Effect of Microwave-Assisted Processing of Acorn Flour on Muffin Quality
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Acorn Flour Microwaving
2.3. Wheat–Acorn Muffins Preparation
2.4. Determination of Water Content in Acorn Flour
2.5. Assessment of Flour and Muffin Color Parameters
2.6. Measurement of Muffin Crumb Firmness
2.7. Determination of Muffin Volume
2.8. Determination of Muffin Crumb Porosity
- Vp—volume of the porous crumb (cm3);
- Vnp—volume of the compressed (non-porous) crumb (cm3).
2.9. Organoleptic Evaluation of Muffins
2.10. Extraction of Antioxidant Compounds
2.11. Determination of Total Free Phenolic Content
2.12. Determination of Total Free Flavonoids
2.13. Determination of Tannin Content
2.14. Determination of Antioxidant Capacity
2.15. Statistical Analysis
3. Results and Discussion
3.1. Effect of Microwave Treatment on Moisture Content and Color Characteristics of Acorn Flour
3.2. Effect of Microwave Treatment on Antioxidant Properties of Acorn Flour
3.3. Effect of Microwave-Treated Acorn Flour Addition on Technological Properties of Muffins
3.4. Effect of Microwave-Treated Acorn Flour Addition on Color Parameters of Muffins
3.5. Effect of Microwave-Treated Acorn Flour Addition on Antioxidant Properties of Muffins
3.6. Effect of Microwave-Treated Acorn Flour Addition on Organoleptic Characteristics of Muffins
3.7. Multivariate Analysis of Wheat–Acorn Muffins Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norrman, K.-E. World Population Growth: A Once and Future Global Concern. World 2023, 4, 684–697. [Google Scholar] [CrossRef]
- Worldometer. World Population by Year. Updated 2023. Available online: https://www.worldometers.info/world-population/world-population-by-year/ (accessed on 6 February 2025).
- Jovović, Z.; Velimirović, A.; Yaman, N. Climate and Crop Production Crisis. In Agriculture and Water Management Under Climate Change; Çetin, Ö., Ed.; Springer Briefs in Earth System Sciences; Springer: Cham, Switzerland, 2024; pp. 1–28. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate Change and the Need for Agricultural Adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Pencák, T.; Dordevic, D.; Tremlová, B. Utilization of Oak (Genus) Tree Parts in Food Industry: A review. MASO Int. J. Food Sci. Technol. 2023, 13, 25–30. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Rebelo, K.S.; Bisconsin-Junior, A.; de Morais, J.S.; Magnani, M.; Maldonade, I.R.; Madeira, N.R.; Tiengo, A.; Maróstica, M.R., Jr.; Cazarin, C.B.B. The Use of Alternative Food Sources to Improve Health and Guarantee Access and Food Intake. Food Res. Int. 2021, 149, 110709. [Google Scholar] [CrossRef]
- Acquaticci, L.; Santanatoglia, A.; Vittadini, E.; Beghelli, D.; La Terza, A.; Zengin, G.; Caprioli, G. Quantification of Bioactive Compounds by HPLC-ESI-MS/MS and Evaluation of Antioxidant and Enzyme Inhibitory Activities of Acorn Flour Extracts. Antioxidants 2024, 13, 1526. [Google Scholar] [CrossRef]
- Lassoued, R.; Abderrabba, M.; Mejri, J. Comparative Chemical Composition of Two Quercus Species Seeds Growing in Tunisia. S. Afr. J. Bot. 2022, 146, 71–76. [Google Scholar] [CrossRef]
- Vinha, A.F.; Barreira, J.C.; Costa, A.S.; Oliveira, M.B.P. A New Age for Quercus spp. fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Compr. Rev. Food Sci. Food Saf. 2016, 15, 947–981. [Google Scholar] [CrossRef]
- Vinha, A.F.; Barreira, J.C.; Ferreira, I.C.; Oliveira, M.B.P. Therapeutic, Phytochemistry, and Pharmacology of Acorns (Quercus nuts): A review. In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H., Bapat, V., Eds.; Springer: Cham, Switzerland, 2020; pp. 273–287. [Google Scholar] [CrossRef]
- Inácio, L.G.; Bernardino, R.; Bernardino, S.; Afonso, C. Acorns: From an Ancient Food to a Modern Sustainable Resource. Sustainability 2024, 16, 9613. [Google Scholar] [CrossRef]
- Zocchi, D.M.; Bondioli, C.; Hamzeh Hosseini, S.; Miara, M.D.; Musarella, C.M.; Mohammadi, D.; Manduzai, A.K.; Issa, K.D.; Sulaiman, N.; Khatib, C.; et al. Food security beyond cereals: A Cross-Geographical Comparative Study on Acorn Bread Heritage in the Mediterranean and the Middle East. Foods 2022, 11, 3898. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Welp, M.; Zdruli, P. Provisioning Ecosystem Services Related with Oak (Quercus) Systems: A Review of Challenges and Opportunities. Agrofor. Syst. 2022, 96, 293–313. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, V.; Thakur, A. An overview of anti-nutritional factors in food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Sharma, K.; Kumar, V.; Kaur, J.; Tanwar, B.; Goyal, A.; Sharma, R.; Gat, J.; Kumar, A. Health Effects, Sources, Utilization and Safety of Tannins: A Critical Review. Toxin Rev. 2021, 40, 432–444. [Google Scholar] [CrossRef]
- Javaid, N.; Shah, M.A.; Rasul, A.; Chauhdary, Z.; Saleem, U.; Khan, H.; Ahmed, N.; Uddin, M.S.; Mathew, B.; Behl, T.; et al. Neuroprotective Effects of Ellagic Acid in Alzheimer’s Disease: Focus on Underlying Molecular Mechanisms of Therapeutic Potential. Curr. Pharm. Des. 2021, 27, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef]
- Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of Phenolic Acid, Tannins, Stilbenes, Lignans and Flavonoids in Human Health—A review. Int. J. Food Sci. Technol. 2022, 57, 6326–6335. [Google Scholar] [CrossRef]
