Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards
Abstract
1. Introduction
2. Plate Element Incorporating Transverse Normal Strain
2.1. Theory
2.2. Element Formulation
2.3. Implementation in Abaqus
- Environment
- Programming guidelines
- Data flow
- Activation of DOFs
- Element visualization
3. Extended Homogenization Method
3.1. Extension on FSDT
3.2. Correction on Out-of-Plane Stiffness
4. Validation
4.1. Patch Test
4.2. Homogeneous Plate
4.3. Homogenized Model for Corrugated Cardboard
5. Conclusions and Discussion
- (1)
- The plate element, implemented through the user subroutine UEL in Abaqus 2022, can pass the patch test. The transverse normal strain and stress are linearly distributed along the thickness direction, which is consistent with results from the Abaqus native elements S8R, SC8R, and C3D8R.
- (2)
- By developing extensions to the established homogenization method and improving the out-of-plane stiffness, results from the homogenized model are well matched to the detailed model, with an error of less than 8% and a runtime reduction of more than 50%. The stress-strain relation of the homogenized model shows good agreement in the linear stage on the out-of-plane compression test, showing the correctness of the proposed method and the limitations of the linear elastic constitutive model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MD | Machine Direction |
CD | Cross Direction |
TD | Thickness Direction |
FSDT | First-Order Shear Deformation Theory |
HSDT | High-Order Shear Deformation Theory |
FEA | Finite Element Analysis |
CLPT | Classical Laminated Plate Theory |
DOFs | Degrees Of Freedom |
Appendix A
Appendix B
Appendix C
- (...)
- *Part, name=Part-1
- *Node
- 1, 50., -50., 0.
- 2, -47.5, -50., 0.
- (... Definition of nodes)
- 4961, 48.75, 50., 0.
- *Element, type=S8RT(change from S8R)
- 1, 1, 2, 43, 42, 1682, 1683, 1684, 1685
- 2, 2, 3, 44, 43, 1686, 1687, 1688, 1683
- (... Definition of dummy element)
- 1600, 1639, 1640, 1681, 1680, 4880, 4960, 4961, 4958
- *User element, nodes=8, type=U1001, properties=3, coordinates=3
- 1,2,3,4,5,11,12
- *Element, type=U1001, elset=uel
- 1601, 1, 2, 43, 42, 1682, 1683, 1684, 1685
- 1602, 2, 3, 44, 43, 1686, 1687, 1688, 1683
- (... Define user element using the same node of dummy element, but in different element number)
- 3200, 1639, 1640, 1681, 1680, 4880, 4960, 4961, 4958
- *Nset, nset=_PickedSet2, internal, generate
- 1, 4961, 1
- *Elset, elset=_PickedSet2, internal, generate
- 1, 1600, 1
- ** Section: Section-1
- *Shell Section, elset=_PickedSet2, material=dummy_mat
- 1.0e-10,5
- *Uel property, elset=uel
- 200000.,0.3,10.0
- *End Part
- (...)
- *Material, name=dummy_mat
- *Conductivity
- 0.,
- *Elastic
- 1e-16,0.
- (...)
- *Step, name=Step-1, nlgeom=NO
- *Coupled Temperature-displacement, creep=none, steady state
- 1., 1., 1e-05, 1.
- (...)
- *Output, field, variable=PRESELECT
- *Element Output, directions=YES
- TEMP
- *Node Output
- NT
References
- Briassoulis, D. Equivalent orthotropic properties of corrugated sheets. Comput. Struct. 1986, 23, 129–138. [Google Scholar] [CrossRef]
- Biancolini, M.E.; Brutti, C.; Porziani, S. Corrugated board containers design methods. Int. J. Comput. Mater. Sci. Surf. Eng. 2010, 3, 143–163. [Google Scholar] [CrossRef]
- Nordstrand, T.; Carlsson, L.A.; Allen, H.G. Transverse shear stiffness of structural core sandwich. Compos. Struct. 1994, 27, 317–329. [Google Scholar] [CrossRef]
- Bartolozzi, G.; Pierini, M.; Orrenius, U.; Baldanzini, N. An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels. Compos. Struct. 2013, 100, 173–185. [Google Scholar] [CrossRef]
- Abbès, B.; Guo, Y.Q. Analytic homogenization for torsion of orthotropic sandwich plates: Application to corrugated cardboard. Compos. Struct. 2010, 92, 699–706. [Google Scholar] [CrossRef]
