Injury Prediction in Korean Adult Field Hockey Players Using Machine Learning and SHAP-Based Feature Importance Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Survey Content
2.3. Machine Learning Approach
2.4. SHAP Analysis
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics and Group Comparison
3.2. Performance of Machine Learning Models
3.3. Interpretation of Feature Importance Using SHAP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabbett, T.J. The training—Injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, K. Injury patterns among female field hockey players. Med. Sci. Sports Exerc. 2001, 33, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef]
- Bahr, R.; Krosshaug, T. Understanding injury mechanisms: A key component of preventing injuries in sport. Br. J. Sports Med. 2005, 39, 324–329. [Google Scholar] [CrossRef]
- Ruddy, J.D.; Cormack, S.J.; Whiteley, R.; Williams, M.D.; Timmins, R.G.; Opar, D.A. Modeling the risk of team sport injuries: A narrative review of different statistical approaches. Front. Physiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Van Eetvelde, H.; Mendonça, L.D.; Ley, C.; Seil, R.; Tischer, T. Machine learning methods in sport injury prediction and prevention: A systematic review. J. Exp. Orthop. 2021, 8, 27. [Google Scholar] [CrossRef]
- Mason, J.; Wellmann, K.; Groll, A.; Braumann, K.-M.; Junge, A.; Hollander, K.; Zech, A. Game exposure, player characteristics, and neuromuscular performance influence injury risk in professional and youth field hockey players. Orthop. J. Sports Med. 2021, 9, 1–9. [Google Scholar] [CrossRef]
- Veiga, G.; Torres, G.; Maposa, I. Association of the acute: Chronic workload ratio and wellness scores in premier league male hockey players. S. Afr. J. Sports Med. 2021, 33, 1–7. [Google Scholar]
- Ye, X.; Huang, Y.; Bai, Z.; Wang, Y. A novel approach for sports injury risk prediction: Based on time-series image encoding and deep learning. Front. Physiol. 2023, 14, 1174525. [Google Scholar] [CrossRef]
- Jauhiainen, S.; Kauppi, J.-P.; Krosshaug, T.; Bahr, R.; Bartsch, J.; Äyrämö, S. Predicting ACL injury using machine learning on data from an extensive screening test battery of 880 female elite athletes. Am. J. Sports Med. 2022, 50, 2917–2924. [Google Scholar] [CrossRef]
- Rhon, D.I.; Teyhen, D.S.; Collins, G.S.; Bullock, G.S. Predictive models for musculoskeletal injury risk: Why statistical approach makes all the difference. BMJ Open Sport Exerc. Med. 2022, 8, e001388. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Lee, K. Training-related sports injury patterns among elite middle and high school field hockey players in Korea. Sports 2025, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-W.; Song, H.-S.; Kim, E.-H.; Cho, J.-H.; Park, J.-Y.; Lee, K.-H. Incidence of sports injury in middle and high school fencers by gender, grade and type during training. Korean Acad. Kinesiol. 2017, 19, 65–72. [Google Scholar]
- Oh, S.W.; Lee, Y.K.; Lee, K.H. Incidence of sports injury according to the gender and age group of Korean elite handball players. J. Coach. Dev. 2022, 24, 208–217. [Google Scholar] [CrossRef]
- Sakho, A.; Malherbe, E.; Scornet, E. Do we need rebalancing strategies? A theoretical and empirical study around SMOTE and its variants. arXiv 2024, arXiv:2402.03819. [Google Scholar] [CrossRef]
- Chehreh Chelgani, S.; Fatahi, R.; Pournazari, A.; Nasiri, H. Modeling energy consumption indexes of an industrial cement ball mill for sustainable production. Sci. Rep. 2025, 15, 18514. [Google Scholar] [CrossRef]
- Roberts, C.V.; Elahi, E.; Chandrashekar, A. On the bias-variance characteristics of LIME and SHAP in high sparsity movie recommendation explanation tasks. arXiv 2022, arXiv:2206.04784. [Google Scholar] [CrossRef]
