Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Conductive and Support Yarns
2.2. Weave Bindings
2.2.1. Binding 1
2.2.2. Binding 2
2.2.3. Binding 3
2.3. Thermopile Construction
2.4. Linear and Contact Resistance Measurements
2.5. Thermocouple and Thermopile Seebeck Coefficient
2.6. Measuring the Peltier Cooling Effect
3. Results
3.1. Electrical Linear Resistance
3.2. Thermocouple Contact Resistance
3.3. Thermocouple Seebeck Coefficient
3.4. Thermopile Efficiency
3.4.1. Thermopile Seebeck Coefficient
3.4.2. Peltier Cooling Effect
3.4.3. Seebeck Sensor Element
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Inox1 | Stainless steel filament conductive yarn |
Inox2 | Stainless steel staple conductive yarn |
FC | Carbon fiber filament conductive yarn |
NiFC | Nickel-coated carbon filament conductive yarn |
Wo/PAN | Wool/polyacrylonitrile non-conductive yarn |
References
- Peng, Y.; Cui, Y. Thermal Management with Innovative Fibers and Textiles: Manipulating Heat Transport, Storage and Conversion. Natl. Sci. Rev. 2024, 11, nwae295. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, K. Design and Evaluation of a Thermoelectric Heating/Cooling Fabric for On-Body Thermal Comfort. Ph.D. Dissertation, NC State University, Raleigh, NC, USA, 2021. [Google Scholar]
- Hardianto, H. Textile-Based Thermoelectric Generators Based on Conductive Yarns. Ph.D. Dissertation, Ghent University, Ghent, Belgium, 2020. [Google Scholar]
- Hu, E.; Kaynak, A.; Li, Y. Development of a Cooling Fabric from Conducting Polymer Coated Fibres: Proof of Concept. Synth. Met. 2005, 150, 139–143. [Google Scholar] [CrossRef]
- Chatterjee, K.; Ghosh, T.K. Thermoelectric Materials for Textile Applications. Molecules 2021, 26, 3154. [Google Scholar] [CrossRef] [PubMed]
- Newby, S.; Mirihanage, W.; Fernando, A. Body Heat Energy Driven Knitted Thermoelectric Garments with Personal Cooling. Appl. Therm. Eng. 2025, 258, 124546. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, G.; Bick, M.; Chen, J. Smart Textiles for Personalized Thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Han, M.; Fang, J. Personal Cooling Garments: A Review. Polymers 2022, 14, 5522. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Wang, X.; Luo, D.; Yan, Y. Thermal and Electrical Contact Resistances of Thermoelectric Generator: Experimental Study and Artificial Neural Network Modelling. Appl. Therm. Eng. 2023, 225, 120154. [Google Scholar] [CrossRef]
- Jing, Y.; Luo, J.; Han, X.; Yang, J.; Liu, Q.; Zheng, Y.; Chen, X.; Huang, F.; Chen, J.; Zhuang, Q.; et al. Scalable Manufacturing of a Durable, Tailorable, and Recyclable Multifunctional Woven Thermoelectric Textile System. Energy Environ. Sci. 2023, 16, 4334–4344. [Google Scholar] [CrossRef]
- Elson, J. Evaluation of Personal Cooling Systems and Simulation of Their Effects on Human Subjects Using Basic and Advanced Virtual Environments. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2016. [Google Scholar]
- Singha, K.; Kumar, J.; Pandit, P. Recent Advancements in Wearable & Smart Textiles: An Overview. Mater. Today Proc. 2019, 16, 1518–1523. [Google Scholar] [CrossRef]
- Revaiah, R.G.; Kotresh, T.M.; Kandasubramanian, B. Technical Textiles for Military Applications. J. Text. Inst. 2020, 111, 273–308. [Google Scholar] [CrossRef]