- Aboura, Z.; Talbi, N.; Allaoui, S.; Benzeggagh, M.L. Elastic behavior of corrugated cardboard: Experiments and modeling. Compos. Struct. 2004, 63, 53–62. [Google Scholar] [CrossRef]
- Talbi, N.; Batti, A.; Ayad, R.; Guo, Y.Q. An analytical homogenization model for finite element modelling of corrugated cardboard. Compos. Struct. 2009, 88, 280–289. [Google Scholar] [CrossRef]
- Minh, D.P.T. Modeling and Numerical Simulation for the Double Corrugated Cardboard under Transverse Loading by Homogenization Method. Int. J. Eng. Sci. 2017, 6, 16–25. [Google Scholar]
- Aduke, R.N.; Venter, M.P.; Coetzee, C.J. An Analysis of Numerical Homogenisation Methods Applied on Corrugated Paperboard. Math. Comput. Appl. 2023, 28, 46. [Google Scholar] [CrossRef]
- Suarez, B.; Muneta, M.L.M.; Sanz-Bobi, J.D.; Romero, G. Application of homogenization approaches to the numerical analysis of seating made of multi-wall corrugated cardboard. Compos. Struct. 2021, 262, 113642. [Google Scholar] [CrossRef]
- Biancolini, M.E. Evaluation of equivalent stiffness properties of corrugated board. Compos. Struct. 2005, 69, 322–328. [Google Scholar] [CrossRef]
- Garbowski, T. Computer aided estimation of corrugated board box compression strength Part 1: The Effect of Corrugated Cardboard Crushing on Its Basic Parameters. Przegląd Pap. 2018, 1, 47–54. [Google Scholar]
- Krusper, A.; Isaksson, P.; Gradin, P. Modeling of Out-of-Plane Compression Loading of Corrugated Paper Board Structures. J. Eng. Mech. 2007, 133, 1171–1177. [Google Scholar] [CrossRef]
- Huang, J. Investigation of Corrugated Cardboard for Vibration Isolation; University of Saskatchewan: Saskatoon, SK, Canada, 2013. [Google Scholar]
- Wang, Z.W.; Yu-Ping, E. Energy absorption properties of multi-layered corrugated paperboard in various ambient humidities. Mater. Des. 2011, 32, 3476–3485. [Google Scholar] [CrossRef]
- SIMULIA. Abaqus User Assistance. Available online: https://help.3ds.com/ (accessed on 27 April 2025).
- ANSYS. ANSYS Documentation. Available online: https://ansyshelp.ansys.com/ (accessed on 27 April 2025).
- Irfan, S.; Siddiqui, F. A review of recent advancements in finite element formulation for sandwich plates. Chin. J. Aeronaut. 2019, 32, 785–798. [Google Scholar] [CrossRef]
- Bathe, K.J.; Dvorkin, E.N. A formulation of general shell elements—The use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 2005, 22, 697–722. [Google Scholar] [CrossRef]
- Pandit, U.K.; Mondal, G.; Punera, D. Investigating the static, free vibration, and buckling responses of corrugated steel plate-made structures using efficient homogenization-based FE modelling. Structures 2024, 70, 107643. [Google Scholar] [CrossRef]
- Djilali Hammou, A.; Minh Duong, P.T.; Abbès, B.; Makhlouf, M.; Guo, Y.-Q. Finite-element simulation with a homogenization model and experimental study of free drop tests of corrugated cardboard packaging. Mech. Ind. 2012, 13, 175–184. [Google Scholar] [CrossRef]
- Carrera, E. Theories and Finite Elements for Multilayered Plates and Shells:A Unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng. 2003, 10, 215–296. [Google Scholar] [CrossRef]
- Thai, H.T.; Choi, D.H. Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Finite Elem. Anal. Des. 2013, 75, 50–61. [Google Scholar] [CrossRef]
- Talha, M.; Singh, B.N. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 2010, 34, 3991–4011. [Google Scholar] [CrossRef]
- Moreira, J.A.; Moleiro, F.; Araújo, A.L. Layerwise electro-elastic user-elements in Abaqus for static and free vibration analysis of piezoelectric composite plates. Mech. Adv. Mater. Struct. 2021, 29, 3109–3121. [Google Scholar] [CrossRef]
- Moreira, J.A.; Moleiro, F.; Araújo, A.L.; Pagani, A. Assessment of layerwise user-elements in Abaqus for static and free vibration analysis of variable stiffness composite laminates. Compos. Struct. 2023, 303, 116291. [Google Scholar] [CrossRef]
