Bioactivity of Secondary Metabolites and Extracts from the Leontopodium R.Br. ex Cass. Taxa with Targeted Medicinal Applications
Abstract
1. Introduction
2. Habitat, Distribution, Sozological Status and Cultural Value of Leontopodium Taxa
3. The Use in Traditional Medicine
4. Secondary Metabolites Identified in the Leontopodium Taxa
5. Bioactivity of Secondary Metabolites in the Leontopodium Taxa
5.1. Anti-Inflammatory Activity
5.2. Angiogenic and Cardioprotective Bioactivity
5.3. Antimicrobial Activity
5.4. Antioxidant Activity
5.5. Anti-Neurodegenerative Activity
5.6. Anti-Tumoral Activity
5.7. Anti-Metabolic Disorder Activity
5.8. Toxicity
6. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
22RV1 | human prostate carcinoma epithelial cell line |
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
ABCA1 | ATP-binding cassette transporter A1 |
ABCG1 | ATP-binding cassette sub-family G member 1 |
ACh | acetylcholine |
AChE | acetyl-cholinesterase |
ALT | alanine aminotransferases |
ApoE | atherosclerosis-prone apolipoprotein E |
AST | aspartate aminotransferases |
BJ | human skin fibroblast cell line |
CAT | catalase |
CCD-986-SK | human skin fibroblast cell line |
CCR2b | C-C chemokine receptor 2b |
CETP | cholesteryl ester transfer protein |
CO2 | carbon dioxide |
COX | cyclooxygenase |
CYP26B1 | cytochrome P450 26B1 |
Detroit 551 | human skin fibroblast cell line |
D-GalN | D-galactosamine |
DLD-1 | human colorectal adenocarcinoma cell line |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FXR | farnesoid X receptor |
GM-CSF | granulocyte macrophage colony-stimulating factor |
H1792 | human lung adenocarcinoma cell line |
HaCaT | human skin keratinocyte cell line |
HCT-116 | human colon cancer cell line |
HeLa | human cervical cancer cell line |
HepG2 | human liver cancer cell line |
HFF | human skin fibroblast cell line |
(P)HK | (primary) human keratinocytes |
HL-60 | human leukemia cell line |
HPLC | high-performance liquid chromatography |
HS578T | human triple-negative breast cancer cell line |
HUVECs | human umbilical vein endothelial cells |
IFN-ϒ | interferon-ϒ |
IGF-1 | insulin-like growth factor 1 |
IL-1/6/8 | interleukin-1/6/8 |
iNOS | inducible NO synthase |
IP-10 | interferon gamma-produced protein of 10 kDa |
LC-MS | liquid chromatography–mass spectrometry |
LED | light-emitting diode |
LLC-PK1 | pig kidney epithelial cell line |
LNCaP | human prostate cancer cell line |
LOX | Lipoxygenase |
LPS | Lipopolysaccharide |
LTB | Leukotrienes |
MCF-7 | human breast cancer cell line |
MCP-1 | monocyte chemoattractant protein 1 |
MDA-MB-231/468 | human triple-negative breast cancer cell line |
MI | myocardial infarction |
MIC | minimum inhibitory concentration |
MTT | 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide |
NF-κB | nuclear factor kappa B |
NMR | nuclear magnetic resonance |
NO | nitric oxide |
oxLDL | oxidized low-density lipoprotein |
PGs | Prostaglandins |
SH-SY5Y | human neuroblastoma cell line |
SK-MES-1 | human lung cancer cell line |
Raw 264.7 | transformed mouse macrophage cell line |
RHE | reconstructed human epidermis |
ROS | reactive oxygen species |
SMMC-7721 | human hepatocarcinoma cell line |
TEAC | Trolox equivalent antioxidant capacity |
THP-1 | human leukaemia monocytic cell line |
TNF-α | tumour necrosis factor |
TSP | Thrombospondin |
U937 | histiocytic lymphoma cell line |
UV | Ultraviolet |
VCAM-1 | vascular cell adhesion molecule 1 |
References
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Zlotek, U.; Zielińska, E. Digestion and Bioavailability of Bioactive Phytochemicals. Int. J. Food Sci. Technol. 2017, 52, 291–305. [Google Scholar] [CrossRef]
- Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L.P. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022, 27, 4490. [Google Scholar] [CrossRef]
- Dobner, M.J.; Sosa, S.; Schwaiger, S.; Altinier, G.; Della Loggia, R.; Kaneider, N.C.; Stuppner, H. Anti-Inflammatory Activity of Leontopodium alpinum and Its Constituents. Planta Medica 2004, 70, 502–508. [Google Scholar] [CrossRef]
- Schwaiger, S.; Adams, M.; Seger, C.; Ellmerer, E.P.; Bauer, R.; Stuppner, H. New Constituents of Leontopodium alpinum and Their in Vitro Leukotriene Biosynthesis Inhibitory Activity. Planta Medica 2004, 70, 978–985. [Google Scholar] [CrossRef]
- Schwaiger, S.; Cervellati, R.; Seger, C.; Ellmerer, E.P.; About, N.; Renimel, I.; Godenir, C.; André, P.; Gafner, F.; Stuppner, H. Leontopodic Acid—A Novel Highly Substituted Glucaric Acid Derivative from Edelweiss (Leontopodium alpinum Cass.) and Its Antioxidative and DNA Protecting Properties. Tetrahedron 2005, 61, 4621–4630. [Google Scholar] [CrossRef]
- Costa, S.; Schwaiger, S.; Cervellati, R.; Stuppner, H.; Speroni, E.; Guerra, M.C. In Vitro Evaluation of the Chemoprotective Action Mechanisms of Leontopodic Acid against Aflatoxin B1 and Deoxynivalenol-Induced Cell Damage. J. Appl. Toxicol. 2009, 29, 7–14. [Google Scholar] [CrossRef]