- Zhang, T.; Li, K.; Zhang, J.; Chen, M.; Wang, Z.; Ma, S.; Zhang, N.; Wei, L. High-Performance, Flexible, and Ultralong Crystalline Thermoelectric Fibers. Nano Energy 2017, 41, 35–42. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, X.; Yang, J.; Jing, Y.; Chen, X.; Li, Q.; Zhang, T.; Li, G.; Zhu, H.; Zhao, H.; et al. Durable, Stretchable and Washable Inorganic-Based Woven Thermoelectric Textiles for Power Generation and Solid-State Cooling. Energy Environ. Sci. 2022, 15, 2374–2385. [Google Scholar] [CrossRef]
- Cao, T.; Shi, X.-L.; Li, M.; Hu, B.; Chen, W.; Liu, W.-D.; Lyu, W.; MacLeod, J.; Chen, Z.-G. Advances in Bismuth-Telluride-Based Thermoelectric Devices: Progress and Challenges. eScience 2023, 3, 100122. [Google Scholar] [CrossRef]
- Witting, I.T.; Chasapis, T.C.; Ricci, F.; Peters, M.; Heinz, N.A.; Hautier, G.; Snyder, G.J. The Thermoelectric Properties of Bismuth Telluride. Adv. Electron. Mater. 2019, 5, 1800904. [Google Scholar] [CrossRef]
- Root, W.; Bechtold, T.; Pham, T. Textile-Integrated Thermocouples for Temperature Measurement. Materials 2020, 13, 626. [Google Scholar] [CrossRef]
- Radulescu, I.R.; Dinca, L.; Perdum, E.; Stroe, C.; Sarbu, T.; Aileni, R.M. Thermocouple Fabrics for Energy Harvesting in Smart Textiles–Applications and Prototype. In Proceedings of the 2023 IEEE 29th International Symposium for Design and Technology in Electronic Packaging (SIITME), Craiova, Romania, 18–22 October 2023; pp. 223–226. [Google Scholar]
- Allison, L.K.; Andrew, T.L. A Wearable All-Fabric Thermoelectric Generator. Adv. Mater. Technol. 2019, 4, 1800615. [Google Scholar] [CrossRef]
- Shi, X.-L.; Sun, S.; Wu, T.; Tu, J.; Zhou, Z.; Liu, Q.; Chen, Z.-G. Weavable Thermoelectrics: Advances, Controversies, and Future Developments. Mater. Futures 2024, 3, 012103. [Google Scholar] [CrossRef]
- Kalcik, J.; Soukup, R.; Malengier, B.; Radouchova, M.; Rous, P. Towards Textile Thermopiles. In Proceedings of the 2023 46th International Spring Seminar on Electronics Technology (ISSE), Timisoara, Romania, 10–14 May 2023; pp. 1–4. [Google Scholar]
- Locher, I.; Troster, G. Fundamental Building Blocks for Circuits on Textiles. IEEE Trans. Adv. Packag. 2007, 30, 541–550. [Google Scholar] [CrossRef]
- Electrical Resistivity Measurements: A Review. Available online: https://www.worldscientific.com/doi/epdf/10.1142/S2010194513010970 (accessed on 23 May 2025).
- Landsiedel, J.; Root, W.; Aguiló-Aguayo, N.; Duelli, H.; Bechtold, T.; Pham, T. Multi-Point Flexible Temperature Sensor Array and Thermoelectric Generator Made from Copper-Coated Textiles. Sensors 2021, 21, 3742. [Google Scholar] [CrossRef]
- Ha, H.; Suryaprabha, T.; Choi, C.; Chandio, Z.A.; Kim, B.; Lim, S.; Cheong, J.Y.; Hwang, B. Recent Research Trends in Textile-Based Temperature Sensors: A Mini Review. Nanotechnology 2023, 34, 422001. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Y.; Yan, Z.; Zhang, Z.; Zhang, Y.; Shi, P.; Xue, C. Screen-Printed Flexible Thermoelectric Device Based on Hybrid Silver Selenide/PVP Composite Films. Nanomaterials 2021, 11, 2042. [Google Scholar] [CrossRef]
- ASTM E1112-00 (2018); Standard Specification for Electronic Thermometer for Intermittent Determination of Patient Temperature. ASTM: West Conshohocken, PA, USA, 2018.