- Amina, M.; Djamel, F.; Djamel, H. Influence of Fermentation and Germination Treatments on Physicochemical and Functional Properties of Acorn Flour. Bulg. J. Agric. Sci. 2018, 24, 719–726. [Google Scholar]
- Correia, P.R.; Leitão, A.E.; Beirão-da-Costa, M.L. Effect of drying temperatures on chemical and morphological properties of acorn flours. Int. J. Food Sci. Technol. 2009, 44, 1729–1736. [Google Scholar] [CrossRef]
- Correia, P.R.; Beirão-da-Costa, M.L. Effect of Drying Temperatures on Starch-Related Functional and Thermal Properties of Acorn Flours. J. Food Sci. 2011, 76, 196–202. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Q.; Yan, R.; Wang, Y.; Wang, J.; Yang, L.; Zhai, L. Microwave and Steam Processing: A Novel Approach to Modifying the Characteristics of Reconstituted Whole Wheat Flour and Dough. Molecules 2025, 30, 203. [Google Scholar] [CrossRef]
- Md Yunos, N.S.H.; Hafid, H.S.; Omar, F.N.; Mohammed, M.A.P.; Wakisaka, M.; Mustapha, N.A.; Baharuddin, A.S. Microwave-Assisted Treatment for the Improvement of Rice Flour Properties and Rice Flour Bread Quality. Int. J. Food Sci. Technol. 2024, 59, 9157–9169. [Google Scholar] [CrossRef]
- Bhat, S.A.; Qureshi, I.; Jan, K.; Habib, M.; Maurya, V.K.; Shakya, A.; Bashir, K. Physicochemical, Thermal and Sensory Properties of Microwave-Treated Chickpea Flour (Sattu). J. Culin. Sci. Technol. 2024, 18, 1–20. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, B.; Kaur, A. Microwave Processing Effects on Physico-Chemical, Functional Properties, Phenolic Profile, and Maillard Products of Flaxseed Flour and Flaxseed Press Cake Flour. Ind. Crops Prod. 2024, 218, 118900. [Google Scholar] [CrossRef]
- Bekele, D.W.; Admassu, S. Pumpkin Flour Qualities as Affected by Ultrasound and Microwave Pre-Drying Treatment. Int. J. Food Prop. 2022, 25, 2409–2424. [Google Scholar] [CrossRef]
- Suhag, R.; Dhiman, A.; Deswal, G.; Thakur, D.; Sharanagat, V.S.; Kumar, K.; Kumar, V. Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. LWT 2021, 150, 111960. [Google Scholar] [CrossRef]
- Hu, Q.; He, Y.; Wang, F.; Wu, J.; Ci, Z.; Chen, L.; Zhang, D. Microwave Technology: A Novel Approach to the Transformation of Natural Metabolites. Chin. Med. 2021, 16, 87. [Google Scholar] [CrossRef]
- Guzik, P.; Kulawik, P.; Zając, M.; Migdał, W. Microwave Applications in the Food Industry: An Overview of Recent Developments. Crit. Rev. Food Sci. Nutr. 2022, 62, 7989–8008. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, N.; Pandiselvam, R.; Saka, I.; Kamiloglu, A.; Sahni, P.; Kothakota, A. Impact of Different Microwave Treatments on Food Texture. J. Texture Stud. 2022, 53, 709–736. [Google Scholar] [CrossRef]
- El-Geddawy, M.A.U.; Sorour, M.A.; Abou-El-Hawa, S.H.; Taha, E.M.M. Effect of Domestic Processing and Microwave Heating on Phenolic Compounds and Tannins in Some Oil Seeds. SVU-Int. J. Agric. Sci. 2019, 1, 23–32. [Google Scholar] [CrossRef]
- Waseem, M.; Akhtar, S.; Ahmad, N.; Ismail, T.; Lazarte, C.E.; Hussain, M.; Manzoor, M.F. Effect of Microwave Heat Processing on Nutritional Indices, Antinutrients, and Sensory Attributes of Potato Powder-Supplemented Flatbread. J. Food Qual. 2022, 1, 2103884. [Google Scholar] [CrossRef]
- Javed, M.R.; Ahmad, Z.; Waseem, M.; Mehmood, T.; Hussain, A.; Adil, M.; Abdi, G. Effect of Microwave Heat Processing on Nutritional, Antioxidant, Antinutrient, and Sensory Indices of Soy Flour Enriched Functional Noodles. J. Agric. Food Res. 2024, 18, 101426. [Google Scholar] [CrossRef]
- Hassan, S.; Ahmad, N.; Ahmad, T.; Imran, M.; Xu, C.; Khan, M.K. Microwave Processing Impact on the Phytochemicals of Sorghum Seeds as Food Ingredient. J. Food Process. Preserv. 2019, 43, e13924. [Google Scholar] [CrossRef]
- Kaur, S.; Kanchan, S. A review on the impact of microwave processing on physicochemical properties of different cereal grains and flours. J. Agric. Food Res. 2023, 3, 45–83. [Google Scholar]
- AOAC 925.10; Moisture in Flour. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- American Association of Cereal Chemists International (AACCI). Method 74-09.01: Bread Firmness by Universal Testing Machine. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar] [CrossRef]
- Marciniak-Lukasiak, K.; Lesniewska, P.; Zielińska, D.; Sowinski, M.; Zbikowska, K.; Lukasiak, P.; Zbikowska, A. The Influence of Chestnut Flour on the Quality of Gluten-Free Bread. Appl. Sci. 2022, 12, 8340. [Google Scholar] [CrossRef]
- Zdybel, B.; Różyło, R.; Sagan, A. Use of a waste product from the pressing of chia seed oil in wheat and gluten-free bread processing. J. Food Process. Preserv. 2019, 43, e14002. [Google Scholar] [CrossRef]
- Konopka, I.; Tańska, M.; Faron, A.; Czaplicki, S. Release of Free Ferulic Acid and Changes in Antioxidant Properties during the Wheat and Rye Bread Making Process. Food Sci. Biotechnol. 2014, 23, 831–840. [Google Scholar] [CrossRef]
- Makhlouf, F.; Squeo, G.; Barkat, M.; Pasqualone, A.; Caponio, F. Comparative Study of Total Phenolic Content and Antioxidant Properties of Quercus: Flour and Oil. N. Afr. J. Food Nutr. Res. 2019, 3, 148–155. [Google Scholar] [CrossRef]
- Herald, T.J.; Gadgil, P.; Perumal, R.; Bean, S.R.; Wilson, J.D. High-Throughput Micro-Plate HCl–Vanillin Assay for Screening Tannin Content in Sorghum Grain. J. Sci. Food Agric. 2014, 94, 2133–2136. [Google Scholar] [CrossRef]
