Research on the Self-Organized Criticality and Fracture Predictability of Sandstone via Real-Time CT Scanning and AE Monitoring
Abstract
1. Introduction
2. Experimental Materials and Methodology
2.1. Sample Preparation
2.2. Experimental Device and Procedure
2.3. Analysis Method for Experimental Data and Images
2.4. CT Scanning Points Selection and Scanning Procedure
3. Experimental Results and Analysis
3.1. Macromechanical Response Characteristics
3.2. Microscopic Fracture Characteristics
4. Self-Organized Criticality During Damage and Fracture
4.1. Self-Organized Process and Two Critical Points
4.2. Power–Law Scaling Behavior Analysis
5. Evolution Characteristics of the Self-Organized Process and Final Instability Stage
6. Discussion
6.1. Self-Organized Behavior and Critical Phase Transition Mechanism
6.2. Limitations and Future Directions
7. Conclusions
- (1)
- Yield-phase critical transitions: Three phenomena exhibit abrupt changes during sandstone yielding: macromechanical responses, AE signals, and crack networks. The entire yield phase constitutes a self-organization process bounded by two critical thresholds. The initiation threshold (first critical point) denotes microdamage coalescence into microcracks, triggering volumetric expansion. The termination threshold (second critical point) marks microcrack reorganization into oriented macrocracks preceding peak strength.
- (2)
- Power–law damage progression: AE-pore evolution adheres to power–law dynamics throughout fracturing. The self-organization phase exhibits power–law exponents (r ≈ 0.84–1.15) matching complete fracture processes (r ≈ 0.87–1.20) but exceeding initial phase values (r ≈ 0.71–0.85). Exponent magnitude correlates with three damage characteristics: nonlinearity intensity, damage degree, and spatial localization. Escalating r-values during self-organization provide quantifiable early warning of impending failure.
- (3)
- Predictive damage signatures: Stage III damage patterns exhibit 85–90% similarity with terminal failure surfaces both spatially and temporally. These self-organization signatures enable reliable prediction of three failure parameters: fracture geometry, instability chronology, and damage progression trends.
- (4)
- Multistage fracture mechanics: Crack evolution progresses through three mechanistic phases: nucleation dominance at first criticality, propagation dominance at second criticality, and coalescence dominance at terminal failure. The developed conceptual model deciphers self-organized critical phase transitions through integrated analysis of AE-crack response patterns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, P.; Li, D.; Zhao, G.; Liu, H. New criterion for the spalling failure of deep rock engineering based on energy release. Int. J. Rock Mech. Min. Sci. 2021, 148, 104943. [Google Scholar] [CrossRef]
- Kang, H.; Jiang, P.; Feng, Y.; Gao, F.; Zhang, Z.; Liu, X. Application of large-scale hydraulic fracturing for reducing mining-induced stress and microseismic events: A comprehensive case study. Rock Mech. Rock Eng. 2023, 56, 1399–1413. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Li, C.; He, H.; Li, X. Rockburst prediction and prevention in underground space excavation. Undergr. Space 2024, 14, 70–98. [Google Scholar] [CrossRef]
- Xue, J.; Hao, S.; Wang, J.; Ke, F.; Lu, C.; Bai, Y. The changeable power law singularity and its application to prediction of catastrophic rupture in uniaxial compressive tests of geomedia. J. Geophys. Res. Solid Earth 2018, 123, 2645–2657. [Google Scholar] [CrossRef]
