Effect of Ultrasound-Assisted Convective Drying on the Content of Bioactive Compounds and Drying Rate of Strawberry Slices
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Drying Experiment
2.3. Colour Measurement
2.4. Analysis of Phenolic Compounds
2.5. Analysis of L-Ascorbic Acid
2.6. Antioxidant Activity
2.7. Water Activity
2.8. Dry Mass
2.9. Determination of Dry Basis Moisture Content and Drying Rate
2.10. Statistical Analysis
3. Results and Discussion
3.1. Drying Rate
3.2. Colour
3.3. Phenolic Compounds
3.4. L-Ascorbic Acid, Antioxidant Activity and Water Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Quality Properties of Fruits as Affected by Drying Operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Abatzoglou, N. Review: Fundamentals, Applications and Potentials of Ultrasound-Assisted Drying. Chem. Eng. Res. Des. 2020, 154, 21–46. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.; Fan, K. Recent Advances in Ultrasound-Coupled Drying for Improving the Quality of Fruits and Vegetables: A Review. Int. J. Food Sci. Technol. 2022, 57, 5722–5731. [Google Scholar] [CrossRef]
- Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound—A Review. Trends Food Sci. Technol. 2016, 56, 126–141. [Google Scholar] [CrossRef]
- Clemente, G.; Sanjuán, N.; Cárcel, J.A.; Mulet, A. Influence of Temperature, Air Velocity, and Ultrasound Application on Drying Kinetics of Grape Seeds. Dry. Technol. 2014, 32, 68–76. [Google Scholar] [CrossRef]
- Schössler, K.; Thomas, T.; Knorr, D. Modification of Cell Structure and Mass Transfer in Potato Tissue by Contact Ultrasound. Food Res. Int. 2012, 49, 425–431. [Google Scholar] [CrossRef]
- Simpson, D. The Economic Importance of Strawberry Crops. In The Genomes of Rosaceous Berries and Their Wild Relatives; Hytönen, T., Graham, J., Harrison, R., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–7. ISBN 978-3-319-76019-3. [Google Scholar]
- FAOSTAT 2023. Available online: https://www.fao.org/Faostat/En/#data/QCL (accessed on 1 May 2025).
- Newerli-Guz, J.; Śmiechowska, M.; Drzewiecka, A.; Tylingo, R. Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x Ananassa Duchesne). Molecules 2023, 28, 2711. [Google Scholar] [CrossRef]
- Nielsen, I.L.F.; Haren, G.R.; Magnussen, E.L.; Dragsted, L.O.; Rasmussen, S.E. Quantification of Anthocyanins in Commercial Black Currant Juices by Simple High-Performance Liquid Chromatography. Investigation of Their pH Stability and Antioxidative Potency. J. Agric. Food Chem. 2003, 51, 5861–5866. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kowalski, S.J.; Pawłowski, A.; Szadzińska, J.; Łechtańska, J.; Stasiak, M. High Power Airborne Ultrasound Assist in Combined Drying of Raspberries. Innov. Food Sci. Emerg. Technol. 2016, 34, 225–233. [Google Scholar] [CrossRef]
- Sabarez, H.T.; Gallego-Juarez, J.A.; Riera, E. Ultrasonic-Assisted Convective Drying of Apple Slices. Dry. Technol. 2012, 30, 989–997. [Google Scholar] [CrossRef]
- Kowalski, S.J.; Mierzwa, D.; Stasiak, M. Ultrasound-Assisted Convective Drying of Apples at Different Process Conditions. Dry. Technol. 2017, 35, 939–947. [Google Scholar] [CrossRef]
- Santacatalina, J.V.; Contreras, M.; Simal, S.; Cárcel, J.A.; Garcia-Perez, J.V. Impact of Applied Ultrasonic Power on the Low Temperature Drying of Apple. Ultrason. Sonochem. 2016, 28, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Bantle, M.; Hanssler, J. Ultrasonic Convective Drying Kinetics of Clipfish During the Initial Drying Period. Dry. Technol. 2013, 31, 1307–1316. [Google Scholar] [CrossRef]