- Speroni, E.; Schwaiger, S.; Egger, P.; Berger, A.T.; Cervellati, R.; Govoni, P.; Guerra, M.C.; Stuppner, H. In Vivo Efficacy of Different Extracts of Edelweiss (Leontopodium alpinum Cass.) in Animal Models. J. Ethnopharmacol. 2006, 105, 421–426. [Google Scholar] [CrossRef]
- Dobner, M.J.; Schwaiger, S.; Jenewein, I.H.; Stuppner, H. Antibacterial Activity of Leontopodium alpinum (Edelweiss). J. Ethnopharmacol. 2003, 89, 301–303. [Google Scholar] [CrossRef]
- Hornick, A.; Schwaiger, S.; Rollinger, J.M.; Vo, N.P.; Prast, H.; Stuppner, H. Extracts and Constituents of Leontopodium alpinum Enhance Cholinergic Transmission: Brain ACh Increasing and Memory Improving Properties. Biochem. Pharmacol. 2008, 76, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, U.; Schwaiger, S.; Zeller, I.; Messner, B.; Stigler, R.; Wiedemann, D.; Mayr, T.; Seger, C.; Schachner, T.; Dirsch, V.M.; et al. Leoligin, the Major Lignan from Edelweiss, Inhibits Intimal Hyperplasia of Venous Bypass Grafts. Cardiovasc. Res. 2009, 82, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Dobner, M.J.; Ellmerer, E.P.; Schwaiger, S.; Batsugkh, O.; Narantuya, S.; Stütz, M.; Stuppner, H. New Lignan, Benzofuran, and Sesquiterpene Derivatives from the Roots of Leontopodium alpinum and L. leontopodioides. Helv. Chim. Acta 2003, 86, 733–738. [Google Scholar] [CrossRef]
- Lulli, D.; Potapovich, A.; Riccardo, M.; Dellambra, E.; Pressi, G.; Kostyuk, V.; Dal Toso, R.; De Luca, C.; Pastore, S.; Korkina, L. Anti-Inflammatory Effects of Concentrated Ethanol Extracts of Edelweiss (Leontopodium alpinum Cass.) Callus Cultures towards Human Keratinocytes and Endothelial Cells. Mediat. Inflamm. 2012, 2012, 498373. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.G.; Wang, X.B.; Luo, J.; Wang, J.S.; Kong, L.Y. Phenolics from Leontopodium leontopodioides Inhibiting Nitric Oxide Production. Fitoterapia 2012, 83, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Guo, M.; Geng, Z.; Wang, Z.; Zhang, H.; Li, S.; Ling, X.; Li, L. Effects and Mechanism of the Leontopodium alpinum Callus Culture Extract on Blue Light Damage in Human Foreskin Fibroblasts. Molecules 2023, 28, 2172. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meng, X.; Zhang, Y.; Guo, M.; Li, L. Active Components of Leontopodium alpinum Callus Culture Extract for Blue Light Damage in Human Foreskin Fibroblasts. Molecules 2023, 28, 7319. [Google Scholar] [CrossRef]
- Kim, M.J.; Ko, H.; Kim, J.Y.; Kim, H.J.; Kim, H.Y.; Cho, H.E.; Cho, H.D.; Seo, W.S.; Kang, H.C. Improvement in Yield of Extracellular Vesicles Derived from Edelweiss Callus Treated with LED Light and Enhancement of Skin Anti-Aging Indicators. Curr. Issues Mol. Biol. 2023, 45, 10159–10178. [Google Scholar] [CrossRef]
- Hennessy, D.; Hook, I.; Sheridan, H.; Mcgee, A. Acid esters from cell suspension. Phytochemistry 1989, 28, 489–490. [Google Scholar] [CrossRef]
- Comey, N.; Hook, I.; Sheridan, H.; Walsh, J.; James, P. Isolation of (S)-(-)- 2,3-dihydro-2,6-dimethyl-4H-benzopyran-4-one from roots of Leontopodium alpinum. J. Nat. Prod. 1997, 60, 148–149. [Google Scholar] [CrossRef]
- Gray, A.I.; Hook, I.L.; James, P.; Sheridan, H. Sesquiterpenes from Leontopodium alpinum. Phytochemistry 1999, 50, 1057–1060. [Google Scholar] [CrossRef]
- Wawrosch, C.; Schwaiger, S.; Stuppner, H.; Kopp, B. Lignan Formation in Hairy Root Cultures of Edelweiss (Leontopodium nivale ssp. alpinum (Cass.) Greuter). Fitoterapia 2014, 97, 219–223. [Google Scholar] [CrossRef]
- Ciocan, A.G.; Mitoi, E.M.; Helepciuc, F.E.; Neguţ, D.; Moldovan, R.C.; Petrache, A.M.; Iuga, C.A.; Holobiuc, I.M.; Maximilian, C.R.; Radu, M.; et al. Is Acute Low-Dose Gamma Irradiation an Effective Elicitor for Secondary Metabolism in Leontopodium alpinum (Cass.) Callus Culture? Ind. Crops Prod. 2023, 197, 116547. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, D.; Xue, J.; He, W.; Li, C.; Wang, T. Isolation and identification of flavonoids of whole plant of Leontopodium leontopodioides (Willd.) Beauv. Shenyang Yaokedaxue Xuebao 2011, 28, 186–189. [Google Scholar]
- Chen, Q.; Wang, T.; Wu, C.; Kaunda Joseph, S.; Han, L.; Zhang, Y. Isolation and identification of constituents from whole plant of Leontopodium leontopodioides (Willd.) Beauv.(III). Shenyang Yaokedaxue Xuebao 2013, 30, 171–177. [Google Scholar]
- Campiche, R.; Le Riche, A.; Edelkamp, J.; Botello, A.F.; Martin, E.; Gempeler, M.; Bertolini, M. An Extract of Leontopodium alpinum Inhibits Catagen Development Ex Vivo and Increases Hair Density in Vivo. Int. J. Cosmet. Sci. 2022, 44, 363–376. [Google Scholar] [CrossRef]
- Bai, X.; Ma, Q.; Li, Q.; Yin, M.; Xin, Y.; Zhen, D.; Wei, C. Protective Mechanisms of Leontopodium leontopodioides Extracts on Lipopolysaccharide-Induced Acute Kidney Injury Via the NF-κB/NLRP3 Pathway. Chin. J. Nat. Med. 2023, 21, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Ganzera, M.; Greifeneder, V.; Schwaiger, S.; Stuppner, H. Chemical Profiling of Edelweiss (Leontopodium alpinum Cass.) Extracts by Micellar Electrokinetic Capillary Chromatography. Fitoterapia 2012, 83, 1680–1686. [Google Scholar] [CrossRef]