- Hardianto, H.; Mey, G.D.; Malengier, B.; Langenhove, L.V. Textile-Based Thermoelectric Generator Fabricated from Carbon Fibers. J. Ind. Text. 2022, 51, 8411S–8427S. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Kong, J.; Li, H.; He, C. Flexible, Durable, Green Thermoelectric Composite Fabrics for Textile-Based Wearable Energy Harvesting and Self-Powered Sensing. Compos. Sci. Technol. 2023, 243, 110245. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, B.; Zhang, B.; Zhang, Z.; Liu, J.; Zhao, L.; Shi, P.; Lin, Q.; Jiang, Z. High-Performance Temperature Sensor by Employing Screen Printing Technology. Micromachines 2021, 12, 924. [Google Scholar] [CrossRef] [PubMed]
- Lund, A.; Tian, Y.; Darabi, S.; Müller, C. A Polymer-Based Textile Thermoelectric Generator for Wearable Energy Harvesting. J. Power Sources 2020, 480, 228836. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, H.; Chen, X.; Qiu, Y.; Zhang, K. Wearable Thermoelectric-Powered Textile-Based Temperature and Pressure Dual-Mode Sensor Arrays. Org. Electron. 2022, 106, 106535. [Google Scholar] [CrossRef]
Code | 1—Inox1 | 2—Inox2 | 3—FC | 4—NiFC |
---|---|---|---|---|
Material | 100% Stainless Steel | 100% Stainless Steel | 100% Carbon | Nickel-coated Carbon |
Producer | Bekinox VN12-4x275-100, Bekaert | Bekinox fibers, Bekaert | Tenax EHTA40 E13 3K200 tex 15Z, Toho Tenax | Tenax JHTS40 A23 12K 1420 tex MC, Toho Tenax |
Filament number | 275 | / | 3000 | 12,000 |
Ply number | 4 | 1 | 1 | 1 |
Filament diameter (µm) | 12 | / | 7 | 7.5 |
Yarn diameter (µm) | 398 | 227 | 383 | 821.6 |
Yarn count (tex) | 1000 | 93.7 | 200 | 1420 |
Turns per meter (t/m) | 100 S | 307 S | 15 Z | 0 |
Yarn | Length [cm] | Electrical Linear Resistance [Ω/m] | CV * [%] |
---|---|---|---|
Inox1 | 20 | 8.89 | 16.2 |
40 | 7.43 | 6.8 | |
Inox2 | 20 | 90.16 | 17.0 |
40 | 89.00 | 12.8 | |
FC | 20 | 155.9 | 6.3 |
40 | 145.8 | 8.6 | |
NiFC | 20 | 1.50 | 16.8 |
40 | 1.44 | 3.6 |
Contact | Binding | Resistance [Ω] | CV * [%] | Improvement over Previous Binding |
---|---|---|---|---|
Inox2–Inox2 | 1 | 17.44 | 34.0 | / |
Inox2–Inox2 | 2 | 12.05 | 12.4 | −30.9% |
Inox1–Inox1 | 3 | 4.07 | 36.3 | −66.2% |
Inox2–NiFC | 1 | 5.52 | 45.4 | / |
Inox2–NiFC | 2 | 3.63 | 1.2 | −34.2% |
Inox1–NiFC | 3 | 1.20 | 5.7 | −66.9% |
Inox2–FC | 1 | 24.67 | 10.7 | / |
Inox2–FC | 2 | 26.47 | 3.0 | +7.3% |
Inox1–FC | 3 | 8.89 | 6.7 | −66.4% |
Contact | Binding | Seebeck Coef. [μV/K] | Change with Ref. |
---|---|---|---|
Inox1–NiFC | Ref. * | 25.30 | / |
Inox2–NiFC | 1 | 15.79 | −37.6% |
Inox2–NiFC | 2 | 21.83 | −13.7% |
Inox1–NiFC | 3 | 21.87 | −13.6% |
Inox1–FC | Ref. * | 5.06 | / |
Inox2–FC | 1 | 4.88 | −3.6% |
Inox2–FC | 2 | 5.67 | +12.1% |
Inox1–FC | 3 | 5.43 | +7.3% |
Contact | Binding | Thermocouples per Thermopile | Thermopile Seebeck Coef. [μV/K] | Single Junction Seebeck Coef. [μV/K] | Difference |
---|---|---|---|---|---|
Inox1–NiFC | 3 | 3 | 55.54 | 18.51 | −15.4% |
Inox1–FC | 3 | 3 | 16.79 | 5.6 | +3.1% |
Thermocouple Type | Thermocouple Number | Production Method | Seebeck Coef. (µV/K) | Output Voltage (µV) at ∆T (K) | Ref. |
---|---|---|---|---|---|
Stainless-steel/NiCF yarn thermocouples | 3 | Conductive yarns on a woven substrate, woven with left–right orientation. | 21.87 µV/K per single junction; 55.54 µV/K per thermopile | 500 µV at 4 K; 1250 µV at 15 K | This work |