- Aversa, M.; Van Der Voort, A.-J.; De Heij, W.; Tournois, B.; Curcio, S. An Experimental Analysis of Acoustic Drying of Carrots: Evaluation of Heat Transfer Coefficients in Different Drying Conditions. Dry. Technol. 2011, 29, 239–244. [Google Scholar] [CrossRef]
- Beck, S.M.; Sabarez, H.; Gaukel, V.; Knoerzer, K. Enhancement of Convective Drying by Application of Airborne Ultrasound—A Response Surface Approach. Ultrason. Sonochem. 2014, 21, 2144–2150. [Google Scholar] [CrossRef]
- Murata, M. Browning and Pigmentation in Food through the Maillard Reaction. Glycoconj. J. 2021, 38, 283–292. [Google Scholar] [CrossRef]
- Biernacka, B.; Dziki, D.; Rudy, S.; Krzykowski, A.; Polak, R.; Dziki, L. Influence of Pretreatments and Freeze-Drying Conditions of Strawberries on Drying Kinetics and Physicochemical Properties. Processes 2022, 10, 1588. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Tekgül, Y.; Erten, E.S. Quality Properties and Headspace Volatiles of Hot Air-Dried Strawberries. An. Acad. Bras. Ciênc. 2022, 94, e20201277. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Yang, X.-H.; Mujumdar, A.S.; Zhao, J.-H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.-J.; Xiao, H.-W. Red Pepper (Capsicum Annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour Difference ∆E—A Survey. Mach. Graph. Vis. 2011, 4, 383–411. [Google Scholar]
- Olsson, M.E.; Ekvall, J.; Gustavsson, K.-E.; Nilsson, J.; Pillai, D.; Sjöholm, I.; Svensson, U.; Åkesson, B.; Nyman, M.G.L. Antioxidants, Low Molecular Weight Carbohydrates, and Total Antioxidant Capacity in Strawberries (Fragaria × Ananassa): Effects of Cultivar, Ripening, and Storage. J. Agric. Food Chem. 2004, 52, 2490–2498. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In Water Activity in Foods; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 323–355. ISBN 978-1-118-76831-0. [Google Scholar]
- Roudaut, G. Water Activity and Physical Stability. In Water Activity in Foods; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 255–269. ISBN 978-1-118-76831-0. [Google Scholar]
L | a | b | ΔE | |
---|---|---|---|---|
Florence_UACD | 33.16 ± 6.05 b | 33.07 ± 6.64 a | 15.06 ± 4.04 a | 10.37 ± 0.59 a |
Florence_CD | 34.29 ± 6.31 b | 34.00 ± 5.55 a | 15.44 ± 3.55 a | 10.65 ± 0.20 a |
Florence_Raw | 41.92 ± 9.82 a | 27.69 ± 5.78 b | 12.30 ± 4.04 b 1 | - |
L | a | b | ΔE | |
---|---|---|---|---|
Alba_UACD | 34.73 ± 2.99 b | 34.14 ± 2.65 a | 15.64 ± 1.84 a | 10.55 ± 1.43 a |
Alba_CD | 34.97 ± 2.31 b | 34.94 ± 2.57 a | 16.08 ± 1.83 a | 11.14 ± 1.70 a |
Alba_Raw | 42.43 ± 6.33 a | 27.72 ± 4.37 b | 12.61 ± 2.95 b 1 | - |
Sample | Florence_CD | Florence_UACD | Florence_Raw | |
---|---|---|---|---|
Flavanols | Unidentified flavanol A | 30.33 ± 2.36 b | 27.78 ± 1.39 a | 36.41 ± 0.5 c |
Procyanidin B1 | 19.36 ± 1.00 a | 18.26 ± 1.57 a | 21.58 ± 0.74 b | |
Catechin | 19.88 ± 3.85 b | 15.81 ± 1.44 a | 19.83 ± 0.3 b | |
Unidentified flavanol B | 235.73 ± 18.76 b | 208.81 ± 11.36 a | 259.87 ± 0.29 c | |
Phenolic acids | Chlorogenic acid derivative | 181.69 ± 4.11 c | 173.47 ± 7.3 b | 161.48 ± 1.91 a |
Ellagic acid | 132.36 ± 17.28 a | 142.17 ± 32.29 a | 110.73 ± 2.69 a | |