- Marlot, L.; Batteau, M.; Escofet, M.C.; Nuccio, S.; Coquoin, V.; De Vaumas, R.; Faure, K. Two-Dimensional Multi-Heart Cutting Centrifugal Partition Chromatography–Liquid Chromatography for the Preparative Isolation of Antioxidants from Edelweiss Plant. J. Chromatogr. A 2017, 1504, 55–63. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, T.; Ge, D.D.; He, W.; Wu, C.H.; Zhang, Y. Isolation and identification of flavonoids from Leontopodium leontopodioides (Willd.) Beauv. (II). J. Shenyang Pharm. Univ. 2012, 29, 104–108. [Google Scholar]
- Tomičić, Z.; Tomičić, R.; Možina, S.S.; Bucar, F.; Turek, I.; Raspor, P. Antifungal and Anti-Adhesion Activity of Plant Extracts and Essential Oils against Candida Spp. and Pichia Spp. J. Food Nutr. Res. 2022, 61, 61–68. [Google Scholar]
- Canton, M.; Poigny, S.; Roe, R.; Nuzillard, J.M.; Renault, J.H. Dereplication of Natural Extracts Diluted in Propylene Glycol, 1,3-Propanediol and Glycerin. Comparison of Leontopodium alpinum Cass. (Edelweiss) Extracts as a Case Study. Cosmetics 2021, 8, 10. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, W.; He, Y.; Li, G.; Shen, T. Chemical Composition, Antioxidant and Antimicrobial Activities of Essential Oil from Leontopodium longifolium Ling. J. Essent. Oil-Bear. Plants 2018, 21, 175–180. [Google Scholar] [CrossRef]
- Banzragchgarav, O.; Batkhuu, J.; Myagmarsuren, P.; Battsetseg, B.; Battur, B.; Nishikawa, Y. In Vitro Potently Active Anti-Plasmodium and Anti-Toxoplasma Mongolian Plant Extracts. Acta Parasitol. 2021, 66, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Safer, S.; Cicek, S.S.; Pieri, V.; Schwaiger, S.; Schneider, P.; Wissemann, V.; Stuppner, H. Metabolic Fingerprinting of Leontopodium Species (Asteraceae) by Means of 1H NMR and HPLC-ESI-MS. Phytochemistry 2011, 72, 1379–1389. [Google Scholar] [CrossRef]
- Cho, W.K.; Kim, H.I.; Kim, S.Y.; Seo, H.H.; Song, J.; Kim, J.; Shin, D.S.; Jo, Y.; Choi, H.; Lee, J.H.; et al. Anti-Aging Effects of Leontopodium alpinum (Edelweiss) Callus Culture Extract through Transcriptome Profiling. Genes 2020, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Qian, H.; Wang, Y.D.; Li, H.B.; Xie, W.D. Terpenoids from the Roots of Leontopodium longifolium and Their Inhibitory Activity on NO Production in RAW264.7 Cells. Nat. Prod. Res. 2018, 34, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Rao, H.; Mao, L.J.; Ma, Q.L. Chemical Composition, Antioxidant, Antibacterial and Cytotoxic Activities of Essential Oil of Leontopodium leontopodioides (Willd.) Beauverd. Nat. Prod. Res. 2017, 33, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Pralea, I.E.; Moldovan, R.C.; Țigu, A.B.; Petrache, A.M.; Hegheș, S.C.; Mitoi, M.; Cogălniceanu, G.; Iuga, C.A. Profiling of Polyphenolic Compounds of Leontopodium alpinum Cass. Callus Cultures Using UPLC/IM-HRMS and Screening of in Vitro Effects. Plants 2022, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Lin, C.J.; Yang, X.P.; Jia, Z.J. New Bisabolane Sesquiterpenes and Coumarin from Leontopodium longifolium. Chem. Biodivers. 2006, 3, 783–790. [Google Scholar] [CrossRef]
- Schwander, K. Use of an Edelweiss Extract. EP 2 623 094 A1, 7 August 2013. [Google Scholar]
- Maugini, E. Morfologia Fiorale Embriologia Ed Embriog in Leontopodium alpinum Cass. Var. α Typicum Fiori e Paoletti. G. Bot. Ital. 1962, 69, 1–18. [Google Scholar] [CrossRef]
- Chen, Y.S.; Bayer, R.J. Asteraceae (Compositae). In Flora of China Volume 20–21 (Asteraceae); Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China, 2011; Missouri Botanical Garden Press: St. Louis, MI, USA, 2011; pp. 780–788. [Google Scholar]
- Erhardt, A. Pollination of the Edelweiss, Leontopodium alpinum. Bot. J. Linn. Soc. 1993, 111, 229–240. [Google Scholar] [CrossRef]
- Hörandl, E.; Dobeš, C.; Suda, J.; Vít, P.; Urfus, T.; Temsch, E.M.; Cosendai, A.C.; Wagner, J.; Ladinig, U. Apomixis Is Not Prevalent in Subnival to Nival Plants of the European Alps. Ann. Bot. 2011, 108, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Neblea, M.; Marian, M.; Duţǎ, M. Medicinal Plant Diversity in the Flora of the West Part of Bucegi Mountains (Romania). Acta Hortic. 2012, 955, 41–50. [Google Scholar] [CrossRef]
- Khela, S. Leontopodium alpinum. The IUCN Red List of Threatened Species. 2013; e.T202984A2758405. [Google Scholar] [CrossRef]
- Safer, S.; Tremetsberger, K.; Guo, Y.P.; Kohl, G.; Samuel, M.R.; Stuessy, T.F.; Stuppner, H. Phylogenetic Relationships in the Genus Leontopodium (Asteraceae: Gnaphalieae) Based on AFLP Data. Bot. J. Linn. Soc. 2011, 165, 364–377. [Google Scholar] [CrossRef]
- Available online: https://houseofswitzerland.org/swissstories/history/mystical-and-mythical-edelweiss (accessed on 3 March 2024).