- Skrajda-Brdak, M.; Konopka, I.; Tańska, M.; Czaplicki, S. Changes in the Content of Free Phenolic Acids and Antioxidative Capacity of Wholemeal Bread in Relation to Cereal Species and Fermentation Type. Eur. Food Res. Technol. 2019, 245, 2247–2256. [Google Scholar] [CrossRef]
- Verma, D.K.; Mahanti, N.K.; Thakur, M.; Chakraborty, S.K.; Srivastav, P.P. Microwave Heating: Alternative Thermal Process Technology for Food Application. In Emerging Thermal and Nonthermal Technologies in Food Processing, 1st ed.; Srivastav, P.P., Verma, D.K., Patel, A.R., Al-Hilphy, A.R., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2020; pp. 25–67. [Google Scholar]
- Michalak, J.; Czarnowska-Kujawska, M.; Klepacka, J.; Gujska, E. Effect of Microwave Heating on the Acrylamide Formation in Foods. Molecules 2020, 25, 4140. [Google Scholar] [CrossRef]
- Bassey, F.I.; Chinnan, M.S.; Ebenso, E.E.; Edem, C.A.; Iwegbue, C.M.A. Colour Change: An Indicator of the Extent of Maillard Browning Reaction in Food System. Asian J. Chem. 2013, 25, 9325–9328. [Google Scholar] [CrossRef]
- Wani, I.A.; Hamid, H.; Hamdani, A.M.; Gani, A.; Ashwar, B.A. Physico-Chemical, Rheological and Antioxidant Properties of Sweet Chestnut (Castanea sativa Mill.) as Affected by Pan and Microwave Roasting. J. Adv. Res. 2017, 8, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.V.; Akhil, K.G.; Sunil, C.K.; Venkatachalapathy, N.; Jaganmohan, R. Effect of Microwave Treatment on Physical and Functional Properties of Foxtail Millet Flour. Int. J. Chem. Stud. 2021, 9, 2762–2767. [Google Scholar] [CrossRef]
- Levent, A.; Aktaş, K. Nutritional Composition and Staling Properties of Gluten-Free Bread-Added Fermented Acorn Flour. Food Sci. Nutr. 2024, 12, 1955–1964. [Google Scholar] [CrossRef]
- Mousavi, B.; Ghaderi, S.; Hesarinejad, M.A.; Pourmahmoudi, A. Effect of Varying Levels of Acorn Flour on Antioxidant, Staling and Sensory Properties of Iranian Toast. Int. J. Food Stud. 2021, 10, 322–333. [Google Scholar] [CrossRef]
- Beltrão Martins, R.; Gouvinhas, I.; Nunes, M.C.; Ferreira, L.M.; Peres, J.A.; Raymundo, A.; Barros, A.I.R.N.A. Acorn Flour from Holm Oak (Quercus rotundifolia): Assessment of Nutritional, Phenolic, and Technological Profile. Curr. Res. Food Sci. 2022, 5, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Shakuri, F.; Eghlima, G.; Behboudi, H.; Babashpour-Asl, M. Phytochemical Variation, Phenolic Compounds and Antioxidant Activity of Wild Populations of Iranian Oak. Sci. Rep. 2025, 15, 6534. [Google Scholar] [CrossRef]
- Taib, M.; Damiri, F.; Rezzak, Y.; Berrada, M.; Bouyazza, L. Chemical Composition, Nutritional, and Antioxidant Activity of Two Quercus Species Acorns Growing in Morocco. Lett. Appl. NanoBioSci. 2024, 13, 20–35. [Google Scholar] [CrossRef]
- Tizemmour, Z.; Mechmeche, M.; Messadi, N.; Hamdi, M.; Kachouri, F. Evaluation of the Physicochemical, Nutritional, and Antioxidant Activities of Acorn from Quercus spp.: A Comparative Study Between Algerian and Tunisian Varieties. Chem. Afr. 2024, 7, 4273–4284. [Google Scholar] [CrossRef]
- Oracz, J.; Żyżelewicz, D.; Pacholczyk-Sienicka, B. UHPLC-DAD-ESI-HRMS/MS Profile of Phenolic Compounds in Northern Red Oak (Quercus rubra L., syn. Q. borealis F. Michx) Seeds and Its Transformation during Thermal Processing. Ind. Crops Prod. 2022, 189, 115860. [Google Scholar] [CrossRef]
- Singh, D.K.; Kurichh, R.; Bist, Y.; Kheto, A.; Kumar, Y.; Sharma, R.; Shikha, D.; Saxena, D.C. Effect of Microwave Roasting on the Physicochemical, Functional, Rheological, and Antioxidant Properties of Kodo Millet Flour. J. Food Process. Preserv. 2024, 2024, 6861190. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Hayat, K.; Salamatullah, A.M.; Ahmed, M.A.; Hassan, A.B. Effect of Microwave and Conventional Heat Treatment on Total Phenolic Compounds, HPLC Phenolic Profile, and Antioxidant Activity of Leptadenia pyrotechnica (Forssk.) Decne Stem. Appl. Sci. 2023, 13, 13222. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, X.; Yao, Y.; Li, H. Effect of Low Temperature Microwave Treatment on Lipid Stability and Antioxidant Capacity of Whole Wheat Flour. LWT 2023, 182, 114854. [Google Scholar] [CrossRef]
- Molavi, H.; Keramat, J.; Raisee, B. Evaluation of the Cake Quality Made from Acorn–Wheat Flour Blends as a Functional Food. J. Food Biosci. Technol. 2015, 5, 53–60. [Google Scholar]
- Papoti, W.T.; Kizaki, N.; Skaltsi, A.; Karayannakidis, P.D.; Papageorgiou, M. The Phytochemical Rich Potential of Acorn (Quercus aegilops) Products and By-Products. Food Sci. Biotechnol. 2018, 27, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.A.; Saini, C.S.; Sharma, H.K. Antioxidant Potential, Anti-Nutritional Factors, Volatile Compounds and Phenolic Composition of Microwave Heat-Treated Plum (Prunus domestica L.) Kernels: An Analytical Approach. Br. Food J. 2022, 124, 3236–3256. [Google Scholar] [CrossRef]
- Ozolina, K.; Sarenkova, I.; Muizniece-Brasava, S. The Anti-Nutritional Factors of Legumes and Their Treatment Possibilities: A Review. Res. Rural Dev. 2023, 38, 68–76. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, S.; Kaur, R.; Gupta, H.R. Process Optimization for Anti-Nutrient Minimization of Millets. Asian J. Dairy Food Res. 2017, 36, 322–326. [Google Scholar] [CrossRef]
- Ha, M.; Firdhausa, A.S.; Chung, H.-J. Microwave Treatment Modifies the Physicochemical Properties of Starch-Protein Composite for Improved Gluten-Free Muffin Quality. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5141558 (accessed on 13 March 2025).
