. J. Biomech. 2020, 113, 110082. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, T.; Tobe, N.; Sado, N. Inter-joint differences exist in kinetic demand for performance in high jump. ISBS Proc. Arch. 2023, 41, 37. [Google Scholar]
- Toshihide, F.; Naoto, T.; Natsuki, S. Joint kinetic demand for performance in high jump. Sports Biomech. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Padorno, C.; García-Manso, J.M.; Fuentes García, J.P.; Martínez-Patiño, M.J. Kinematic analysis of the final stride approach in Spanish elite high jumpers. Int. J. Perform. Anal. Sport 2021, 21, 421–434. [Google Scholar] [CrossRef]
- Dapena, J. Mechanics of rotation in the Fosbury-flop. Med. Sci. Sports Exerc. 1980, 12, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Sado, N.; Yoshioka, S.; Fukashiro, S. Curved approach in high jump induces greater jumping height without greater joint kinetic exertions than straight approach. Med. Sci. Sports Exerc. 2022, 54, 120–128. [Google Scholar] [CrossRef]
- Sado, N.; Yoshioka, S.; Fukashiro, S. Hip abductors and lumbar lateral flexors act as energy generators in running single-leg jumps. Int. J. Sports Med. 2018, 39, 1001–1008. [Google Scholar] [CrossRef]
- Blažević, I.; Antekolović, L.; Mejovšek, M. Variability of high jump kinematic parameters in longitudinal follow-up. Kinesiology 2006, 38, 63–71. [Google Scholar]
- Becker, J.; Wu, W.F. Integrating biomechanical and motor control principles in elite high jumpers: A transdisciplinary approach to enhancing sport performance. J. Sport Health Sci. 2015, 4, 341–346. [Google Scholar] [CrossRef]
- Goldacre, M.; Born, Z.; Mundt, M.; Millett, E.; Phillips, E.; Alderson, J. Pose estimation or manual digitising: Can automating technologies change the current in-field assessment of high jump? ISBS Proc. Arch. 2023, 41, 42. [Google Scholar]
- Christensen, B.; Zebas, C. A comparison of practice and competition approach velocities and the position of the top handhold at the pole plant in pole vaulters. In Proceedings of the 18th International Conference of Biomechanics in Sports, Hong Kong, China, 25–30 June 2000; Hong, Y., Johns, D.P., Sanders, R., Eds.; I.S.B.S: Hong Kong, China, 2000. [Google Scholar]
- Nicholson, G.; Epro, G.; Merlino, S.; Walker, J.; Bissas, A. Differences in run-up, take-off, and flight characteristics: Successful vs. unsuccessful high jump attempts at the IAAF World Championships. Front. Sports Act. Living 2024, 6, 1352725. [Google Scholar] [CrossRef]
Parameter | Men (n = 21) | r (p)-Men | Women (n = 21) | r (p)-Women | t | p | d [95% Confidence Interval] |
---|---|---|---|---|---|---|---|
S (m) | 1.72 ± 0.20 | 0.06 (0.800) | 1.58 ± 0.18 * | 0.76 (<0.001) ‡ | 2.395 | 0.021 | 0.74 medium [0.11, 1.36] |
Sang (deg) | 29.33 ± 5.27 | 0.51 (0.108) | 21.91 ± 7.63 * | 0.16 (0.623) | 2.687 | 0.014 | 1.12 large [0.23, 2.00] |
TP (m) | 0.51 ± 0.40 | 0.29 (0.207) | 0.49 ± 0.20 | −0.27 (0.232) | 0.116 | 0.908 | 0.36 small [−0.57, 0.64] |
TB (m) | 0.77 ± 0.16 | 0.59 (0.011) ‡ | 0.67 ± 0.15 * | 0.29 (0.210) | 2.054 | 0.047 | 0.66 medium [0.01, 1.30] |
HTD (m) | 0.92 ± 0.05 | −0.13 (0.564) | 0.88 ± 0.05 * | −0.07 (0.759) | 2.064 | 0.046 | 0.64 medium [0.01, 1.25] |
H0 (m) | 1.32 ± 0.07 | 0.49 (0.025) ‡ | 1.25 ± 0.06 * | 0.33 (0.149) | 3.334 | 0.002 | 1.03 large [0.38, 1.67] |