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. Science Press, Missouri Botanical Garden Press; Flora of China: Beijing, China; St. Louis, MO, USA, 1994. [Google Scholar]
- Schwaiger, S.; Hehenberger, S.; Ellmerer, E.P.; Stuppner, H. A New Bisabolane Derivative of Leontopodium andersonii. Nat. Prod. Commun. 2010, 5, 12–13. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, J.H.; Choi, B.H. Isolation and Characterization of 10 Microsatellite Loci from Korean Leontopodium japonicum (Asteraceae). Am. J. Bot. 2011, 98, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Blöch, C.; Dickoré, W.B.; Samuel, R.; Stuessy, T.F. Molecular Phylogeny of the Edelweiss (Leontopodium, Asteraceae—Gnaphalieae). Edinb. J. Bot. 2010, 67, 235–264. [Google Scholar] [CrossRef]
- Greuter, W. The Euro+Med Treatment of Gnaphalieae and Inuleae (Compositae)—Generic Concepts and Required New Names. Willdenowia 2003, 33, 239–244. [Google Scholar] [CrossRef]
- Tauchen, J.; Kokoska, L. The Chemistry and Pharmacology of Edelweiss: A Review. Phytochem. Rev. 2016, 16, 295–308. [Google Scholar] [CrossRef]
- Stuppner, H.; Ellmerer, E.P.; Ongania, K.H.; Dobner, M. Bisabolane Derivatives from Leontopodium alpinum. Helv. Chim. Acta 2002, 85, 2982–2989. [Google Scholar] [CrossRef]
- Tira, S.; Galeffi, C.; Di Modica, G. Flavonoids of Gnaphalieae: Leontopodium alpinum Cass. Experientia. 1970, 26, 1192. [Google Scholar] [CrossRef]
- Hook, I.L.I. Leontopodium alpinum Cass. (Edelweiss): In Vitro Culture, Micropropagation, and the Production of Secondary Metabolites. Med. Aromat. Plants 1993, 21, 217–232. [Google Scholar] [CrossRef]
- Pop, E. Floarea Reginei: Leontopodium alpinum. Bul. Alp. Al Asoc. Drumeților Din. Munții României 1939, 4, 2–4. [Google Scholar]
- Available online: https://www.floweradvisor.com/blog/know-the-edelweiss (accessed on 1 March 2024).
- Maghiar, L.M.; Stoica, I.A.; Tanentzap, A.J. Integrating Demography and Distribution Modeling for the Iconic Leontopodium alpinum Colm. in the Romanian Carpathians. Ecol. Evol. 2021, 11, 12322–12334. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Park, J.-S.; Choi, B.-H. A taxonomic review of Korean Leontopodium R. Br. ex Cassini (Asteraceae). Korean J. Pl. Taxon. 2016, 46, 149–162. [Google Scholar] [CrossRef]
- Available online: https://www.kahaku.go.jp/english/research/db/botany/redlist/list/list_04_056_1.html (accessed on 17 June 2025).
- Oltean, M.; Negrean, G.; Popescu, A.; Roman, N.; Dihoru, G.; Sanda, V.; Mihăilescu, S. Lista Roşie a Plantelor Superioare Din România. Stud. Sint. Doc. De Ecol. 1994, 1, 1–52. [Google Scholar]
- Oprea, A.; Sîrbu, C. Rare Plants in Stânişoara Mountains (Eastern Carpathians). J. Plant Dev. 2008, 15, 47–61. [Google Scholar]
- Rey, C.; Slacanin, I. Approche Culturale et Phytochimique de l’edelweiss. Rev. Suisse Vitic. Arboric. Hortic. 1999, 31, 89–96. [Google Scholar]
- Dweck, A.C. A Review of Edelweiss. Sofw J. 2004, 130, 65–71. [Google Scholar]
- Zăpârţan, M. Conservation of Leontopodium alpinum using in vitro culture techniques. Bot. Gard. Micropropag. News Kew 1996, 2, 26–28. [Google Scholar]
- Available online: https://www.oktoberfesthaus.com/blogs/okt/edelweiss-all-about-this-alpine-flower (accessed on 3 March 2024).
