Harnessing Carrot Discard as a Novel Feedstock for 2,3-Butanediol Bioproduction: A Comparison of Fermentation Strategies and Bacillus Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Enzymatic Hydrolysis of Carrot Discard
2.3. Microorganism and Inoculum
2.4. Fermentation Assays
2.4.1. Semi-Defined Fermentation Media
2.4.2. Separate Hydrolysis and Fermentation (SHF) of Carrot Discard
2.4.3. Simultaneous Saccharification and Fermentation (SSF) of Carrot Discard
2.5. Analytical Methods
2.6. Data Analysis
3. Results and Discussion
3.1. 2,3-BDO Production from Glucose Semi-Defined Media
3.1.1. 2,3-BDO Fermentation by B. licheniformis
3.1.2. 2,3-BDO Fermentation by B. amyloliquefaciens
3.1.3. Comparison of 2,3-BDO Fermentation by B. licheniformis and B. amyloliquefaciens
3.2. Comparative Analysis of SHF and SSF Configurations for 2,3-BDO Production from Carrot Discard
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MAPA Ministry of Agriculture, Fisheries and Food. “Anuario de Estadística”. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/default.aspx (accessed on 28 May 2025).
- Encalada, A.M.I.; Pérez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef]
- López-Linares, J.C.; Mateo Martínez, A.; Coca, M.; Lucas, S.; García-Cubero, M.T. Carrot discard as a promising feedstock to produce 2,3-butanediol by fermentation with P. polymyxa DSM 365. Bioengineering 2023, 10, 937. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Andrés, M.; Aguilera-Torre, B.; García-Serna, J. Hydrothermal production of high-molecular weight hemicellulose-pectin, free sugars and residual cellulose pulp from discarded carrots. J. Clean. Prod. 2021, 290, 125179. [Google Scholar] [CrossRef]
- Okonkwo, C.C.; Ujor, V.; Ezeji, T.C. Production of 2,3-Butanediol from non-detoxified wheat straw hydrolysate: Impact of microbial inhibitors on Paenibacillus polymyxa DSM 365. Ind. Crops Prod. 2021, 159, 113047. [Google Scholar] [CrossRef]
- Hong, E.; Kim, D.; Kim, J.; Kim, J.; Yoon, S.; Rhie, S.; Ha, S.; Ryu, Y. Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumoniae AJ4. Biomass Bioenergy 2015, 77, 177–185. [Google Scholar] [CrossRef]
- Xie, S.; Li, Z.; Zhu, G.; Song, W.; Yi, C. Cleaner production and downstream processing of bio-based 2,3-butanediol: A review. J. Clean. Prod. 2022, 343, 131033. [Google Scholar] [CrossRef]
- Hazeena, S.H.; Nair Salini, C.; Sindhu, R.; Pandey, A.; Binod, P. Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol. Bioresour. Technol. 2019, 278, 145–149. [Google Scholar] [CrossRef]
- Maina, S.; Prabhu, A.A.; Vivek, N.; Vlysidis, A.; Koutinas, A.; Kumar, V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol. Adv. 2022, 54, 107783. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z. Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol. Adv. 2019, 37, 569–578. [Google Scholar] [CrossRef]
- Jiang, L.-Q.; Fang, Z.; Zhao, Z.-L.; He, F.; Li, H.-B. 2,3-butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa. BioResources 2015, 10, 1318–1329. [Google Scholar] [CrossRef]
