Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites
Abstract
Featured Application
Abstract
1. Introduction
2. Establishment and Operation of a System to Secure Image Data at Earthwork Construction Sites
2.1. Site Selection for Effective Image Collection
2.2. Configuration and Observation Coverage of the PTZ-Based Image Acquisition System
2.3. Operation Process of the Image Collection System
3. Definition of Target Objects and AI Data Annotation Format at Earthwork Construction Sites
3.1. Selection of Objects at Earthwork Construction Sites
3.2. AI Data Labeling for Earthwork Construction Sites
4. Deep Learning-Based Dataset Validation Experiment
4.1. Current Status of Earthwork Construction Site Learning Data
4.2. Deep Learning Models
4.2.1. You Only Look Once (YOLO) Model for Object Detection Data Learning
4.2.2. Mask R-CNN Model for Instance Segmentation Data Learning
4.3. Dataset Standardization Through Deep Learning Training
4.3.1. Evaluation of Object Detection Result
4.3.2. Evaluation of Instance Segmentation Result
4.3.3. Visual Evaluation of Object Detection and Segmentation Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Love, P.E.D.; Teo, P.; Smith, J.; Ackermann, F.; Zhou, Y. The nature and severity of work-related injuries in construction: Promoting operational benchmarking. Ergonomics 2019, 62, 1273–1288. [Google Scholar] [CrossRef] [PubMed]
- Love, P.E.D.; Ika, L.; Luo, B.; Zhou, Y.; Zhong, B.; Fang, W. Rework, failure and unsafe behavior: Moving from a blame culture to an error management mindset in construction. IEEE Trans. Eng. Manag. 2020, 69, 1489–1501. [Google Scholar] [CrossRef]
- Ministry of Employment and Labor (MOEL). Amendment to the Serious Accidents Punishment Act; MOEL Press: Sejong, Republic of Korea, 2023. [Google Scholar]
- Seoul Metropolitan Government (SMG). Safety Management Guidelines for Small Construction Sites; SMG Publications: Seoul, Republic of Korea, 2024. [Google Scholar]
- Akinosho, T.D.; Oyedele, L.O.; Bilal, M.; Ajayi, A.O.; Delgado, M.D.; Akinade, O.O.; Ahmed, A.A. Deep learning in the construction industry: A review of current status and future innovations. J. Build. Eng. 2020, 32, 101827. [Google Scholar] [CrossRef]
- Fang, W.; Love, P.E.; Luo, H.; Ding, L. Computer vision for behavior-based safety in construction: A review and future directions. Adv. Eng. Inform. 2020, 43, 100980. [Google Scholar] [CrossRef]
- Pal, A.; Hsieh, S.-H. Deep learning-based visual data analytics for smart construction management. Autom. Constr. 2021, 131, 103892. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Li, H. An Improved YOLOv5s-Based Algorithm for Unsafe Behavior Detection of Construction Workers in Construction Scenarios. Appl. Sci. 2025, 15, 1853. [Google Scholar] [CrossRef]
- Hayat, A.; Morgado Dias, F. Deep Learning-Based Automatic Safety Helmet Detection System for Construction Safety. Appl. Sci. 2022, 12, 8268. [Google Scholar] [CrossRef]
- Liu, J.; Luo, H.; Liu, H. Deep Learning-based Data Analytics for Safety in Construction. Autom. Constr. 2022, 140, 104302. [Google Scholar] [CrossRef]
- Hou, L.; Chen, H.; Zhang, G.K.; Wang, X. Deep learning-based applications for safety management in the AEC industry: A review. Appl. Sci. 2021, 11, 821. [Google Scholar] [CrossRef]
- Zhong, B.; Wu, H.; Ding, L.; Love, P.E.; Li, H.; Luo, H.; Jiao, L. Mapping computer vision research in construction: Trends, knowledge gaps and implications. Autom. Constr. 2019, 107, 102919. [Google Scholar] [CrossRef]
- Xiao, B.; Kang, S.-C. Development of an image data set of construction machines for deep learning object detection. J. Comput. Civ. Eng. 2021, 35, 05020005. [Google Scholar] [CrossRef]
- An, X.; Li, Z.; Zuguang, L.; Wang, C. Dataset and benchmark for detecting moving objects in construction sites. Autom. Constr. 2021, 122, 103482. [Google Scholar] [CrossRef]
- Duan, R.; Deng, H.; Tian, M.; Deng, Y.; Lin, J. SODA: A large-scale open site object detection dataset for deep learning in construction. Autom. Constr. 2022, 142, 104499. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Development of Risk Factor for Construction Project; MOLIT Research Report; 2014. Available online: https://www.codil.or.kr/viewDtlConRpt.do?gubun=rpt&pMetaCode=OTKCRK160160 (accessed on 2 August 2023). (In Korean).