- Li, F.; Zhuo, J.; Liu, B.; Jarvis, D.; Long, C. Ethnobotanical study on wild plants used by Lhoba people in Milin County, Tibet. J. Ethnobiol. Ethnomedicine 2015, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Hegi, G. Illustrierte Flora von Mittel-Europa; A. Pichler’s Witwe & Sohn: Vienna, Austria, 1935; Volume 6. [Google Scholar]
- Tabernaemontanus, J.T. Das Ander Buch von Kreutern. In D. Jacobi Theodori Tabernaemontani neu vollkommen Kraeuter-Buch; Bauhin, H., Ed.; Reprint Basel: König, 1731; Verlag Kölbl: Grünwald bei München, Germany, 1993; pp. 779–782, First publish in 1582. [Google Scholar]
- Bitschnau, T. Arzneidrogen Der Volksmedizin Im Montafon; Universität Wien: Wien, Austria, 1991. [Google Scholar]
- Kiene, K. Volksmedizin in Verschiedenen Gebieten Vorarlbergs; Universität Wien: Wien, Austria, 1992. [Google Scholar]
- Knechtl, E. Volksmedizinisch Verwendete Heilpflanzen Und Hausmittel Im Inntal Und Umgebenden Seitentälern (Tirol); Universität Wien: Wien, Austria, 1992. [Google Scholar]
- Pickl-Herck, W. Volksmedizinische Anwendung von Arzneipflanzen Im Norden Sudtirols; Universität Wien: Wien, Austria, 1995. [Google Scholar]
- Wieser, G. Volksmedizinische Verwendung von Heilpflanzen Und Hausmittlen Im Osttiroler Pustertal Mit Seitentalern Und Im Lesachtal. Universität Wien: Wien, Austria, 1995. [Google Scholar]
- Hoppe, H.A. Drogerkunde; De Gruyter: Berlin, Germany; New York, NY, USA, 1975. [Google Scholar]
- Hartwel, J.L. Plants Used against Cancer. Lloydia 1968, 31, 71–170. [Google Scholar]
- Qi, C.L.; Wang, E.; Jin, L.Q.; Yan, M.; Zhang, X.Q.; Wang, H.; Ye, W.C. Ent-Kaurene Diterpenoids and Lignan from Leontopodium leontopodioides and Their Inhibitory Activities against Cyclooxygenases-1 and 2. Phytochem. Lett. 2017, 21, 94–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Ruan, J.; Chen, Q.; Li, J.; Guo, Y.; Han, L.; Wang, T. Isobenzofuranones from the aerial parts of Leontopodium leontopodioides (Wild.). Beauv. Fitoter. 2018, 124, 66–72. [Google Scholar] [CrossRef]
- Dashbalyn, T.; Glyzin, V.I. Flavonoid glycosides of the edelweiss Leontopodium ochroleucum. Chem. Nat. Compd. 1979, 14, 690. [Google Scholar] [CrossRef]
- Schwaiger, S.; Dobner, M.J.; Odonchimeg, B.; Ellmerer-Muller, E.P.; Stuppner, H. Phytochemical profile of Leontopodium alpinum Cass in comparison to other Asian Leontopodium species. Rev. Fitoter. 2002, 2, 241. [Google Scholar]
- Schwaiger, S.; Seger, C.; Wiesbauer, B.; Schneider, P.; Ellmerer, E.P.; Sturm, S.; Stuppner, H. Development of an HPLC-PAD-MS Assay for the Identification and Quantification of Major Phenolic Edelweiss (Leontopodium alpium Cass.) Constituents. Phytochem. Anal. 2006, 17, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Cicek, S.S.; Untersulzner, C.; Schwaiger, S.; Zidorn, C. Caffeoyl-D-Glucaric Acid Derivatives in the Genus Gnaphalium (Asteraceae: Gnaphalieae). Rec. Nat. Prod. 2012, 6, 311–315. [Google Scholar]
- Fischer, F.; Zufferey, E.; Bourgeois, J.M.; Héritier, J.; Micaux, F. UV-ABC Screens of Luteolin Derivatives Compared to Edelweiss Extract. J. Photochem. Photobiol. B Biol. 2011, 103, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xie, H.; Zhao, L.; Gou, P. Acyl flavone and lignan glucosides from Leontopodium leontopodioides. Phytochem. Lett. 2016, 17, 247–250. [Google Scholar] [CrossRef]
- Gou, P.; Xiao, Y.; Lv, L.; Xie, H. Hydroquinone and terpene glucosides from Leontopodium leontopodioides and their lipase inhibitory activity. Fitoterapia 2018, 130, 89–93. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Ruan, J.; Qu, L.; Wei, H.; Ma, X.; Zhang, Y.; Wang, T. Bioactive Constituents from the Whole Plants of Leontopodium leontopodioides (Wild.) Beauv. J. Nat. Med. 2018, 72, 202–210. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Q.X.; Yang, M.; Jia, Z.J. Chemical Components from Leontopodium nanum. J. Chin. Chem. Soc. 2002, 49, 259–261. [Google Scholar] [CrossRef]
- Messner, B.; Kern, J.; Wiedemann, D.; Schwaiger, S.; Türkcan, A.; Ploner, C.; Trockenbacher, A.; Aumayr, K.; Bonaros, N.; Laufer, G.; et al. 5-Methoxyleoligin, a Lignan from Edelweiss, Stimulates CYP26B1-Dependent Angiogenesis In Vitro and Induces Arteriogenesis in Infarcted Rat Hearts In Vivo. PLoS ONE 2013, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Ye, J.M.; Yin, H.; Zhu, Y.M.; Tian, J.M.; Gao, F. Effect of Leontopodium leontopodioides (Willd.) Beauv. on Inflammation Induced by Animal Reversed Passive Arthus (RPA). China J. Chin. Mater. Medica 1994, 19, 174–176. [Google Scholar]
- Jiao, S.P.; Chen, B.; Jiang, H.; Zhang, L.M. Studies on the hypoglycemic effect of common edelweiss (Leontopodium leontopodioides). Chin. Tradit. Herb. Drugs 1997, 11, 673–675. [Google Scholar]
- Huang, L.Q.; Wu, Y.X. Study on the antibacterial activity of Leontopodium leontopodioides (Willd.) Beauv. in vitro. J. Tradit. Chin. Vet. Med. 2006, 25, 5–7. [Google Scholar]