- Xu, Y.; Zhuang, J.; Wang, S.; Dai, J.; Xiu, Z.L. Integration of 2,3-butanediol production and extraction of active components from Chinese herbs by Bacillus licheniformis and evaluation of fermentation products in vitro. Process Biochem. 2025, 148, 150–156. [Google Scholar] [CrossRef]
- Meng, W.; Ma, C.; Xu, P.; Gao, C. Biotechnological production of chiral acetoin. Trends Biotechnol. 2022, 40, 958–973. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bao, T.; Hu, M.; Xu, M.; Rao, Z.; Zhang, X. Efficient acetoin production in Bacillus subtilis by multivariate modular metabolic engineering with spatiotemporal modulation. ACS Sustain. Chem. Eng. 2025, 13, 1927–1936. [Google Scholar] [CrossRef]
- Olofsson, K.; Bertilsson, M.; Lidén, G. A short review on SSF—An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 2008, 1, 7. [Google Scholar] [CrossRef]
- Qiu, W.y.; Dong, C.; Guo, J.j.; Xia, B.; Xu, L.; Fang, Z. Enhancing xylose fermentation to maximize net energy gain of lime-pretreated wheat straw by delayed fed-batch simultaneous saccharification and fermentation. Biomass Bioenergy 2025, 198, 107865. [Google Scholar] [CrossRef]
- Jurchescu, I.M.; Hamann, J.; Zhou, X.; Ortmann, T.; Kuenz, A.; Prüße, U.; Lang, S. Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl. Microbiol. Biotechnol. 2013, 97, 6715–6723. [Google Scholar] [CrossRef] [PubMed]
- Hakizimana, O.; Matabaro, E.; Lee, B.H. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. Biotechnol. Rep. 2020, 25, e00397. [Google Scholar] [CrossRef]
- Sonenshein, A.L. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 2007, 5, 917–927. [Google Scholar] [CrossRef]
- Cristiano-Fajardo, S.A.; Flores, C.; Flores, N.; Tinoco-Valencia, R.; Serrano-Carreón, L.; Galindo, E. Glucose limitation and glucose uptake rate determines metabolite production and sporulation in high cell density continuous cultures of Bacillus amyloliquefaciens 83. J. Biotechnol. 2019, 299, 57–65. [Google Scholar] [CrossRef]
- Guragain, Y.N.; Chitta, D.; Karanjikar, M.; Vadlani, P.V. Appropriate lignocellulosic biomass processing strategies for efficient 2,3-butanediol production from biomass-derived sugars using Bacillus licheniformis DSM 8785. Food Bioprod. Process. 2017, 104, 147–158. [Google Scholar] [CrossRef]
- Yang, T.; Rao, Z.; Zhang, X.; Xu, M.; Xu, Z.; Yang, S.T. Economic conversion of spirit-based distillers’ grain to 2,3-butanediol by Bacillus amyloliquefaciens. Process Biochem. 2015, 50, 20–23. [Google Scholar] [CrossRef]
- Qin, J.; Xiao, Z.; Ma, C.; Xie, N.; Liu, P.; Xu, P. Production of 2,3-Butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chin. J. Chem. Eng. 2006, 14, 132–136. [Google Scholar] [CrossRef]
- Celińska, E.; Grajek, W. Biotechnological production of 2,3-butanediol—Current state and prospects. Biotechnol. Adv. 2009, 27, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Moes, J.; Griot, M.; Keller, J.; Heinzle, E.; Dunn, I.J.; Bourne, J.R. A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol. Bioeng. 1985, 27, 482–489. [Google Scholar] [CrossRef]