- Soleimanifard, S.; Shahedi, M.; Emam-Djomeh, Z.; Askari, G.R. Investigating Textural and Physical Properties of Microwave-Baked Cupcake. J. Agric. Sci. Technol. 2018, 20, 265–276. [Google Scholar]
- Silva, S.; Costa, E.M.; Borges, A.; Carvalho, A.P.; Monteiro, M.J.; Pintado, M.M.E. Nutritional Characterization of Acorn Flour (a Traditional Component of the Mediterranean Gastronomical Folklore). J. Food Meas. Charact. 2016, 10, 584–588. [Google Scholar] [CrossRef]
- Hrušková, M.; Švec, I.; Kadlčíková, I. Effect of Chestnut and Acorn Flour on Wheat/Wheat-Barley Flour Properties and Bread Quality. Int. J. Food Stud. 2019, 8, 41–57. [Google Scholar] [CrossRef]
- Gal, R.B.; Jianu, C.; Velciov, A.B.; Poiană, M.A.; Negrea, M.; Cocan, I.; Riviș, A.; Hădărugă, N.; Stoin, D. Quality Parameters assessment of cakes produced from acorn-rice flour mixtures. J. Agroaliment. Process. Technol. 2023, 29, 375–382. [Google Scholar]
- Park, J.-I.; Joo, J.-I.; Kim, J.-M. Changes in the Quality of Bread Added with Acorn Flour during Storage Periods. J. East Asian Soc. Diet. Life 2017, 27, 529–539. [Google Scholar] [CrossRef]
- Masmoudi, M.; Besbes, S.; Bouaziz, A.; Khlifi, M.; Yahyaoui, D.; Attia, H. Optimization of Acorn (Quercus suber L.) Muffin Formulations: Effect of Using Hydrocolloids by a Mixture Design Approach. Food Chem. 2020, 328, 127082. [Google Scholar] [CrossRef]
- Lewicka, K.; Siemion, P.; Kurcok, P. Chemical Modifications of Starch: Microwave Effect. Int. J. Polym. Sci. 2015, 2015, 867697. [Google Scholar] [CrossRef]
- Calix-Rivera, C.S.; Villanueva, M.; Náthia-Neves, G.; Ronda, F. Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation—Development of New Improved Gluten-Free Ingredients. Foods 2023, 12, 1345. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Calix-Rivera, C.S.; Villanueva, M.; Ronda, F. Microwave Radiation Induces Modifications in the Protein Fractions of Tef Flours and Modulates Their Derived Techno-Functional Properties. Int. J. Biol. Macromol. 2023, 253, 126908. [Google Scholar] [CrossRef] [PubMed]
- Uthumporn, U.; Nadiah, N.I.; Koh, W.Y.; Zaibunnisa, A.H.; Azwan, L. Effect of Microwave Heating on Corn Flour and Rice Flour in Water Suspension. Int. Food Res. J. 2016, 23, 2493–2503. [Google Scholar]
- Villanueva, M.; Harasym, J.; Munoz, J.M.; Ronda, F. Microwave Absorption Capacity of Rice Flour. Impact of the Radiation on Rice Flour Microstructure, Thermal and Viscometric Properties. J. Food Eng. 2018, 224, 156–164. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, W.K.; Choi, C.S.; Cho, S.M. Quality Characteristics of Muffins with Added Acorn Jelly Powder and Acorn Ethanol Extract Powder. J. Korean Soc. Food Sci. Nutr. 2012, 41, 369–375. [Google Scholar] [CrossRef]
- Hoeche, U.; Kelly, A.; Coci, F. Acorn: Staple food from the past or novel food for the future?—An Investigation into the Desirability and Acceptability of Acorn Flour Products. Dublin Gastronomy Symposium, Dublin, Ireland, 3–4 June 2014. Available online: https://arrow.tudublin.ie/dgs/2014/june314/1/ (accessed on 20 March 2025).