Silver/stainless-steel yarn thermocouples | 5 | Metallic yarns sewn in a left–right orientation on a cotton textile substrate. | ~2.7 μV/K per thermopile (ΔT = 20–60 K) | 160 μV at 65 K | [19] |
NiFC yarn thermocouples | 150 | Electrodeposited Ni on carbon fiber; sewn on PES fabric; top–bottom orientation of hot/cold junctions. | 11.61 μV/K per junction; 1219 μV/K per thermopile | ~40 μV at 4 K; ~180 μV at 15 K | [29] |
PEDOT-Cl (p-type) films/carbon fiber yarns (n-type) | 2 | PEDOT-Cl vapor printed rectangles (45 × 5 mm) on cotton with 5 mm spacing; carbon fibers sewn across legs; silver-coated nylon used at junctions. | 16 μV/K per junction | 1200 μV at 30 K | [20] |
Stainless steel (Inox1)/NiFC yarn thermocouples | 1 | Nickel-coated carbon fiber and stainless-steel yarns, just crossed over each other (not woven). | 25.30 μV/K per junction | Not given | [3] |
Silver selenide and polyvinylpyrrolidone films | 6 | Screen-printed Ag2Se/PVP films (40 × 5 mm) on PI mesh, spaced 10 mm apart and connected with conductive silver adhesive. | 56–58.5 μV/K per thermopile (at T = 27–117 °C); 36.0 μV/K per thermopile (at T = 137 °C) | 1700 µV at 4 K; 7300 µV at 15 K; 11,100 µV at 20 K; 21,600 µV at 40 K | [27] |
CNT/PLA composite nanofiber web thermocouples | 4 | CNT electrosprayed onto electrospun PLA; four CNT/PLA units connected in series with silver paste on electrospun PLA fabric. | 62.9 μV/K per thermopile | Not given | [30] |
Indium oxide/indium tin oxide films | Not given | Screen printing on flexible polyimide substrate. | 160–180 μV/K per thermopile | Not given | [31] |
MWCNT (-p and -n type) conductive yarn thermocouples | 1 | MWCNT conductive yarns woven with planar weave and polyester support yarns. | 138.95 μV/K per single junction | Not given | [2] |
PEDOT:PSS silk yarn/ silver-plated polyamide embroidery yarn | 8 | 3D fabric with PEDOT:PSS silk yarns sewn on a nine-layer wool felt, with silver paste printed at thermocouple connections. | ~85–115 μV/K per thermocouple (estimated based on T = 20–60 K) | ~5800 μV at 60 K; ~1800 μV at 20 K | [32] |
CNT yarns | 11–12 (per cm2 fabric) | Doped CNT yarns on a 3D spacer fabric | 870 µV/K per thermopile | Not given | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgievska, M.; Malengier, B.; Roelofs, L.; Tiku, S.D.; Van Langenhove, L. Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications. Appl. Sci. 2025, 15, 9002. https://doi.org/10.3390/app15169002
Georgievska M, Malengier B, Roelofs L, Tiku SD, Van Langenhove L. Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications. Applied Sciences. 2025; 15(16):9002. https://doi.org/10.3390/app15169002
Chicago/Turabian StyleGeorgievska, Magdalena, Benny Malengier, Lucas Roelofs, Sufiyan Derbew Tiku, and Lieva Van Langenhove. 2025. "Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications" Applied Sciences 15, no. 16: 9002. https://doi.org/10.3390/app15169002
APA StyleGeorgievska, M., Malengier, B., Roelofs, L., Tiku, S. D., & Van Langenhove, L. (2025). Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications. Applied Sciences, 15(16), 9002. https://doi.org/10.3390/app15169002