- Leckey, C.; Van Dyk, N.; Doherty, C.; Lawlor, A.; Delahunt, E. Machine learning approaches to injury risk prediction in sport: A scoping review with evidence synthesis. Br. J. Sports Med. 2025, 59, 491–500. [Google Scholar] [CrossRef]
- Rossi, A.; Pappalardo, L.; Cintia, P. A narrative review for a machine learning application in sports: An example based on injury forecasting in soccer. Sports 2021, 10, 5. [Google Scholar] [CrossRef]
- Kim, T.; Park, J.-C.; Park, J.-M.; Choi, H. Optimal relative workload for managing low-injury risk in lower extremities of female field hockey players: A retrospective observational study. Medicine 2021, 100, e27643. [Google Scholar] [CrossRef]
- Lövdal, S.S.; Den Hartigh, R.J.; Azzopardi, G. Injury prediction in competitive runners with machine learning. Int. J. Sports Physiol. Perform. 2021, 16, 1522–1531. [Google Scholar] [CrossRef]
- Rossi, A.; Pappalardo, L.; Cintia, P.; Iaia, F.M.; Fernández, J.; Medina, D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS ONE 2018, 13, e0201264. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, S.; Wang, Y.; Li, Y.; Gui, Y.; Huang, C. A novel lower extremity non-contact injury risk prediction model based on multimodal fusion and interpretable machine learning. Front. Physiol. 2022, 13, 937546. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Z.; Wu, W.; Xiong, Y.; Luo, J.; Sun, Q.; Mao, Y.; Wang, Z.L. TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence. Nano-Micro Lett. 2025, 17, 265. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhu, Y.; Jia, C.; Wen, Y.; Zhang, Y.; Chu, L.; Zhao, T.; Liu, B.; Mao, Y. Deep-Learning-Assisted Neck Motion Monitoring System Self-Powered Through Biodegradable Triboelectric Sensors. Adv. Funct. Mater. 2024, 34, 2310742. [Google Scholar] [CrossRef]
- Liu, D.; Wen, Y.; Xie, Z.; Zhang, M.; Wang, Y.; Feng, Q.; Cheng, Z.; Lu, Z.; Mao, Y.; Yang, H. Self-Powered, Flexible, Wireless and Intelligent Human Health Management System Based on Natural Recyclable Materials. ACS Sens. 2024, 9, 6236–6246. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, T.; Sun, F.; Jia, C.; Ye, H.; Jiang, Y.; Wang, K.; Huang, C.; Xie, Y.; Mao, Y. Multi-Functional Triboelectric Nanogenerators on Printed Circuit Board for Metaverse Sport Interactive System. Nano Energy 2023, 113, 108520. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, M.; Xie, Z.; An, Z.; Liu, B.; Sun, F.; Zhao, T.; Yu, Z.; Wang, F.; Mao, Y. Intelligent Interaction System Based on Multimodal Conformal Triboelectric Nanogenerator Patch for Disabled Sports and Life. Sci. China Technol. Sci. 2025, 68, 1221101. [Google Scholar] [CrossRef]
Model | Hyperparameter | Description/Role | Value |
---|---|---|---|
Logistic Regression | penalty | Regularization type | l2 |
solver | Optimization algorithm | lbfgs | |
max_iter | Maximum number of iterations | 1000 | |
random_state | Random seed for reproducibility | 7777 | |
Random Forest | n_estimators | Number of trees | 100 |
max_depth | Maximum depth of trees | None | |
criterion | Splitting criterion | gini | |
random_state | Random seed for reproducibility | 7777 | |
XGBoost | n_estimators | Number of boosting rounds | 100 |
max_depth | Maximum depth of each tree | 3 | |
learning_rate | Step size shrinkage | 0.1 | |
use_label_encoder | Disable legacy encoder | False | |
eval_metric | Evaluation metric | logloss | |
random_state | Random seed for reproducibility | 7777 |
Variable | Not Injured (n = 117) | Injured (n = 122) | p-Value |
---|---|---|---|
Age | 23.44 ± 4.73 | 23.90 ± 4.66 | 0.4438 |
Height | 169.93 ± 8.33 | 169.08 ± 8.24 | 0.4298 |
Weight | 66.50 ± 13.16 | 64.52 ± 9.52 | 0.1858 |