- Amina, M.; Djamel, F. Effect of Fermentation and Germination Treatments on Physicochemical and Sensory Properties of Enriched Biscuits with Acorn Flour. Ann. Food Sci. Technol. 2018, 19, 667–674. [Google Scholar]
- Purabdolah, H.; Sadeghi, A.; Ebrahimi, M.; Kasheninejad, M.; Tabarestani, H.S.; Mohamadzadeh, J. Techno-Functional Properties of the Selected Antifungal Predominant LAB Isolated from Fermented Acorn (Quercus persica). Food Meas. 2020, 14, 1754–1764. [Google Scholar] [CrossRef]
- Skendi, A.; Mouselemidou, P.; Papageorgiou, M.; Papastergiadis, E. Effect of Acorn Meal-Water Combinations on Technological Properties and Fine Structure of Gluten-Free Bread. Food Chem. 2018, 253, 119–126. [Google Scholar] [CrossRef]
- Beltrão Martins, R.; Gouvinhas, I.; Nunes, M.C.; Alcides Peres, J.; Raymundo, A.; Barros, A.I.R.N.A. Acorn Flour as a Source of Bioactive Compounds in Gluten-Free Bread. Molecules 2020, 25, 3568. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gerardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of Heat Processing on Thermal Stability and Antioxidant Activity of Six Flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Rabalski, I. Changes in Phenolic Acids and Antioxidant Properties during Baking of Bread and Muffin Made from Blends of Hairless Canary Seed, Wheat, and Corn. Antioxidants 2022, 11, 1059. [Google Scholar] [CrossRef] [PubMed]
- Alfeo, V.; Bravi, E.; Ceccaroni, D.; Sileoni, V.; Perretti, G.; Marconi, O. Effect of Baking Time and Temperature on Nutrients and Phenolic Compounds Content of Fresh Sprouts Breadlike Product. Foods 2020, 9, 1447. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, G.; Li, Y. Bread Characteristics and Antioxidant Activities of Maillard Reaction Products of White Pan Bread Containing Various Sugars. LWT 2018, 95, 308–315. [Google Scholar] [CrossRef]
Sample Type | Color | ||
---|---|---|---|
L* [-] | a* [-] | b* [-] | |
AF_0 | 61.03 ± 0.22 aA | 5.22 ± 0.23 aA | 21.29 ± 0.43 aA |
Dry microwave-treated acorn flour | |||
AF_925_0.5 | 60.05 ± 0.86 ab | 5.35 ± 0.22 ab | 21.90 ± 0.19 bc |
AF_925_1.0 | 58.94 ± 0.45 bcd | 5.54 ± 0.06 bc | 21.80 ± 0.09 ab |
AF_925_1.5 | 59.06 ± 0.36 bc | 5.56 ± 0.09 bc | 22.27 ± 0.11 bcde |
AF_925_2.0 | 58.52 ± 0.08 cd | 5.64 ± 0.04 bc | 22.37 ± 0.11 cde |
AF_925_2.5 | 58.05 ± 0.35 cd | 5.77 ± 0.07 cd | 22.63 ± 0.41 e |
AF_925_3.0 | 54.11 ± 0.28 e | 6.40 ± 0.01 e | 22.44 ± 0.03 de |
AF_1295_0.5 | 58.98 ± 0.43 bcd | 5.53 ± 0.14 abc | 21.93 ± 0.20 bcd |
AF_1295_1.0 | 57.75 ± 0.40 d | 5.83 ± 0.13 cd | 22.75 ± 0.13 e |
AF_1295_1.5 | 55.25 ± 0.51 ef | 6.07 ± 0.03 d | 22.10 ± 0.07 bcd |
AF_1850_0.5 | 58.72 ± 0.39 cd | 5.55 ± 0.11 bc | 21.98 ± 0.21 bcd |
AF_1850_1.0 | 56.13 ± 0.40 f | 6.02 ± 0.13 d | 22.28 ± 0.14 bcde |
Wet microwave-treated acorn flour | |||
AF_W_925_0.5 | 45.59 ± 0.40 B | 7.41 ± 0.13 BCD | 21.47 ± 0.53 A |
AF_W_925_1.0 | 36.05 ± 0.07 C | 7.09 ± 0.03 BCE | 18.03 ± 0.09 B |
AF_W_925_1.5 | 34.17 ± 0.74 D | 6.90 ± 0.05 BE | 17.07 ± 0.08 BC |
AF_W_925_2.0 | 32.29 ± 0.31 EF | 7.59 ± 0.07 CD | 17.04 ± 0.10 BC |
AF_W_925_2.5 | 28.46 ± 0.66 G | 7.21 ± 0.42 BCDE | 15.43 ± 1.06 C |
AF_W_925_3.0 | 30.89 ± 0.26 H | 8.16 ± 0.03 F | 17.14 ± 0.25 BC |
AF_W_1295_0.5 | 39.22 ± 0.16 I | 7.18 ± 0.05 BCDE | 20.09 ± 0.13 A |
AF_W_1295_1.0 | 39.15 ± 0.15 I | 6.83 ± 0.04 E | 17.51 ± 0.07 B |
AF_W_1295_1.5 | 33.15 ± 0.36 FD | 7.57 ± 0.11 CD | 17.42 ± 0.12 B |