HMAX (m) | 1.84 ± 0.14 | 0.96 (<0.001) ‡ | 1.65 ± 0.10 * | 0.91 (<0.001) ‡ | 5.241 | <0.001 | 1.62 large [0.91, 2.31] |
H1 (m) | 0.41 ± 0.07 | 0.61 (0.004) ‡ | 0.37 ± 0.07 | 0.34 (0.130) | 1.775 | 0.084 | 0.55 medium [−0.07, 1.66] |
H2 (m) | 0.11 ± 0.05 | −0.63 (0.002) ‡ | 0.10 ± 0.04 | −0.39 (0.085) | 0.167 | 0.868 | 0.05 trivial [−0.55, 0.66] |
TIME (s) | 0.180 ± 0.022 | 0.30 (0.180) | 0.172 ± 0.016 | −0.28 (0.220) | 1.344 | 0.187 | 0.42 small [−0.20, 1.02] |
Parameter | Men (n = 21) | r (p)-Men | Women (n = 21) | r (p)-Women | t | p | d [95% Confidence Interval] |
---|---|---|---|---|---|---|---|
VH-TO-1L (m/s) | 6.73 ± 0.51 | 0.33 (0.319) | 5.98 ± 0.58 * | 0.55 (0.062) | 3.270 | 0.004 | 1.37 large [0.44, 2.27] |
VH-TD (m/s) | 6.46 ± 0.60 | 0.32 (0.343) | 5.70 ± 0.71 * | 0.65 (0.021) ‡ | 2.742 | 0.006 | 1.15 large [0.25, 2.02] |
VH-TO (m/s) | 3.98 ± 0.31 | −0.68 (0.021) ‡ | 3.71 ± 0.42 | 0.05 (0.869) | 1.793 | 0.087 | 0.73 medium [−0.11, 1.56] |
VZ-TD (m/s) | −0.24 ± 0.20 | −0.38 (0.252) | 0.01 ± 0.24 * | 0.58 (0.048) ‡ | 2.746 | 0.012 | 1.15 large [0.25, 2.02] |
VZ-TO (m/s) | 3.57 ± 0.29 | 0.71 (0.015) ‡ | 3.06 ± 0.43 * | 0.75 (0.003) ‡ | 3.387 | 0.003 | 1.39 large [0.48, 2.28] |
AngPr (deg) | 41.83 ± 3.57 | 0.85 (<0.001) ‡ | 41.28 ± 6.12 | 0.28 (0.348) | 0.262 | 0.796 | 0.11 trivial [−0.70, 0.91] |
Parameter | Men (n = 21) | r (p)-Men | Women (n = 21) | r (p)-Women | t | p | d [95% Confidence Interval] |
---|---|---|---|---|---|---|---|
KNEEang-TD (deg) | 157.19 ± 9.38 | 0.33 (0.146) | 157.86 ± 8.76 | 0.04 (0.881) | 0.242 | 0.810 | 0.08 trivial [−0.68, 0.53] |
KNEEang-MKF (deg) | 135.48 ± 9.08 | −0.25 (0.344) | 134.70 ± 6.52 | 0.16 (0.508) | 0.288 | 0.775 | 0.10 trivial [−0.57, 0.77] |
KNEEang-TO (deg) | 171.39 ± 5.18 | 0.05 (0.819) | 171.72 ± 4.29 | −0.15 (0.518) | 0.230 | 0.819 | 0.07 trivial [−0.68, 0.53] |
KNEEang-TO-SW (deg) | 98.95 ± 22.16 | 0.19 (0.807) | 77.08 ± 13.66 * | 0.62 (0.003) ‡ | 2.664 | 0.014 | 1.45 large [0.29, 2.59] |
ROM-TD-MKF (deg) | −23.44 ± 11.02 | −0.26 (0.323) | −23.52 ± 6.81 | 0.21 (0.383) | 0.022 | 0.982 | 0.08 trivial [−0.66, 0.67] |
ROM-MKF-TO (deg) | 36.01 ± 8.83 | −0.33 (0.209) | 36.32 ± 7.01 | 0.58 (0.048) | 0.115 | 0.909 | 0.04 trivial [−0.70, 0.63] |
TORSOang-TD (deg) | 86.16 ± 7.10 | −0.18 (0.434) | 85.14 ± 5.75 | 0.22 (0.250) | 0.509 | 0.614 | 0.16 trivial [−0.45, 0.64] |
LEGang-TD (deg) | 58.73 ± 4.05 | −0.26 (0.317) | 62.62 ± 4.74 * | −0.60 (0.007) ‡ | 2.630 | 0.013 | 0.88 large [0.19, 1.56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panoutsakopoulos, V. Sex Differences in the High Jump Kinematics of U18 Adolescent Athletes. Appl. Sci. 2025, 15, 9382. https://doi.org/10.3390/app15179382
Panoutsakopoulos V. Sex Differences in the High Jump Kinematics of U18 Adolescent Athletes. Applied Sciences. 2025; 15(17):9382. https://doi.org/10.3390/app15179382
Chicago/Turabian StylePanoutsakopoulos, Vassilios. 2025. "Sex Differences in the High Jump Kinematics of U18 Adolescent Athletes" Applied Sciences 15, no. 17: 9382. https://doi.org/10.3390/app15179382
APA StylePanoutsakopoulos, V. (2025). Sex Differences in the High Jump Kinematics of U18 Adolescent Athletes. Applied Sciences, 15(17), 9382. https://doi.org/10.3390/app15179382