- Xie, H.; Gao, M.; Zhang, R.; Peng, G.; Wang, W.; Li, A. Study on the mechanical properties and mechanical response of coal mining at 1000 m or deeper. Rock Mech. Rock Eng. 2019, 52, 1475–1490. [Google Scholar] [CrossRef]
- Renard, F.; Weiss, J.; Mathiesen, J.; Ben-Zion, Y.; Kandula, N.; Cordonnier, B. Critical evolution of damage toward system-size failure in crystalline rock. J. Geophys. Res.-Solid Earth 2018, 123, 1969–1986. [Google Scholar] [CrossRef]
- Renard, F.; Cordonnier, B.; Kobchenko, M.; Kandula, N.; Weiss, J.; Zhu, W. Microscale characterization of rupture nucleation unravels precursors to faulting in rocks. Earth Planet. Sci. Lett. 2017, 476, 69–78. [Google Scholar] [CrossRef]
- Ben-Zion, Y.; Zaliapin, I. Localization and coalescence of seismicity before large earthquakes. Geophys. J. Int. 2020, 223, 561–583. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading. J. Rock Mech. Geotech. Eng. 2021, 13, 1203–1230. [Google Scholar] [CrossRef]
- Bouchon, M.; Durand, V.; Marsan, D.; Karabulut, H.; Schmittbuhl, J. The long precursory phase of most large interplate earthquakes. Nat. Geosci. 2013, 6, 299–302. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Wu, W.T.; Zhou, X.P. On the predictability of localization instabilities of quasibrittle materials from accelerating rates of acoustic emission. Eng. Fract. Mech. 2023, 289, 109455. [Google Scholar] [CrossRef]
- Di, Y.; Wang, E.; Li, Z.; Liu, X.; Huang, T.; Yao, J. Comprehensive early warning method of microseismic, acoustic emission, and electromagnetic radiation signals of rock burst based on deep learning. Int. J. Rock Mech. Min. Sci. 2023, 170, 105519. [Google Scholar] [CrossRef]
- Askaripour, M.; Saeidi, A.; Rouleau, A.; Mercier-Langevin, P. Rockburst in Underground Excavations: A Review of Mechanism, Classification, and Prediction Methods. J. Undergr. Space 2022, 7, 577–607. [Google Scholar] [CrossRef]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–384. [Google Scholar] [CrossRef]
- Zhou, Z.; Ullah, B.; Rui, Y.; Cai, X.; Lu, J. Predicting the failure of different rocks subjected to freeze-thaw weathering using critical slowing down theory on acoustic emission characteristics. Eng. Geol. 2023, 316, 107059. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, H.; Wu, Y.; Pu, H. Numerical statistical analysis on self-organizing behavior of microfracturing events in rock failure. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718768993. [Google Scholar] [CrossRef]
- He, Z.; Wilson, S.B.; Monjezi, M.; Tran, T.T. Estimating Brazilian Tensile Strength of Granite Rocks Using Metaheuristic Algorithms-Based Self-Organizing Neural Networks. Rock Mech. Rock Eng. 2024, 57, 4653–4668. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.Z.; He, M.C.; Jiang, Y.J.; Karakus, M.; Hu, L.H.; Jiang, Y.L.; Ren, F.Q. Identification of failure behaviors of underground structures under dynamic loading using machine learning. J. Rock Mech. Geotech. Eng. 2025, 17, 414–431. [Google Scholar] [CrossRef]
- Ali, M.; Wang, E.; Li, Z.; Jia, H.; Li, D.; Jiskani, I.M.; Ullah, B. Study on Acoustic Emission Characteristics and Mechanical Behavior of Water-Saturated Coal. J. Geofluids 2021, 2021, 5247988. [Google Scholar] [CrossRef]
- Pham, C.; Zhuang, L.; Yeom, S.; Shin, H.S. Automatic fracture characterization in CT images of rocks using an ensemble deep learning approach. Int. J. Rock Mech. Min. Sci. 2023, 170, 105531. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, D.; Han, Z.; Xiao, P.; Li, B. Failure characteristics of brittle rock containing two rectangular holes under uniaxial compression and coupled static-dynamic loads. Acta Geotech. 2021, 16, 131–152. [Google Scholar] [CrossRef]