AF_W_1850_0.5 | 38.26 ± 0.59 I | 6.83 ± 0.37 E | 16.60 ± 1.82 BC |
AF_W_1850_1.0 | 31.34 ± 0.11 EH | 7.71 ± 0.23 F | 17.32 ± 0.54 BC |
Sample Type | TFPs [mg GAE/100 g d.m.] | Flavonoids [mg CA/100 g d.m.] | Tannins [mg CA/100 g d.m.] | AC [mmol TE/100 g d.m.] |
---|---|---|---|---|
AF_0 | 2243.50 ± 14.85 aA | 448.70 ± 2.97 aA | 219.74 ± 3.37 aA | 723.45 ± 6.43 aA |
Samples with dry microwave-treated acorn flour | ||||
AF_925_0.5 | 2283.75 ± 39.60 a | 456.75 ± 7.92 a | 196.36 ± 9.81 ab | 753.90 ± 4.45 b |
AF_925_1.0 | 2607.50 ± 22.27 b | 521.50 ± 4.45 b | 192.30 ± 7.38 bc | 815.77 ± 6.06 c |
AF_925_1.5 | 2791.25 ± 19.80 c | 558.25 ± 3.96 bc | 180.74 ± 6.40 bcd | 925.09 ± 6.88 d |
AF_925_2.0 | 2590.88 ± 25.99 b | 518.18 ± 5.20 cd | 177.33 ± 3.95 bcd | 957.24 ± 6.95 e |
AF_925_2.5 | 2415.88 ± 18.56 d | 483.18 ± 3.71 e | 167.64 ± 6.39 cde | 812.35 ± 4.95 c |
AF_925_3.0 | 2276.75 ± 39.60 a | 455.35 ± 7.92 e | 149.69 ± 6.33 ef | 784.00 ± 3.96 f |
AF_1295_0.5 | 2622.38 ± 23.51 b | 524.48 ± 4.70 b | 185.21 ± 8.73 bcd | 788.90 ± 2.97 f |
AF_1295_1.0 | 2733.50 ± 9.90 c | 546.70 ± 1.98 b | 172.91 ± 7.37 bcde | 912.15 ± 4.88 d |
AF_1295_1.5 | 2568.13 ± 18.56 b | 513.63 ± 3.71 e | 150.85 ± 5.72 ef | 735.35 ± 3.46 ab |
AF_1850_0.5 | 2620.63 ± 18.56 b | 524.13 ± 3.71 b | 166.33 ± 6.12 de | 878.85 ± 3.96 g |
AF_1850_1.0 | 2402.75 ± 22.27 d | 480.55 ± 4.45 d | 138.70 ± 3.61 f | 861.35 ± 5.44 g |
Samples with wet microwave-treated acorn flour | ||||
AF_W_925_0.5 | 2418.50 ± 19.80 BC | 483.70 ± 3.96 A | 200.05 ± 5.18 AB | 822.50 ± 5.94 B |
AF_W_925_1.0 | 2716.88 ± 25.99 DE | 543.38 ± 5.20 B | 198.47 ± 4.45 ABC | 867.48 ± 4.70 C |
AF_W_925_1.5 | 2816.63 ± 25.99 E | 563.33 ± 5.20 CD | 196.00 ± 4.79 ABC | 750.05 ± 5.44 D |
AF_W_925_2.0 | 2509.50 ± 12.37 B | 501.90 ± 2.47 E | 183.59 ± 8.56 BCD | 698.25 ± 6.43 E |
AF_W_925_2.5 | 2440.38 ± 18.56 BC | 488.08 ± 3.71 F | 172.47 ± 9.40 CD | 655.55 ± 5.94 F |
AF_W_925_3.0 | 2300.38 ± 16.09 AF | 460.08 ± 3.22 F | 157.31 ± 8.13 D | 652.75 ± 6.93 F |
AF_W_1295_0.5 | 2346.75 ± 17.32 CF | 469.35 ± 3.46 B | 193.89 ± 5.28 ABC | 727.13 ± 5.20 AD |
AF_W_1295_1.0 | 2684.50 ± 29.70 D | 536.90 ± 5.94 D | 178.85 ± 9.08 BCD | 845.08 ± 7.67 BC |
AF_W_1295_1.5 | 2441.25 ± 37.12 BC | 488.25 ± 7.42 E | 158.17 ± 8.41 D | 587.30 ± 3.96 G |
AF_W_1850_0.5 | 2649.50 ± 34.65 D | 529.90 ± 6.93 C | 177.35 ± 7.09 BCD | 684.60 ± 2.97 E |
AF_W_1850_1.0 | 2347.63 ± 38.36 CF | 469.53 ± 7.67 EF | 156.97 ± 5.88 D | 571.20 ± 6.43 G |
Sample Type | Volume [cm3] | Porosity [%] | Crumb Firmness [N] |
---|---|---|---|
AF_0 | 71.29 ± 3.06 abAB | 57.33 ± 3.70 abAB | 24.39 ± 1.07 aA |
Samples with dry microwave-treated acorn flour | |||
AF_925_1.0 | 82.64 ± 0.50 c | 73.33 ± 1.85 c | 15.90 ± 0.42 b |
AF_925_2.0 | 73.60 ± 1.08 b | 61.60 ± 0.00 bd | 22.99 ± 0.74 a |
AF_925_3.0 | 67.18 ± 0.78 d | 46.67 ± 3.70 e | 42.08 ± 1.92 c |
AF_1295_0.5 | 79.19 ± 0.67 ce | 68.00 ± 0.00 cd | 20.04 ± 0.55 d |
AF_1295_1.0 | 77.56 ± 0.87 e | 65.87 ± 1.85 d | 19.12 ± 0.43 d |
AF_1295_1.5 | 78.42 ± 0.79 e | 66.93 ± 1.85 cd | 17.71 ± 0.86 bd |
AF_1850_0.5 | 78.19 ± 0.80 e | 66.93 ± 1.85 cd | 18.94 ± 0.43 d |
AF_1850_1.0 | 69.46 ± 1.26 ad | 50.93 ± 3.70 ae | 31.75 ± 0.31 e |
Samples with wet microwave-treated acorn flour | |||
AF_W_925_1.0 | 79.86 ± 1.73 C | 68.00 ± 0.00 C | 11.85 ± 0.15 BC |
AF_W_925_2.0 | 79.95 ± 1.27 C | 68.00 ± 0.00 C | 13.26 ± 0.92 C |
AF_W_925_3.0 | 77.60 ± 1.05 CD | 65.87 ± 3.70 AC | 16.77 ± 0.45 D |