- Slininger, P.J.; Thompson, S.R.; Weber, S.; Liu, Z.L.; Moon, J. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Biotechnol. Bioeng. 2011, 108, 1801–1815. [Google Scholar] [CrossRef]
- Jørgensen, H.; Vibe-Pedersen, J.; Larsen, J.; Felby, C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol. Bioeng. 2007, 96, 862–870. [Google Scholar] [CrossRef]
- Verardi, A.; Sangiorgio, P.; Blasi, A.; Lopresto, C.G.; Calabrò, V. Bioconversion of crop residues using alternative fermentation-based approaches. Front. Biosci. Elit. 2023, 15, 17. [Google Scholar] [CrossRef]
- Malacara-Becerra, A.; Melchor-Martínez, E.M.; Sosa-Hernández, J.E.; Riquelme-Jiménez, L.M.; Mansouri, S.S.; Iqbal, H.M.N.; Parra-Saldívar, R. Bioconversion of corn crop residues: Lactic acid production through simultaneous saccharification and fermentation. Sustainability 2022, 14, 11799. [Google Scholar] [CrossRef]
- Zheng, P.; Fang, L.; Xu, Y.; Dong, J.J.; Ni, Y.; Sun, Z.H. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour. Technol. 2010, 101, 7889–7894. [Google Scholar] [CrossRef]
- OHair, J.; Jin, Q.; Yu, D.; Wu, J.; Wang, H.; Zhou, S.; Huang, H. Non-sterile fermentation of food waste using thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU for 2,3-butanediol production. Waste Manag. 2021, 120, 248–256. [Google Scholar] [CrossRef]
- Białkowska, A.M.; Jędrzejczak-Krzepkowska, M.; Gromek, E.; Krysiak, J.; Sikora, B.; Kalinowska, H.; Kubik, C.; Schütt, F.; Turkiewicz, M. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Appl. Microbiol. Biotechnol. 2016, 100, 2663–2676. [Google Scholar] [CrossRef] [PubMed]
- Sikora, B.; Kubik, C.; Kalinowska, H.; Gromek, E.; Białkowska, A.; Jędrzejczak-Krzepkowska, M.; Schüett, F.; Turkiewicz, M. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308. Prep. Biochem. Biotechnol. 2016, 46, 610–619. [Google Scholar] [CrossRef] [PubMed]
- López-Linares, J.C.; Rama, E.; García-Cubero, M.T.; Coca, M.; Perez, C.L.; Yamakawa, C.K.; Dragone, G.; Mussatto, S.I. Enhancing 2,3-butanediol and acetoin production from brewer’s spent grain hemicellulosic hydrolysate through bacterial co-cultivation. New Biotechnol. 2025, 88, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, A.M.; Gromek, E.; Krysiak, J.; Sikora, B.; Kalinowska, H.; Jędrzejczak-Krzepkowska, M.; Kubik, C.; Lang, S.; Schütt, F.; Turkiewicz, M. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. J. Ind. Microbiol. Biotechnol. 2015, 42, 1609–1621. [Google Scholar] [CrossRef]
Initial Glucose Conc. (g/L) | Time (h) | Sugar Uptake (%) | 2,3-BDO (g/L) | Ethanol (g/L) | Acetoin (g/L) | Biomass OD (600 nm) | Y2,3-BDO/sugars (g/g) | P2,3-BDO (g/L·h) |
---|---|---|---|---|---|---|---|---|
20 | 12 | 100 (100) | 2.4 ± 0.0 | 1.1 ± 0.0 | 5.3 ± 0.0 | 6.5 ± 0.1 | 0.12 | 0.201 |