- Zhu, C.; Xing, X.S.; He, M.C.; Tang, Z.C.; Xiong, F.; Ye, Z.Y.; Xu, C.S. Failure behavior and strength model of blocky rock mass with and without rockbolts. Int. J. Min. Sci. Technol. 2024, 34, 747–762. [Google Scholar] [CrossRef]
- Eppes, M.C.; Keanini, R. Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Rev. Geophys. 2017, 55, 470–508. [Google Scholar] [CrossRef]
- Li, X.; Duan, Y.T.; Li, S.D.; Zhou, R.Q. Study on the Progressive Failure Characteristics of Longmaxi Shale under Uniaxial Compression Conditions by X-ray Micro-Computed Tomography. Energies 2017, 10, 303. [Google Scholar] [CrossRef]
- Song, Y.; Tan, H.; Yang, H.; Chen, S.; Che, Y.; Chen, J. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography. Eng. Geol. 2021, 294, 106370. [Google Scholar] [CrossRef]
- Tan, H.; Song, Y.J.; Yang, H.M. Energy evolution and strain localization in fractured sandstone under freeze-thaw cycling and uniaxial loading-unloading. Int. J. Rock Mech. Min. Sci. 2024, 177, 105746. [Google Scholar] [CrossRef]
- Meng, Q.; Wu, K.; Zhou, H. Mesoscopic damage evolution of coral reef limestone based on real-time CT scanning. Eng. Geol. 2022, 307, 106781. [Google Scholar] [CrossRef]
- Du, K.; Luo, X.; Liu, M.; Liu, X.; Zhou, J. Understanding the evolution mechanism and classification criteria of tensile-shear cracks in rock failure process from acoustic emission (AE) characteristics. J. Eng. Fract. Mech. 2024, 296, 109864. [Google Scholar] [CrossRef]
- Duan, D.; Zhao, Y.T.; Zhang, R.Z. Acoustic emission characterization of uniaxial compression failure characteristics of mudstone based on Micro-CT. J. Vib. Shock. 2020, 39, 163–170. (In Chinese) [Google Scholar]
- Fan, L.F.; Fan, Y.D.; Xi, Y.; Gao, J.W. Spatial failure mode analysis of frozen sandstone under uniaxial compression based on CT technology. Rock Mech. Rock Eng. 2022, 55, 4123–4138. [Google Scholar] [CrossRef]
- Jia, Z.; Xie, H.; Zhang, R.; Li, C.; Wang, M.; Gao, M.; Zhang, Z. Acoustic emission characteristics and damage evolution of coal at different depths under triaxial compression. Rock Mech. Rock Eng. 2020, 53, 2063–2076. [Google Scholar] [CrossRef]
- Jiang, D.; Xie, K.; Chen, J.; Zhang, S.; Tiedeu, W.N.; Xiao, Y.; Jiang, X. Experimental analysis of sandstone under uniaxial cyclic loading through acoustic emission statistics. Pure Appl. Geophys. 2019, 176, 265–277. [Google Scholar] [CrossRef]
- Yuan, A.; Hou, J.; Yin, Z. The force chain and acoustic emission response law for the uniaxial compression of rock. Geotech. Geol. Eng. 2020, 38, 4479–4499. [Google Scholar] [CrossRef]
- McBeck, J.A.; Aiken, J.M.; Mathiesen, J.; Ben-Zion, Y.; Renard, F. Deformation precursors to catastrophic failure in rocks. Geophys. Res. Lett. 2020, 47, e2020GL090255. [Google Scholar] [CrossRef]
- Lennartz-Sassinek, S.; Main, I.G.; Zaiser, M.; Graham, C.C. Acceleration and localization of subcritical crack growth in a natural composite material. Phys. Rev. E 2014, 90, 052401. [Google Scholar] [CrossRef]
- Lyakhovsky, V.; Sagy, A.; Kurzon, I. Simulated rupture dynamics and radiated energy on heterogeneously damaged faults. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025559. [Google Scholar] [CrossRef]
- Rong, G.; Peng, J.; Yao, M.; Jiang, Q.; Wong, L.N.Y. Effects of specimen size and thermal-damage on physical and mechanical behavior of a fine-grained marble. Eng. Geol. 2018, 232, 46–55. [Google Scholar] [CrossRef]
- Schubnel, A.; Guéguen, Y. Dispersion and anisotropy of elastic waves in cracked rocks. J. Geophys. Res.-Solid Earth 2003, 108, B2. [Google Scholar] [CrossRef]