AF_W_1295_0.5 | 75.25 ± 0.25 BD | 63.73 ± 3.70 AC | 10.66 ± 0.62 B |
AF_W_1295_1.0 | 69.86 ± 0.68 A | 50.93 ± 3.70 B | 20.87 ± 0.63 E |
AF_W_1295_1.5 | 69.59 ± 0.74 A | 50.93 ± 3.70 B | 31.61 ± 0.74 F |
AF_W_1850_0.5 | 72.67 ± 0.16 AB | 61.60 ± 0.00 AC | 29.16 ± 0.57 F |
AF_W_1850_1.0 | 65.33 ± 0.80 E | 40.27 ± 3.70 D | 66.59 ± 1.87 G |
Sample Type | Crust Color | Crumb Color | ||||
---|---|---|---|---|---|---|
L* [-] | a* [-] | b* [-] | L* [-] | a* [-] | b* [-] | |
AF_0 | 32.57 ± 0.33 aA | 10.74 ± 0.16 aA | 17.71 ± 0.18 aA | 27.67 ± 1.18 abcA | 8.96 ± 0.09 abA | 17.84 ± 0.62 aA |
Samples with dry microwave-treated acorn flour | ||||||
AF_925_1.0 | 36.32 ± 1.07 b | 9.79 ± 0.15 b | 18.92 ± 0.33 a | 29.84 ± 0.88 b | 8.43 ± 0.37 bc | 18.80 ± 0.96 b |
AF_925_2.0 | 32.22 ± 0.45 a | 9.20 ± 0.05 c | 15.58 ± 0.42 b | 28.99 ± 0.23 bc | 8.92 ± 0.26 abc | 17.77 ± 0.50 ab |
AF_925_3.0 | 25.40 ± 0.37 c | 7.98 ± 0.34 d | 8.72 ± 0.91 cd | 21.26 ± 0.47 d | 8.32 ± 0.09 c | 13.27 ± 0.32 c |
AF_1295_0.5 | 30.00 ± 0.52 d | 9.94 ± 0.20 be | 13.58 ± 0.70 e | 26.97 ± 0.86 ac | 9.12 ± 0.14 ad | 18.11 ± 0.76 ab |
AF_1295_1.0 | 28.86 ± 0.56 d | 10.42 ± 0.08 ae | 9.42 ± 0.73 d | 34.22 ± 1.16 e | 9.60 ± 0.10 d | 21.80 ± 0.65 d |
AF_1295_1.5 | 24.37 ± 0.40 c | 7.96 ± 0.23 f | 7.23 ± 0.17 c | 14.87 ± 0.77 f | 5.65 ± 0.35 e | 6.14 ± 0.66 e |
AF_1850_0.5 | 30.67 ± 0.32 ad | 10.08 ± 0.01 be | 13.78 ± 0.13 e | 28.44 ± 1.36 abc | 9.19 ± 0.25 ad | 17.90 ± 1.07 ab |
AF_1850_1.0 | 29.77 ± 1.45 d | 9.97 ± 0.26 be | 12.85 ± 1.11 e | 26.31 ± 0.68 a | 9.11 ± 0.05 ad | 16.28 ± 0.44 a |
Samples with wet microwave-treated acorn flour | ||||||
AF_W_925_1.0 | 30.86 ± 0.67 B | 9.42 ± 0.12 BC | 11.96 ± 0.14 B | 23.13 ± 0.33 B | 7.76 ± 0.05 ABC | 14.20 ± 0.51 B |
AF_W_925_2.0 | 30.49 ± 0.28 B | 9.84 ± 0.20 CD | 15.17 ± 0.12 CD | 24.06 ± 0.64 BC | 7.03 ± 0.35 BC | 13.47 ± 0.03 B |
AF_W_925_3.0 | 28.96 ± 0.52 C | 10.02 ± 0.03 D | 14.09 ± 0.33 CE | 20.33 ± 0.83 D | 7.35 ± 0.38 BC | 10.70 ± 0.80 C |
AF_W_1295_0.5 | 27.29 ± 0.92 D | 7.92 ± 0.07 E | 10.73 ± 0.10 F | 25.29 ± 0.32 C | 8.01 ± 0.27 ABC | 16.75 ± 0.39 A |
AF_W_1295_1.0 | 25.25 ± 0.07 E | 9.59 ± 0.18 BCD | 9.67 ± 0.66 F | 25.34 ± 0.70 C | 8.22 ± 0.14 AB | 14.53 ± 0.33 B |
AF_W_1295_1.5 | 25.96 ± 0.20 DE | 9.78 ± 0.12 BCD | 13.31 ± 0.19 E | 20.62 ± 0.83 D | 7.43 ± 1.50 ABC | 8.84 ± 1.04 D |
AF_W_1850_0.5 | 30.26 ± 0.34 BC | 9.33 ± 0.33 B | 15.87 ± 0.65 D | 31.08 ± 0.32 E | 8.55 ± 0.16 AB | 17.00 ± 0.58 A |
AF_W_1850_1.0 | 26.05 ± 0.63 DE | 7.90 ± 0.15 E | 8.39 ± 0.46 G | 22.15 ± 0.34 D | 6.45 ± 0.18 C | 9.92 ± 0.69 CD |
Sample Type | TFPs [mg GAE/100 g d.m.] | Flavonoids [mg CA/100 g d.m.] | Tannins [mg CA/100 g d.m.] | AC [mmol TE/100 g d.m.] |
---|---|---|---|---|
AF_0 | 487.38 ± 8.66 aA | 29.75 ± 1.48 aA | 77.80 ± 0.53 aA | 99.40 ± 2.97 aA |
Samples with dry microwave-treated acorn flour | ||||
AF_925_1.0 | 563.50 ± 14.85 b | 34.13 ± 1.24 a | 71.08 ± 1.22 b | 120.75 ± 2.47 bc |
AF_925_2.0 | 648.38 ± 3.71 cd | 48.30 ± 1.48 b | 64.98 ± 0.19 c | 138.25 ± 3.46 de |
AF_925_3.0 | 732.38 ± 18.56 e | 71.05 ± 3.46 cd | 52.21 ± 0.32 d | 141.05 ± 4.45 de |
AF_1295_0.5 | 532.88 ± 13.61 ab | 35.88 ± 3.71 a | 66.99 ± 0.66 c | 109.38 ± 2.23 ab |
AF_1295_1.0 | 621.25 ± 9.90 c | 58.10 ± 1.98 e | 61.54 ± 0.13 e | 134.58 ± 2.23 de |
AF_1295_1.5 | 723.63 ± 11.14 e | 75.95 ± 2.47 d | 49.70 ± 0.37 f | 143.85 ± 2.47 d |