- Chan, F.K.M.; Luz, N.F.; Moriwaki, K. Programmed necrosis in the cross talk of cell death and inflammation. Annu. Rev. Immunol. 2015, 33, 79–106. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627635. [Google Scholar] [CrossRef]
- Ondua, M.; Njoya, E.M.; Abdalla, M.A.; McGaw, L.J. Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation. J. Ethnopharmacol. 2019, 234, 27–35. [Google Scholar] [CrossRef]
- Kishore, N.; Kumar, P.; Shanker, K.; Verma, A.K. Human disorders associated with inflammation and the evolving role of natural products to overcome. Eur. J. Med. Chem. 2019, 179, 272–309. [Google Scholar] [CrossRef] [PubMed]
- Tehan, B.G.; Bortolato, A.; Blaney, F.E.; Weir, M.P.; Mason, J.S. Unifying family A GPCR theories of activation. Pharmacol. Ther. 2014, 143, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; You, X.M.; Jiang, H.; Zou, G.X.; Wang, B. Spectrum–Effect Relationships between High-Performance Liquid Chromatography Fingerprints and Anti-Inflammatory Activities of Leontopodium leontopodioides (Willd.) Beauv. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019, 1104, 11–17. [Google Scholar] [CrossRef]
- Byong-Seung, C. New Composition Comprising Exosomes Derived from Edelweiss as an Active Ingredient. South Korea Patent Application KR102296494B1, 17 January 2023. [Google Scholar]
- Jang-Jin, D.; Kim, J.; Seonhwa, K.; Jinseong, E. A Mass Production Method of Leontopodium coreanum Nakai In Vitro Culture and a Composition for Anti-Oxidating, Anti-Inflammation and Anti-Wrinkle Comprising Extracts of Leontopodium coreanum Nakai. South Korea Patent Application KR102105166B1, 28 April 2020. [Google Scholar]
- Qin-Wei, Y.U.; Jie, H.U.; Hao, W.; Xin, C.; Fang, Z.; Peng, G.; Qiu-Bin, Y.; Dan-Dan, S.; Lu-Yong, Z.; Ming, Y. Antagonistic effects of extracts from Artemisia rupetris L. and Leontopodium leontopodioides to CC chemokine receptor 2b (CCR2b). Chin. J. Nat. Med. 2016, 14, 363–369. [Google Scholar]
- Pastore, S.; Mascia, F.; Mariotti, F.; Dattilo, C.; Mariani, V.; Girolomoni, G. ERK1/2 regulates epidermal chemokine expression and skin inflammation. J. Immunol. 2005, 174, 5047–5056. [Google Scholar] [CrossRef]
- Di Paola, R.; Esposito, E.; Mazzon, E.; Paterniti, I.; Galuppo, M.; Cuzzocrea, S. GW0742, a selective PPAR-β/δ agonist, contributes to the resolution of inflammation after gut ischemia/reperfusion injury. J. Leukoc. Biol. 2010, 88, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. The role of inflammatory cytokines in endothelial dysfunction. Basic. Res. Cardiol. 2008, 103, 398–406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dri, E.; Lampas, E.; Lazaros, G.; Lazarou, E.; Theofilis, P.; Tsioufis, C.; Tousoulis, D. Inflammatory Mediators of Endothelial Dysfunction. Life 2023, 13, 1420. [Google Scholar] [CrossRef]
- Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of Anticancer Drugs: A Review. Talanta 2011, 85, 2265–2289. [Google Scholar] [CrossRef] [PubMed]
- Duwensee, K.; Schwaiger, S.; Tancevski, I.; Eller, K.; van Eck, M.; Markt, P.; Linder, T.; Stanzl, U.; Ritsch, A.; Patsch, J.R.; et al. Leoligin, the Major Lignan from Edelweiss, Activates Cholesteryl Ester Transfer Protein. Atherosclerosis 2011, 219, 109–115. [Google Scholar] [CrossRef]
- Scharinger, B.; Messner, B.; Türkcan, A.; Schuster, D.; Vuorinen, A.; Pitterl, F.; Heinz, K.; Arnhard, K.; Laufer, G.; Grimm, M.; et al. Leoligin, the major lignan from Edelweiss, inhibits 3-hydroxy-3-methyl-glutaryl-CoA reductase and reduces cholesterol levels in ApoE−/− mice. J. Mol. Cell. Cardiol. 2016, 99, 35–46. [Google Scholar] [CrossRef]
- Wang, L.; Ladurner, A.; Latkolik, S.; Schwaiger, S.; Linder, T.; Hošek, J.; Palme, V.; Schilcher, N.; Polanský, O.; Heiss, E.H.; et al. Leoligin, the Major Lignan from Edelweiss (Leontopodium nivale Subsp. alpinum), Promotes Cholesterol Efflux from THP-1 Macrophages. J. Nat. Prod. 2016, 79, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Linder, T.; Liu, R.; Atanasov, A.G.; Li, Y.; Geyrhofer, S.; Schwaiger, S.; Stuppner, H.; Schnürch, M.; Dirsch, V.M.; Mihovilovic, M.D. Leoligin-Inspired Synthetic Lignans with Selectivity for Cell-Type and Bioactivity Relevant for Cardiovascular Disease. Chem. Sci. 2019, 10, 5815–5820. [Google Scholar] [CrossRef]
- Linder, T.; Papaplioura, E.; Ogurlu, D.; Geyrhofer, S.; Hummelbrunner, S.; Schachner, D.; Atanasov, A.G.; Mihovilovic, M.D.; Dirsch, V.M.; Schnürch, M. Investigation of Leoligin Derivatives as NF-κB Inhibitory Agents. Biomedicines 2022, 10, 62. [Google Scholar] [CrossRef]
- Mihovilovic, M.; Linder, T.; Dirsch, V.M.; Atanasov, A.; Bernhard, D.; Stuppner, H.; Schwaiger, S. Leoligin Derivatives as Smooth Muscle Cell Proliferation Inhibitors. U.S. Patent Application WO2015196228; CAN:164:148815, 30 December 2015. [Google Scholar]