- Girard, L.; Weiss, J.; Amitrano, D. Damage-cluster distributions and size effect on strength in compressive failure. Phys. Rev. Lett. 2012, 108, 225502. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; He, M.; Guo, Y.; Wang, H. Experimental investigation of true triaxial unloading rockburst precursors based on critical slowing-down theory. Bull. Eng. Geol. Environ. 2023, 82, 65. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, W.; Duan, Y. Critical damage threshold of brittle rock failure based on Renormalization Group theory. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 135. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Zhang, Y.B.; Yao, X.L.; Liang, P. Effects of sandstone mineral composition heterogeneity on crack initiation and propagation through a microscopic analysis technique. Int. J. Rock Mech. Min. Sci. 2023, 162, 105307. [Google Scholar] [CrossRef]
- Beroza, G.C.; Segou, M.; Mousavi, S.M. Machine learning and earthquake forecasting—Next steps. Nat. Commun. 2021, 12, 4761. [Google Scholar] [CrossRef] [PubMed]
- Segalini, A.; Valletta, A.; Carri, A. Landslide time-of-failure forecast and alert threshold assessment: A generalized criterion. Eng. Geol. 2018, 245, 72–80. [Google Scholar] [CrossRef]
- Carlà, T.; Farina, P.; Intrieri, E.; Botsialas, K.; Casagli, N. On the monitoring and early-warning of brittle slope failures in hard rock masses: Examples from an open-pit mine. Eng. Geol. 2017, 228, 71–81. [Google Scholar] [CrossRef]
- Poland, M.P.; Anderson, K.R. Partly cloudy with a chance of lava flows: Forecasting volcanic eruptions in the twenty-first century. J. Geophys. Res.-Solid Earth 2020, 125, e2018JB016974. [Google Scholar] [CrossRef]
- Ren, F.Q.; Zhu, C.; Karakus, M.; He, M.C. Rockburst mitigation mechanisms of pressure relief borehole and rock bolt support: Insights from granite true triaxial unloading rockburst tests. Eng Geol. 2024, 336, 107571. [Google Scholar] [CrossRef]
- Vu, C.C.; Amitrano, D.; Plé, O.; Weiss, J. Compressive failure as a critical transition: Experimental evidence and mapping onto the universality class of depinning. Phys. Rev. Lett. 2019, 122, 015502. [Google Scholar] [CrossRef]
- Yu, H.; Ng, K.; Grana, D.; Alvarado, V.; Kaszuba, J.; Campbell, E. A generalized power-law criterion for rocks based on Mohr failure theory. Int. J. Rock Mech. Min. Sci. 2020, 128, 104274. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, F.; Ouyang, Z.; Liu, H. A Piecewise Yield Failure Criterion including the Critical State for Brittle Rock. Adv. Civ. Eng. 2020, 2020, 1612383. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, X.; Yuan, W.; Liu, T.; Jin, S. Rock slope stability assessment based on the critical failure state curve for the generalized Hoek–Brown criterion. Environ. Earth Sci. 2024, 83, 168. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, J. Progressive damage behaviours of triaxially confined rocks under multiple dynamic loads. Rock Mech. Rock Eng. 2021, 54, 3327–3358. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, T.; Heap, M.J.; Meredith, P.G.; Yang, T.; Zhou, G. A three-dimensional mesoscale model for progressive time-dependent deformation and fracturing of brittle rock with application to slope stability. Comput. Geotech. 2021, 135, 104160. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Niu, Y.; Cheng, F.; Ali, M.; Bacha, S. An experimental study on the precursory characteristics of EP before sandstone failure based on critical slowing down. J. Appl. Geophys. 2019, 170, 103818. [Google Scholar] [CrossRef]