40 | 22 | 100 (100) | 5.2 ± 0.1 | 0.7 ± 0.0 | 11.7 ± 0.3 | 9.2 ± 0.0 | 0.13 | 0.237 |
60 | 28 | 100 (100) | 9.1 ± 0.2 | 1.0 ± 0.1 | 15.7 ± 0.0 | 13.4 ± 0.1 | 0.15 | 0.323 |
80 | 32 | 85.0 (100) | 11.2 ± 0.1 | 0.8 ± 0.1 | 16.8 ± 0.0 | 15.0 ± 0.3 | 0.17 | 0.350 |
100 | 46 | 94.5 (100) | 18.0 ± 0.4 | 0.9 ± 0.0 | 22.5 ± 0.4 | 16.2 ± 0.0 | 0.20 | 0.391 |
120 | 72 | 100 (100) | 21.8 ± 0.0 | 0.5 ± 0.0 | 32.5 ± 0.0 | 10.1 ± 0.2 | 0.18 | 0.303 |
Initial Glucose Conc. (g/L) | Time (h) | Sugar Uptake (%) | 2,3-BDO (g/L) | Acetoin (g/L) | Biomass OD (600 nm) | Y2,3-BDO/sugars (g/g) | P2,3-BDO (g/L·h) |
---|---|---|---|---|---|---|---|
20 | 22 | 100 (100) | 5.8 ± 0.0 | 3.3 ± 0.3 | 9.8 ± 0.6 | 0.29 | 0.265 |
40 | 32 | 79.7 (100) | 11.1 ± 0.3 | 3.5 ± 0.3 | 13.9 ± 0.3 | 0.34 | 0.348 |
60 | 56 | 92.8 (100) | 16.9 ± 0.0 | 9.1 ± 0.0 | 14.4 ± 0.1 | 0.31 | 0.302 |
80 | 56 | 62.3 (90.5) | 15.5 ± 0.0 | 7.6 ± 0.1 | 12.9 ± 0.8 | 0.32 | 0.276 |
100 | 72 | 61.0 (74.2) | 19.8 ± 0.0 | 10.3 ± 0.0 | 8.6 ± 0.3 | 0.32 | 0.275 |
120 | 56 | 32.2 (39.7) | 15.0 ± 1.0 | 6.8 ± 0.4 | 8.0 ± 0.5 | 0.39 | 0.268 |
Microorganism | Process Conf. | Time (h) | Sugar Uptake (%) | 2,3-BDO (g/L) | Ethanol (g/L) | Acetoin (g/L) | Biomass OD (600 nm) | Y2,3-BDO/sugars (g/g) | P2,3-BDO (g/L·h) |
---|---|---|---|---|---|---|---|---|---|
B. licheniformis | SHF | 46 | 100 (100) | 10.9 ± 0.8 | 0.4 ± 0.3 | 24.2 ± 0.4 | 18.7 ± 0.0 | 0.17 | 0.236 |
SSF | 22 | 60.2 (51.0) | 0.9 ± 0.0 | 1.5 ± 0.2 | 3.7 ± 0.3 | - | 0.02 | 0.040 | |
B. amyloliquefaciens | SHF | 56 | 81.2 (100) | 16.7 ± 1.6 | 0.2 ± 0.1 | 8.0 ± 0.2 | 14.6 ± 0.0 | 0.33 | 0.298 |
SSF | 56 | 46.4 (46.4) | 4.1 ± 0.0 | 0.5 ± 0.0 | 3.1 ± 0.0 | - | 0.14 | 0.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Linares, J.C.; González-Galán, A.M.; Coca, M.; Lucas, S.; García-Cubero, M.T. Harnessing Carrot Discard as a Novel Feedstock for 2,3-Butanediol Bioproduction: A Comparison of Fermentation Strategies and Bacillus Performance. Appl. Sci. 2025, 15, 7808. https://doi.org/10.3390/app15147808
López-Linares JC, González-Galán AM, Coca M, Lucas S, García-Cubero MT. Harnessing Carrot Discard as a Novel Feedstock for 2,3-Butanediol Bioproduction: A Comparison of Fermentation Strategies and Bacillus Performance. Applied Sciences. 2025; 15(14):7808. https://doi.org/10.3390/app15147808
Chicago/Turabian StyleLópez-Linares, Juan Carlos, Alba Mei González-Galán, Mónica Coca, Susana Lucas, and María Teresa García-Cubero. 2025. "Harnessing Carrot Discard as a Novel Feedstock for 2,3-Butanediol Bioproduction: A Comparison of Fermentation Strategies and Bacillus Performance" Applied Sciences 15, no. 14: 7808. https://doi.org/10.3390/app15147808
APA StyleLópez-Linares, J. C., González-Galán, A. M., Coca, M., Lucas, S., & García-Cubero, M. T. (2025). Harnessing Carrot Discard as a Novel Feedstock for 2,3-Butanediol Bioproduction: A Comparison of Fermentation Strategies and Bacillus Performance. Applied Sciences, 15(14), 7808. https://doi.org/10.3390/app15147808