- Ladurner, A.; Linder, T.; Wang, L.; Hiebl, V.; Schuster, D.; Schnürch, M.; Mihovilovic, M.D.; Atanasov, A.G.; Dirsch, V.M. Characterization of a Structural Leoligin Analog as Farnesoid X Receptor Agonist and Modulator of Cholesterol Transport. Planta Medica 2020, 86, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Linder, T.; Geyrhofer, S.; Papaplioura, E.; Wang, L.; Atanasov, A.G.; Stuppner, H.; Dirsch, V.M.; Schnürch, M.; Mihovilovic, M.D. Design and Synthesis of a Compound Library Exploiting 5-Methoxyleoligin as Potential Cholesterol Efflux Promoter. Molecules 2020, 25, 662. [Google Scholar] [CrossRef]
- Czollner, L.; Papaplioura, E.; Linder, T.; Liu, R.; Li, Y.; Atanasov, A.G.; Dirsch, V.M.; Schnürch, M.; Mihovilovic, M.D. A Silver-Coated Copper Wire as Inexpensive Drug Eluting Stent Model: Determination of the Relative Releasing Properties of Leoligin and Derivatives. Monatshefte Fur Chem. 2023, 154, 1317–1326. [Google Scholar] [CrossRef]
- Zhou, W.; Ouyang, J.; Wang, H.; Wang, X. Antidermatophyte Activity of the Gentiopicroside-Rich n-Butanol Fraction from Gentiana siphonantha Maxim. Root on a Guinea Pig Model of Dermatophytosis. Complement. Med. Res. 2019, 26, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Chetia, D. Plant flavonoids as potential source of future antimalarial leads. Syst. Rev. Pharm. 2017, 8, 13–18. [Google Scholar] [CrossRef]
- Mamede, L.; Ledoux, A.; Jansen, O.; Frédérich, M. Natural phenolic compounds and derivatives as potential antimalarial agents. Planta Medica 2020, 86, 585–618. [Google Scholar] [CrossRef]
- Jimsheena, V.K.; Gowda, L.R. Colorimetric, high-throughput assay for screening Angiotensin I-converting enzyme inhibitors. Anal. Chem. 2009, 81, 9388–9394. [Google Scholar] [CrossRef] [PubMed]
- Schwager, S.; Carmona, A.; Sturrock, E. A high-throughput fluorimetric assay for angiotensin I-converting enzyme. Nat. Protoc. 2006, 1, 1961–1964. [Google Scholar] [CrossRef]
- Costa, S.; Cervellati, R.; Speroni, E.; Guerra, M.; Greco, E. Free Radicals and Antioxidants in Two Oxidative-Stress Cell Models Exposed to Ochratoxin A and Amyloid β: Unexpected Results. World Mycotoxin J. 2010, 3, 257–261. [Google Scholar] [CrossRef]
- Jakhar, D.; Kaul, S.; Kaur, I. Increased Usage of Smartphones during COVID-19: Is That Blue Light Causing Skin Damage? J. Cosmet. Dermatol. 2020, 19, 2466–2467. [Google Scholar] [CrossRef]
- Tumiatti, V.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Milelli, A.; Matera, R.; Melchiorre, C. Progress in Acetylcholinesterase Inhibitors for Alzheimer’s Disease: An Update. Expert Opin. Ther. Pat. 2008, 18, 387–401. [Google Scholar] [CrossRef]
- Prast, H. Use of Extracts and Constituents of Leontopodium as Enhancers of Cholinergic Function. EP 1 792 623 B1, 8 July 2005. [Google Scholar]
- Liu, L.; Kuang, S.J.; Liu, C.D.; Wang, S.S.; Guo, Y. Influence of Leontopodium on Blood Glucose and Blood Lipid Metabolism of Type 2 Diabetic Rats. Mod. Med. J. China 2014, 16, 11–13. [Google Scholar]
- Yang, Z.Y.; Yuan, P.; Gou, P. Screenging of effective hypoglycemic constituents of Leontopodium leontopodioides. Chin. J. Exp. Tradit. Med. Form. 2015, 21, 104–106. [Google Scholar]
- Song, X.Y. Inhibitory effect of aqueous extract of Leontopodium leontopodioides against D-galactosamine-induced hepatocyte injury. World Chin. J. Digest. 2010, 18, 3072–3077. [Google Scholar]
- Sang-Hyun, M.; Jeonghoon, L.; Kim, H.; Seo, H.; Jeong, H.; Song, M.; Moji, H.; Song, J.; Shin, D. Anti-Inflammation and Anti-Aging Composition for Skin External Application Comprising Leontopodium alpinum Cell Culture Extract and Methods for Preparing the Same. South Korea Patent Application KR20160043551A, 22 April 2016. [Google Scholar]
Taxon | Extract/Bioactive Compound[s] | Experimental Model | Effects/Applied Tests | Ref. |
---|---|---|---|---|
L. leontopodioides | Extract | Rat paw oedema induced by reverse passive Arthus reaction |
| [97] |
Aerial parts extract, phenolic acids (caffeoyl derivatives of quinic and glucaric acid) | Ex vivo inhibition assay |
| [78] | |
Caffeoyl derivatives of quinic and glucaric acid and flavonoids | LPS-activated Raw 264.7 |
| [97] | |
Chlorogenic acid, ferulic acid | LPS-activated Raw 264.7 |
| [98] | |
Neolignan and benzofuran derivatives | LPS-activated Raw 264.7 |
| [13] | |
Methanol extract from whole plant/stem | LPS-activated HK-2 line LPS-induced sepsis in male mice |
| [25] | |
L. alpinum | Lipophilic extracts of the aerial plant parts (dichloromethane and CO2-extract) | Rat paw oedema assay |
| [7] |
Aerial parts extract, fatty acids, root extract, bisabolene, tricyclic sesquiterpenes and coumarins | Animal model- mice with ear dermatitis induced by Croton oil |
| [3] | |
Bisabolene derivative, lignan, ent-kaurenoate acid | Ex vivo inhibition assay |
| [4] | |