- Kong, X.; Wang, E.; Hu, S.; Li, Z.; Liu, X.; Fang, B.; Zhan, T. Critical slowing down on acoustic emission characteristics of coal containing methane. J. Nat. Gas Sci. Eng. 2015, 24, 156–165. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Zheng, Y.; Gu, D.; Wang, L. Stability analysis and design charts for over-dip rock slope against bi-planar sliding. Eng. Geol. 2020, 275, 105732. [Google Scholar] [CrossRef]
- Fang, H.H.; Sang, S.X.; Liu, S.Q. Study of digital petrophysical analysis method based on micro-focus X-ray tomography: A case study from No.3 coal seam of Bofang mining area in southern Qinshui basin. Coal Geol. Expl. 2018, 46, 167–174. [Google Scholar]
- Vu, C.C.; Weiss, J.; Plé, O.; Amitrano, D.; Vandembroucq, D. Revisiting statistical size effects on compressive failure of heterogeneous materials, with a special focus on concrete. J. Mech. Phys. Solids 2018, 121, 47–70. [Google Scholar] [CrossRef]
- Sun, B.; Hou, S.; Xie, J.; Zeng, S. Failure prediction of two types of rocks based on acoustic emission characteristics. Adv. Civ. Eng. 2019, 2019, 5028489. [Google Scholar] [CrossRef]
- Volegov, P.S.; Gribov, D.S.; Trusov, P.V. Damage and fracture: Classical continuum theories. Phys. Mesomech. 2017, 20, 157–173. [Google Scholar] [CrossRef]
- Biswas, S.; Castellanos, D.F.; Zaiser, M. Prediction of creep failure time using machine learning. Sci. Rep. 2020, 10, 16910. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, H.; Main, I.G.; Salje, E.K. Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors. Phys. Rev. E 2017, 96, 023004. [Google Scholar] [CrossRef] [PubMed]
- Ojala, I.O.; Main, I.G.; Ngwenya, B.T. Strain rate and temperature dependence of Omori law scaling constants of AE data: Implications for earthquake foreshock-aftershock sequences. Geophys. Res. Lett. 2004, 31, L20607. [Google Scholar] [CrossRef]
- Cartwright-Taylor, A.; Main, I.G.; Butler, I.B.; Fusseis, F.; Flynn, M.; King, A. Catastrophic failure: How and when? Insights from 4-D in situ X-ray microtomography. J. Geophys. Res. Solid Earth. 2020, 125, e2020JB019642. [Google Scholar] [CrossRef]
- Sornette, D. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
Sample Grouping | Specimen | Mass (g) | Diameter (mm) | Height (mm) | Porosity (%) | Dry Density (g/mm3) | P-Wave Velocity (m/s) | Uniaxial Peak Strength (σc/MPa) | Elasticity Modulus (E/GPa) | Poisson’s Ratio | Average Particle Radius Size (L/μm) |
---|---|---|---|---|---|---|---|---|---|---|---|
R-1 | R-1-1 | 432.25 | 50.00 | 100.02 | 9.75 | 2.37 | 2175 | 37.58 | 4.18 | 0.26 | 784 |
R-1-2 | 430.89 | 50.02 | 99.98 | 9.77 | 2.36 | 2166 | 29.55 | 4.17 | 0.28 | 826 | |
R-1-3 | 431.56 | 49.98 | 99.96 | 9.74 | 2.38 | 2186 | 44.21 | 4.20 | 0.25 | 817 | |
R-1-4 | 430.78 | 50.02 | 99.98 | 9.76 | 2.37 | 2172 | 39.24 | 4.18 | 0.27 | 821 | |
R-2 | R-2-1 | 429.48 | 50.00 | 100.02 | 9.78 | 2.35 | 2162 | 26.88 | 4.16 | 0.28 | 799 |
R-2-2 | 432.46 | 50.02 | 100.02 | 9.75 | 2.37 | 2186 | 46.52 | 4.19 | 0.27 | 842 | |
R-2-2 | 431.30 | 50.02 | 100.00 | 9.74 | 2.37 | 2173 | 38.73 | 4.19 | 026 | 852 | |
R-2-4 | 430.75 | 49.98 | 100.04 | 9.74 | 2.37 | 2167 | 29.54 | 4.18 | 0.27 | 834 | |
R-3 | R-3-1 | 432.77 | 50.00 | 99.96 | 9.75 | 2.37 | 2181 | 40.06 | 4.19 | 0.25 | 831 |
R-3-2 | 430.25 | 49.98 | 99.98 | 9.74 | 2.37 | 2171 | 35.32 | 4.17 | 0.26 | 823 | |
R-3-3 | 432.09 | 50.04 | 100.00 | 9.75 | 2.38 | 2193 | 52.28 | 4.23 | 0.24 | 787 | |
R-3-4 | 431.84 | 49.96 | 100.02 | 9.76 | 2.36 | 2168 | 28.56 | 4.17 | 0.27 | 816 |
Device | Configuration | Parameters | Device | Configuration | Parameters | Device | Configuration | Parameters |