Flavonols | Quercetin-3-rutinoside | 39.51 ± 3.42 b | 33.43 ± 1.22 a | 42.07 ± 2.22 b |
Anthocyanins | Cyanidin-3-glucoside | 17.22 ± 0.71 a | 17.13 ± 0.82 a | 19.70 ± 2.20 b |
Pelargonidin-3-glucoside | 295.29 ± 4.61 a | 309.36 ± 16.17 a | 354.18 ± 2.76 b | |
Pelargonidin-3-rutinoside | 2.73 ± 0.18 a | 2.60 ± 0.22 a | 3.60 ± 0.16 b | |
Cyanidin-3-malonylglucoside | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
Pelargonidin-3-(6″-malonylglucoside) | 47.12 ± 1.19 a | 49.11 ± 2.17 a | 51.51 ± 0.55 b 1 |
Sample | Alba_CD | Alba_UACD | Alba_Raw | |
---|---|---|---|---|
Flavanols | Unidentified flavanol A | 35.64 ± 1.98 a | 38.4 ± 2.64 a | 50.48 ± 1.55 b |
Procyanidin B1 | 39.88 ± 3.43 a | 39.57 ± 0.83 a | 40.56 ± 1.65 a | |
Catechin | 16.49 ± 1.62 a | 21.87 ± 4.46 b | 28.12 ± 0.56 c | |
Unidentified flavanol B | 269.98 ± 5.07 b | 280.92 ± 4.11 c | 243.44 ± 2.23 a | |
Phenolic acids | Chlorogenic acid derivative | 60.98 ± 2.66 b | 65.77 ± 2.08 c | 54.6 ± 2.43 a |
Ellagic acid | 78.35 ± 6.36 b | 80.44 ± 7.29 b | 61.1 ± 5.8 a | |
Flavonols | Quercetin-3-rutinoside | 35.33 ± 1.77 b | 39.07 ± 3.73 b | 29.84 ± 0.51 a |
Anthocyanins | Cyanidin-3-glucoside | 8.28 ± 0.63 a | 9.09 ± 0.39 b | 10.95 ± 0.46 c |
Pelargonidin-3-glucoside | 213.92 ± 8.2 a | 244.59 ± 6.34 b | 312.1 ± 9.08 c | |
Pelargonidin-3-rutinoside | 7.91 ± 0.83 a | 8.46 ± 0.29 a | 12.5 ± 0.39 b | |
Cyanidin-3-malonylglucoside | 0.61 ± 0.17 a | 0.96 ± 0.24 b | 0.65 ± 0.20 a | |
Pelargonidin-3-(6″-malonylglucoside) | 45.31 ± 1.59 a | 52.78 ± 1.39 b | 65.51 ± 1.83 c 1 |
Sample | Ascorbic Acid [mg/100 g DM] | Antioxidant Activity [mg Trolox/g DM] | Water Activity |
---|---|---|---|
Florence_CD | 678.27 ± 17.07 b | 43.6 ± 0.51 b | 0.58 ± 0.03 b |
Florence_UACD | 632.65 ± 14.58 a | 46.76 ± 0.77 c | 0.55 ± 0.02 a |
Florence_Raw | 933.74 ± 14.28 c | 41.74 ± 0.23 a 1 | - |
Sample | L-Ascorbic Acid [mg/100 g DM] | Antioxidant Activity [mg Trolox/g DM] | Water Activity |
---|---|---|---|
Alba_CD | 417.78 ± 5.44 a | 29.92 ± 0.4 a | 0.52 ± 0.01 b |
Alba_UACD | 412.00 ± 5.84 a | 32.16 ± 0.17 b | 0.50 ± 0.01 a |
Alba_Raw | 989.2 ± 6.12 b | 32.92 ± 0.06 b 1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piecko, J.; Mieszczakowska-Frąc, M.; Celejewska, K.; Dickinson, N.; Szwejda-Grzybowska, J. Effect of Ultrasound-Assisted Convective Drying on the Content of Bioactive Compounds and Drying Rate of Strawberry Slices. Appl. Sci. 2025, 15, 8947. https://doi.org/10.3390/app15168947
Piecko J, Mieszczakowska-Frąc M, Celejewska K, Dickinson N, Szwejda-Grzybowska J. Effect of Ultrasound-Assisted Convective Drying on the Content of Bioactive Compounds and Drying Rate of Strawberry Slices. Applied Sciences. 2025; 15(16):8947. https://doi.org/10.3390/app15168947
Chicago/Turabian StylePiecko, Jan, Monika Mieszczakowska-Frąc, Karolina Celejewska, Niall Dickinson, and Justyna Szwejda-Grzybowska. 2025. "Effect of Ultrasound-Assisted Convective Drying on the Content of Bioactive Compounds and Drying Rate of Strawberry Slices" Applied Sciences 15, no. 16: 8947. https://doi.org/10.3390/app15168947
APA StylePiecko, J., Mieszczakowska-Frąc, M., Celejewska, K., Dickinson, N., & Szwejda-Grzybowska, J. (2025). Effect of Ultrasound-Assisted Convective Drying on the Content of Bioactive Compounds and Drying Rate of Strawberry Slices. Applied Sciences, 15(16), 8947. https://doi.org/10.3390/app15168947