- Ferreira, G.F.O.; Almeida, J.H.S.; Ribeiro, M.L.; Ferreira, A.J.M.; Tita, V. Development of a finite element via Unified Formulation: Implementation as a User Element subroutine to predict stress profiles in composite plates. Thin-Walled Struct. 2020, 157, 107107. [Google Scholar] [CrossRef]
- Nelson, R.B.; Lorch, D.R. A Refined Theory for Laminated Orthotropic Plates. J. Appl. Mech. 1974, 41, 177–183. [Google Scholar] [CrossRef]
- Lo, K.H.; Christensen, R.M.; Wu, E.M. A High-Order Theory of Plate Deformation—Part 1: Homogeneous Plates. J. Appl. Mech. 1977, 44, 663–668. [Google Scholar] [CrossRef]
- Smith, I.M.; Griffiths, D.V.; Margetts, L. Programming the Finite Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Fadiji, T.; Ambaw, A.; Coetzee, C.J.; Berry, T.M.; Opara, U.L. Application of finite element analysis to predict the mechanical strength of ventilated corrugated paperboard packaging for handling fresh produce. Biosyst. Eng. 2018, 174, 260–281. [Google Scholar] [CrossRef]
- Ventsel, E.; Krauthammer, T. Thin Plates and Shells: Theory, Analysis, and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2002. [Google Scholar]
Flute Type | Height (mm) | Period (mm) | Corrugation Factor |
---|---|---|---|
A | 4.8 | 8.0–9.5 | 1.50 |
B | 3.2 | 5.5–6.5 | 1.40 |
C | 4.0 | 6.8–7.9 | 1.45 |
E | 1.6 | 3.0–3.5 | 1.25 |
F | 0.8 | 1.9–2.6 | 1.25 |
Node ID | x-Coordinate | y-Coordinate | u | v |
---|---|---|---|---|
1 | 0 | 0 | 0 | 0 |
2 | 2.5 | 0 | 0.025 | 0 |
3 | 2.5 | 3 | 0.025 | −0.009 |
4 | 0 | 2 | 0 | −0.006 |
5 | 0.5 | 0.5 | 0.005 | −0.0015 |
6 | 2 | 0.75 | 0.02 | −0.00225 |
7 | 1.75 | 1.75 | 0.0175 | −0.00525 |
8 | 0.65 | 1.6 | 0.0065 | −0.0048 |
9 | 1.25 | 0 | 0.0125 | 0 |
10 | 2.5 | 1.5 | 0.025 | −0.0045 |
11 | 1.25 | 2.5 | 0.0125 | −0.0075 |
12 | 0 | 1 | 0 | −0.003 |
13 | 1.25 | 0.625 | 0.0125 | −0.001875 |
14 | 1.875 | 1.25 | 0.01875 | −0.00375 |
15 | 1.2 | 1.675 | 0.012 | −0.005025 |
16 | 0.575 | 1.05 | 0.00575 | −0.00315 |
17 | 2.25 | 0.375 | 0.0225 | −0.001125 |
18 | 2.125 | 2.375 | 0.02125 | −0.007125 |
19 | 0.325 | 1.8 | 0.00325 | −0.0054 |
20 | 0.25 | 0.25 | 0.0025 | −0.00075 |
Layer | Thickness (mm) | Elastic Constant (MPa) | Period (mm) | Height (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
E1 | E2 | ν12 | G12 | G13 | G23 | ||||
Liner | 0.29 | 3326 | 1694 | 0.34 | 860 | 60 | 48 | -- | -- |
Flute | 0.30 | 2614 | 1532 | 0.33 | 792 | 47 | 43 | 8 | 4 |
Load Case | Displacement * | Detailed Model | Homogenized Model | Error |
---|---|---|---|---|
MD-bending | U3 | 4.7805 × 10−1 | 4.6394 × 10−1 | −2.95% |
CD-bending | U3 | 7.2503 × 10−1 | 7.1266 × 10−1 | −1.71% |
MD-stretching | U1 | 4.7967 × 10−2 | 4.7894 × 10−2 | −0.15% |
CD-stretching | U2 | 5.6697 × 10−2 | 5.6701 × 10−2 | 0.01% |
MD-twisting | UR1 | 8.9073 × 10−3 | 8.2304 × 10−3 | −7.60% |
CD-twisting | UR2 | 7.7143 × 10−3 | 7.2510 × 10−3 | −6.01% |
CD-shearing | U2 | 2.1472 × 10−1 | 2.2272 × 10−1 | 3.72% |
MD-shearing | U1 | 2.2251 × 10−1 | 2.3330 × 10−1 | 4.85% |
Name | Element Number | Node Number | Total DOFs | Runtime (s) | Reduction |
---|---|---|---|---|---|
Detailed model | 14,400 | 13,542 | 81,252 | 1.8 | -- |
Homogenized model | 338 | 560 | 3920 | 0.8 | 55.56% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.-K.; Wang, Z.-W. Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards. Appl. Sci. 2025, 15, 7868. https://doi.org/10.3390/app15147868
Liang S-K, Wang Z-W. Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards. Applied Sciences. 2025; 15(14):7868. https://doi.org/10.3390/app15147868
Chicago/Turabian StyleLiang, Shao-Keng, and Zhi-Wei Wang. 2025. "Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards" Applied Sciences 15, no. 14: 7868. https://doi.org/10.3390/app15147868
APA StyleLiang, S.-K., & Wang, Z.-W. (2025). Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards. Applied Sciences, 15(14), 7868. https://doi.org/10.3390/app15147868