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision–ECCV 2014, Proceedings Part V; Springer: Zurich, Switzerland, 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Na, J.; Shin, H.; Yun, I.; Lee, J. Development of an AI Dataset for Object Detection at Construction Sites. Mendeley Data, V2, 2025. Available online: https://data.mendeley.com/datasets/rz8723t6d7/2 (accessed on 2 August 2023).
- Ministry of Government Legislation (MGL). Construction Machinery Management Act. 2023. Available online: https://www.law.go.kr/법령/건설기계관리법 (accessed on 2 August 2023). (In Korean).
- COCO-Annotator. Available online: https://github.com/jsbroks/coco-annotator (accessed on 1 July 2025).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems 28; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 91–99. Available online: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html (accessed on 17 June 2021).
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2011, arXiv:2010.16061. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Davis, J.; Goadrich, M. The Relationship between Precision-Recall and ROC Curves. In Proceedings of the 23rd International Conference on Machine Learning, ICML, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9520–9529. [Google Scholar] [CrossRef]
Category | Specification |
---|---|
Manufacturer | KEDACOM |
Image Sensor | 1/2.8″ CMOS |
Pixels | 2.0 Megapixel |
Focal Length | 4.5~135 mm, 30× optical |
Max. Aperture Ratio | F1.6 (WIDE)/F4.4 (TELE) |
Pan/Tilt Range | 360°/−15°~90° |
Compression | H.265/H.264 |
Bitrate | 64 kbps~16 Mbps |
Wireless | 3G/4G/Bluetooth/Wi-fi |
Zoom | 30× optical zoom |
Type of Work | Object Type | AI Application | Target Objects | Grouped Objects |
---|---|---|---|---|
Earthwork | Terrain | Instance Segmentation | Slope | Soil slope Rock slope |
Excavated slope | ||||
Rock slope | ||||
Cut slope | ||||
Soil slope | ||||
Soil mound | Soil mound | |||
Rock mound | Rock mound | |||
Construction equipment | Object Detection | Excavator | Excavator | |
Backhoe | ||||
Dump truck | Dump truck | |||
Loader | ||||
Bulldozer | ||||
Roller | ||||
Ground improvement and Reinforcement | Crawler drill | Crawler drill | ||
Piling | Earth auger | |||
Pile driver | Pile driver | |||
Construction of steel structure | Tower crane | Crane | ||
Civil plumbing and drainage | Mobile crane | |||
Etc | Etc | Car | Car | |
Worker | Worker | |||
Work area | Work area |
Viewpoint | ||||||||
---|---|---|---|---|---|---|---|---|
View 1 | View 2 | View 3 | View 4 | View 5 | View 6 | View 7 | View 8 | |
Number of images (Object detection) | 10,305 | 5262 | 15,161 | 50,629 | 262 | 1955 | 517 | 5675 |
Total images | 89,766 | |||||||
Number of images (Segmentation) | 866 | 442 | 1270 | 3562 | 262 | 164 | 517 | 477 |
Total images | 7600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, J.; Lee, J.; Shin, H.; Yun, I. Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites. Appl. Sci. 2025, 15, 9000. https://doi.org/10.3390/app15169000
Na J, Lee J, Shin H, Yun I. Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites. Applied Sciences. 2025; 15(16):9000. https://doi.org/10.3390/app15169000
Chicago/Turabian StyleNa, JongHo, JaeKang Lee, HyuSoung Shin, and IlDong Yun. 2025. "Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites" Applied Sciences 15, no. 16: 9000. https://doi.org/10.3390/app15169000
APA StyleNa, J., Lee, J., Shin, H., & Yun, I. (2025). Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites. Applied Sciences, 15(16), 9000. https://doi.org/10.3390/app15169000