Sex—1 | 62 (51.67%) | 58 (48.33%) | 0.476 |
Sex—2 | 55 (46.22%) | 64 (43.59%) | |
Group—1 | 53 (48.62%) | 56 (51.38%) | 1.000 |
Group—2 | 64 (49.23%) | 66 (50.77%) | |
Career—1 | - | - | 0.014 |
Career—2 | 1 (100.00%) | 0 (0.00%) | |
Career—3 | 7 (100.00%) | 0 (0.00%) | |
Career—4 | 8 (66.67%) | 4 (33.33%) | |
Career—5 | 101 (46.12%) | 118 (53.88%) | |
Level—1 | 37 (60.66%) | 24 (39.34%) | 0.023 |
Level—2 | 59 (49.58%) | 60 (50.42%) | |
Level—3 | 21 (35.59%) | 38 (64.41%) | |
Warm-up—1 | - | - | 0.214 |
Warm-up—2 | 2 (100.00%) | 0 (0.00%) | |
Warm-up—3 | 20 (58.82%) | 14 (41.18%) | |
Warm-up—4 | 48 (44.04%) | 61 (55.96%) | |
Warm-up—5 | 36 (53.73%) | 31 (46.27%) | |
Warm-up—6 | 11 (40.74%) | 16 (59.26%) | |
Training Time—1 | 1 (100.00%) | 0 (0.00%) | 0.046 |
Training Time—2 | 32 (65.31%) | 17 (34.69%) | |
Training Time—3 | 23 (50.00%) | 23 (50.00%) | |
Training Time—4 | 58 (43.94%) | 74 (56.06%) | |
Training Time—5 | 3 (27.27%) | 8 (72.73%) | |
Training Day—1 | 1 (100.00%) | 0 (0.00%) | 0.017 |
Training Day—2 | 1 (100.00%) | 0 (0.00%) | |
Training Day—3 | 8 (100.00%) | 0 (0.00%) | |
Training Day—4 | 1 (100.00%) | 0 (0.00%) | |
Training Day—5 | 106 (46.49%) | 122 (53.51%) |
Class | Precision | Recall | F1-Score |
---|---|---|---|
Logistic Regression | |||
Non-injured (0) | 0.6048 ± 0.0528 | 0.4967 ± 0.0891 | 0.5395 ± 0.0498 |
Injured (1) | 0.5863 ± 0.0360 | 0.6810 ± 0.0983 | 0.6260 ± 0.0499 |
Macro average | 0.5956 ± 0.0391 | 0.5889 ± 0.0346 | 0.5828 ± 0.0358 |
Weighted average | 0.5955 ± 0.0387 | 0.5902 ± 0.0366 | 0.5834 ± 0.0366 |
Accuracy | 0.5902 ± 0.0366 | ||
AUC | 0.6515 ± 0.0393 | ||
Random Forest | |||
Non-injured (0) | 0.5175 ± 0.0858 | 0.4964 ± 0.1133 | 0.5058 ± 0.0992 |
Injured (1) | 0.5432 ± 0.0767 | 0.5650 ± 0.0600 | 0.5530 ± 0.0664 |
Macro average | 0.5304 ± 0.0811 | 0.5307 ± 0.0795 | 0.5294 ± 0.0810 |
Weighted average | 0.5307 ± 0.0812 | 0.5316 ± 0.0798 | 0.5300 ± 0.0812 |
Accuracy | 0.5316 ± 0.0798 | ||
AUC | 0.6144 ± 0.0627 | ||
XGBoost | |||
Non-injured (0) | 0.5749 ± 0.1022 | 0.5141 ± 0.1062 | 0.5425 ± 0.1042 |
Injured (1) | 0.5797 ± 0.0880 | 0.6390 ± 0.0812 | 0.6077 ± 0.0846 |
Macro average | 0.5773 ± 0.0946 | 0.5766 ± 0.0931 | 0.5751 ± 0.0944 |
Weighted average | 0.5775 ± 0.0946 | 0.5777 ± 0.0934 | 0.5757 ± 0.0945 |
Accuracy | 0.5777 ± 0.0934 | ||
AUC | 0.5973 ± 0.0799 |
Accuracy | Precision | Recall | F1 | AUC | |
---|---|---|---|---|---|
Fold 1 | 0.5625 | 0.5556 | 0.6250 | 0.5882 | 0.5990 |
Fold 2 | 0.5417 | 0.5312 | 0.7083 | 0.6071 | 0.6528 |
Fold 3 | 0.6250 | 0.6129 | 0.7600 | 0.6786 | 0.7130 |
Fold 4 | 0.5833 | 0.6190 | 0.5200 | 0.5652 | 0.6226 |
Fold 5 | 0.6383 | 0.6129 | 0.7917 | 0.6909 | 0.6703 |
Mean | 0.5902 | 0.5863 | 0.6810 | 0.6260 | 0.6515 |
Std | 0.0366 | 0.0360 | 0.0983 | 0.0499 | 0.0393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Lee, K.; Lee, K. Injury Prediction in Korean Adult Field Hockey Players Using Machine Learning and SHAP-Based Feature Importance Analysis. Appl. Sci. 2025, 15, 8946. https://doi.org/10.3390/app15168946
Choi M, Lee K, Lee K. Injury Prediction in Korean Adult Field Hockey Players Using Machine Learning and SHAP-Based Feature Importance Analysis. Applied Sciences. 2025; 15(16):8946. https://doi.org/10.3390/app15168946
Chicago/Turabian StyleChoi, Minkyung, Kumju Lee, and Kihyuk Lee. 2025. "Injury Prediction in Korean Adult Field Hockey Players Using Machine Learning and SHAP-Based Feature Importance Analysis" Applied Sciences 15, no. 16: 8946. https://doi.org/10.3390/app15168946
APA StyleChoi, M., Lee, K., & Lee, K. (2025). Injury Prediction in Korean Adult Field Hockey Players Using Machine Learning and SHAP-Based Feature Importance Analysis. Applied Sciences, 15(16), 8946. https://doi.org/10.3390/app15168946