AF_1850_0.5 | 690.38 ± 11.14 de | 34.13 ± 1.24 a | 65.34 ± 0.88 c | 129.85 ± 2.97 ce |
AF_1850_1.0 | 817.25 ± 12.37 f | 62.30 ± 1.48 ce | 50.97 ± 0.30 df | 141.40 ± 4.45 de |
Samples with wet microwave-treated acorn flour | ||||
AF_W_925_1.0 | 598.50 ± 14.85 B | 34.13 ± 0.74 AB | 64.21 ± 0.51 B | 104.83 ± 3.22 AB |
AF_W_925_2.0 | 686.88 ± 16.09 C | 49.35 ± 1.98 CD | 59.14 ± 0.83 C | 117.43 ± 0.74 C |
AF_W_925_3.0 | 739.38 ± 11.14 CD | 70.18 ± 3.71 E | 50.46 ± 0.80 D | 130.73 ± 3.22 D |
AF_W_1295_0.5 | 552.13 ± 13.61 B | 40.43 ± 2.23 BC | 63.38 ± 0.73 B | 104.30 ± 3.46 A |
AF_W_1295_1.0 | 726.25 ± 17.32 C | 50.75 ± 2.97 D | 58.38 ± 0.91 C | 111.30 ± 1.98 ABC |
AF_W_1295_1.5 | 786.63 ± 18.56 D | 66.50 ± 1.48 E | 49.28 ± 0.87 D | 120.40 ± 3.46 CD |
AF_W_1850_0.5 | 566.13 ± 16.09 B | 39.38 ± 2.72 B | 60.36 ± 0.47 C | 105.35 ± 3.46 AB |
AF_W_1850_1.0 | 731.50 ± 17.32 CD | 62.30 ± 1.98 E | 48.07 ± 0.16 D | 116.55 ± 3.46 BC |
Sample Type | Color | Aroma | Taste | Texture | Overall Acceptance * |
---|---|---|---|---|---|
AF_0 | 4.33 ± 0.72 abAB | 4.07 ± 0.46 aA | 3.87 ± 0.64 aA | 4.53 ± 0.64 aA | 4.15 |
Samples with dry microwave-treated acorn flour | |||||
AF_925_1.0 | 4.20 ± 0.68 ab | 4.20 ± 0.56 a | 4.33 ± 0.62 ab | 4.73 ± 0.46 a | 4.35 |
AF_925_2.0 | 4.13 ± 0.64 a | 4.27 ± 0.59 a | 4.47 ± 0.52 ab | 4.33 ± 0.62 ab | 4.31 |
AF_925_3.0 | 4.87 ± 0.35 b | 4.40 ± 0.63 a | 4.80 ± 0.41 b | 3.60 ± 0.51 c | 4.45 |
AF_1295_0.5 | 4.27 ± 0.70 ab | 3.93 ± 0.70 a | 4.20 ± 0.68 ab | 4.53 ± 0.52 a | 4.20 |
AF_1295_1.0 | 4.47 ± 0.74 ab | 4.00 ± 0.76 a | 4.20 ± 0.68 ab | 4.27 ± 0.80 abc | 4.21 |
AF_1295_1.5 | 4.73 ± 0.46 ab | 4.40 ± 0.51 a | 4.47 ± 0.52 ab | 4.07 ± 0.70 abc | 4.42 |
AF_1850_0.5 | 4.67 ± 0.62 ab | 4.13 ± 0.74 a | 4.33 ± 0.62 ab | 4.07 ± 0.59 abc | 4.29 |
AF_1850_1.0 | 4.80 ± 0.41 ab | 4.60 ± 0.63 a | 4.60 ± 0.51 b | 3.73 ± 0.70 bc | 4.47 |
Samples with wet microwave-treated acorn flour | |||||
AF_W_925_1.0 | 4.27 ± 0.80 AB | 4.60 ± 0.63 AB | 4.53 ± 0.64 AB | 4.40 ± 0.83 AB | 4.47 |
AF_W_925_2.0 | 4.20 ± 0.77 AB | 4.67 ± 0.49 AB | 4.67 ± 0.49 B | 4.20 ± 0.77 ABC | 4.48 |
AF_W_925_3.0 | 4.40 ± 0.74 AB | 4.73 ± 0.46 B | 4.80 ± 0.41 B | 4.07 ± 0.70 ABC | 4.55 |
AF_W_1295_0.5 | 4.33 ± 0.72 AB | 4.33 ± 0.62 AB | 4.13 ± 0.64 AB | 4.27 ± 0.80 AB | 4.26 |
AF_W_1295_1.0 | 4.53 ± 0.52 AB | 4.53 ± 0.52 AB | 4.40 ± 0.51 AB | 3.73 ± 0.80 ABC | 4.33 |
AF_W_1295_1.5 | 4.80 ± 0.56 A | 4.53 ± 0.64 AB | 4.40 ± 0.74 AB | 3.60 ± 0.63 BC | 4.36 |
AF_W_1850_0.5 | 3.80 ± 0.68 B | 4.47 ± 0.64 AB | 4.33 ± 0.62 AB | 4.13 ± 0.74 ABC | 4.23 |
AF_W_1850_1.0 | 4.20 ± 0.77 AB | 4.73 ± 0.59 B | 4.60 ± 0.63 B | 3.40 ± 0.74 C | 4.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabłowska, E.; Tańska, M. Effect of Microwave-Assisted Processing of Acorn Flour on Muffin Quality. Appl. Sci. 2025, 15, 6204. https://doi.org/10.3390/app15116204
Szabłowska E, Tańska M. Effect of Microwave-Assisted Processing of Acorn Flour on Muffin Quality. Applied Sciences. 2025; 15(11):6204. https://doi.org/10.3390/app15116204
Chicago/Turabian StyleSzabłowska, Emilia, and Małgorzata Tańska. 2025. "Effect of Microwave-Assisted Processing of Acorn Flour on Muffin Quality" Applied Sciences 15, no. 11: 6204. https://doi.org/10.3390/app15116204
APA StyleSzabłowska, E., & Tańska, M. (2025). Effect of Microwave-Assisted Processing of Acorn Flour on Muffin Quality. Applied Sciences, 15(11), 6204. https://doi.org/10.3390/app15116204