Callus culture extract | UV irradiated HaCaT and PH |
| [12,34] | |
Exosomes derived from callus cultures | LPS-activated Raw 264.7 |
| [99] | |
Ethanolic extract of callus culture and/or leontopodic acid | PHK treated with TNF-α and IFN-ϒ, HUVECs exposed to oxLDL or LPS |
| [12] | |
Alpaflor® Edelweiss commercial product | RHE irradiated with UVA + UVB |
| [39] | |
L. longifolium | Two ent-kaurenoic acid derivates | LPS-activated Raw 264.7 |
| [35] |
L. coreanum | Cells culture extract | LPS-activated Raw 264.7 |
| [100] |
Bioactivity | Taxon/Etract/ Bioactive Compound(s) | Experimental Model | Effects/Applied Tests | Ref. |
---|---|---|---|---|
Angiogenic | Roots extract Leoligin or 5-metoxileoligin | mice HUVEC lines in vivo rat model with MI chicken chorioallantoic membrane assay |
| [10] |
[89] | ||||
Rabbit and human plasma |
| [108] | ||
Cardioprotective activity | Hyperlipidaemic ApoE-/-mice |
| [107] | |
THP-1-derived macrophages cell culture |
| [109] |
Bioactivity | Taxon/Extract/Bioactive Compound(s) | Experimental Model | Effects/Applied Tests | Ref. |
---|---|---|---|---|
Antibacterial activity | L. alpinum
| Multiresistant strain Staphylococcus aureus DSM 1366 |
| [8] |
| B. subtilis., E. coli, P. aeruginosa, S. aureus, and S. pyogenes strains. | |||
| E. faecalis, E. faecium, and S. aureus ATCC 25923 strains | |||
| E. faecium, S. aureus, S. pneumoniae and S. pyogenes strains | |||
L. leontopodioides
| S. aureus E. coli, Salmonella sp. |
| [92] | |
L. longifolium
| S. aureus strain |
| [31] | |
Antifungal activity | L. alpinum
| Candida glabrata |
| [29] |
L. leontopodioides
| Spore suspension of Trichophyton mentagrophytes |
| [116] | |
Antiparasitic activity | L. campestre
| Human fibroblasts cells (HFF) infected with tachyzoites from Toxoplasma gondii |
| [32] |
or synchronous cultures with parasite Plasmodium falciparum 3D7 strain |
|
Taxon/Extract/Bioactive Compound(s) | Experimental Model | Effects/Applied Tests | Ref. |
---|---|---|---|
Callus culture extract | HFF line induced with blue light |
| [14] |
HaCaT line treated with H2O2 |
| [15] | |
Extracellular vesicles derived from callus elicitated with different LED light | HaCaT line induced with UVB | [34] | |
Extracts from flowering parts - leontopodic acid | LLC-PK1 line treated with ochratoxin A, SH-SY5Y line exposed to β-amyloid aggregates. |
| [121] |
U937 line treated with deoxynivalenol |
| [6] |
Taxon/Extract/Bioactive Compound(s) | Experimental Model | Effects/Applied Tests | Ref. |
---|---|---|---|
Anti-neurodegenerative activity | |||
L. alpinum
| Sprague-Dawley rats |
| [9] |
L. dedekensii L. subulatum L. franchetti
| Ex vitro assay of AChE activity |
| [124] |
Anti-tumoral activity | |||
L. longifolium
| SMMC-7721 and HL-60 lines |
| [38] |
| HepG2 and HeLa lines |
| [36] |
L. leontopodioides
| HepG2 and MCF-7 lines |
| [35] |
L. alpinum
| Tumor cell lines of breast (MCF-7, MDA-MB-231, MDA-MB-468, HS578T), prostate (22RV1 and LNCAP), colon (DLD-1, HCT-116) and lung (H1792, SK-MES-1) cancers |
| [37] |
Antidiabetic activity | |||
L. leontopodioides
| Alloxan or adrenaline-induced diabetic Kunming mice |
| [91] |
HepG2 line |
| [125] | |
| Hyperglycaemic mice |
| [126] |
| Ex vitro assay of α-glucosidase activity |
| [85] |
| Rats with type 2 diabetes |
| [87] |
Hepatoprotective/Chemoprotective activity | |||
L. leontopodioides
| D-GalN-induced liver injury in mice HL-7702 line |
| [127] |
L. alpinum
| PHK with sirtuin-induced senescence and restored by trichostatin A (inhibitor of sirtuin) treatment |
| [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitoi, E.-M.; Ciocan, A.-G.; Holobiuc, I.; Cogălniceanu, G.; Maximilian, C.; Duta-Cornescu, G. Bioactivity of Secondary Metabolites and Extracts from the Leontopodium R.Br. ex Cass. Taxa with Targeted Medicinal Applications. Appl. Sci. 2025, 15, 7357. https://doi.org/10.3390/app15137357
Mitoi E-M, Ciocan A-G, Holobiuc I, Cogălniceanu G, Maximilian C, Duta-Cornescu G. Bioactivity of Secondary Metabolites and Extracts from the Leontopodium R.Br. ex Cass. Taxa with Targeted Medicinal Applications. Applied Sciences. 2025; 15(13):7357. https://doi.org/10.3390/app15137357
Chicago/Turabian StyleMitoi, Elena-Monica, Alexandra-Gabriela Ciocan, Irina Holobiuc, Gina Cogălniceanu, Carmen Maximilian, and Georgiana Duta-Cornescu. 2025. "Bioactivity of Secondary Metabolites and Extracts from the Leontopodium R.Br. ex Cass. Taxa with Targeted Medicinal Applications" Applied Sciences 15, no. 13: 7357. https://doi.org/10.3390/app15137357
APA StyleMitoi, E.-M., Ciocan, A.-G., Holobiuc, I., Cogălniceanu, G., Maximilian, C., & Duta-Cornescu, G. (2025). Bioactivity of Secondary Metabolites and Extracts from the Leontopodium R.Br. ex Cass. Taxa with Targeted Medicinal Applications. Applied Sciences, 15(13), 7357. https://doi.org/10.3390/app15137357