---|---|---|---|---|---|---|---|---|
① Continuous loading device | Loading system | Servo control system | ② AE nondestructive monitoring device | Factory owner | U.S. PAC company, Redmond, WA, USA | ③ 4D X-ray CT real-time scanning device | Factory owner | Tianjin Sanying Precision Instruments Co, Ltd., Tianjin, China |
Sample size | D × H = 50 × 100 mm | Model number | Express-8 | X-CT Scanning system | Nano Voxel-4000 micro-CT | |||
Maximum axial load | 3000 kN | Sensors | RT-50 high-temperature and high-pressure integrated sensor | Type of radiation source | Microfocus closed-target reflective X-ray source | |||
Loading method | Equal displacement boundary loading | Working frequency | 60–400 KHz | Flat panel detector | 427 mm | |||
Loading rate | 0.03 mm/min [54] | AE threshold | 40 dB | Resolution | 30.5 μm | |||
Stiffness | 5 × 106 kN/mm | Amplifier | 40 dB [55] | Electricity | 400 mA | |||
Frequency | 2 MHz | Voltage | 200 kV | |||||
Exposure time | 0.8 s | |||||||
Scanning duration | 32 min | |||||||
Scanning Pixels | 1400 × 1400 pixels at 16 bits | |||||||
Number of scanning sheets | 2400 sheets | |||||||
Each voxel corresponds to a rock volume size | 0.0425 × 0.0425 × 0.04 mm3 |
Scanning Feature Point | R-3-1 | R-3-2 | R-3-3 | R-3-4 |
---|---|---|---|---|
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 |
Specimen | r of AE Signal | r of Pore Volume | ||||
---|---|---|---|---|---|---|
I–II | III–V | I–V | I–II | III–V | I–V | |
R-3-1 | 1.41 | 1.68 | 1.68 | 1.68 | 1.67 | 1.66 |
R-3-2 | 1.61 | 1.71 | 1.71 | 1.71 | 1.65 | 1.67 |
R-3-3 | 1.57 | 1.66 | 1.66 | 1.66 | 1.67 | 1.68 |
R-3-4 | 1.60 | 1.61 | 1.61 | 1.61 | 1.64 | 1.66 |
Specimen | r of AE Signal | ||||||||
---|---|---|---|---|---|---|---|---|---|
I–II | III–V | I–V | I–II | III–V | I–V | I–II | III–V | I–V | |
R-3-1 | 0.82 | 1.09 | 1.11 | 0.62 | 0.74 | 0.75 | 0.65 | 0.77 | 0.79 |
R-3-2 | 0.88 | 1.02 | 1.08 | 0.66 | 0.74 | 0.76 | 0.72 | 0.80 | 0.82 |
R-3-3 | 0.75 | 1.13 | 1.12 | 0.68 | 0.76 | 0.78 | 0.75 | 0.89 | 0.87 |
R-3-4 | 0.78 | 1.04 | 1.06 | 0.59 | 0.63 | 0.62 | 0.73 | 0.85 | 0.86 |
Specimen | r of Pore | ||||||||
---|---|---|---|---|---|---|---|---|---|
I–II | III–V | I–V | I–II | III–V | I–V | I–II | III–V | I–V | |
R-3-1 | 0.88 | 0.97 | 1.01 | 0.59 | 0.74 | 0.75 | 0.69 | 0.88 | 0.89 |
R-3-2 | 1.06 | 1.18 | 1.20 | 0.58 | 0.77 | 0.77 | 0.86 | 1.05 | 1.07 |
R-3-3 | 0.05 | 1.31 | 1.34 | 0.62 | 0.71 | 0.83 | 0.87 | 1.13 | 1.12 |
R-3-4 | 1.94 | 1.20 | 1.21 | 0.54 | 0.77 | 0.76 | 0.78 | 0.92 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Song, Y.; Ren, J.; Chen, Y. Research on the Self-Organized Criticality and Fracture Predictability of Sandstone via Real-Time CT Scanning and AE Monitoring. Appl. Sci. 2025, 15, 6205. https://doi.org/10.3390/app15116205
Yang H, Song Y, Ren J, Chen Y. Research on the Self-Organized Criticality and Fracture Predictability of Sandstone via Real-Time CT Scanning and AE Monitoring. Applied Sciences. 2025; 15(11):6205. https://doi.org/10.3390/app15116205
Chicago/Turabian StyleYang, Huimin, Yongjun Song, Jianxi Ren, and Yiqian Chen. 2025. "Research on the Self-Organized Criticality and Fracture Predictability of Sandstone via Real-Time CT Scanning and AE Monitoring" Applied Sciences 15, no. 11: 6205. https://doi.org/10.3390/app15116205
APA StyleYang, H., Song, Y., Ren, J., & Chen, Y. (2025). Research on the Self-Organized Criticality and Fracture Predictability of Sandstone via Real-Time CT Scanning and AE Monitoring. Applied Sciences, 15(11), 6205. https://doi.org/10.3390/app15116205