Fungal Biostarter and Bacterial Occurrence of Dry-Aged Beef: The Sensory Quality and Volatile Aroma Compounds after 21 Days of Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Analysis
2.1.1. Collection of Samples
2.1.2. Fungal Starter Culture
2.1.3. Chemicals
2.2. Research Protocols
2.2.1. Influence of Fungal Biostarter on Development of Bacteria on Dry-Aged Beef DAB
2.2.2. Influence of Fungal Biostarter on Development of Listeria monocytogenes on DAB
2.2.3. The pH Value Measurement
2.2.4. Color Analysis
2.2.5. Water Holding Capacity
2.2.6. Fat, Protein, and Collagen Content
2.2.7. Shear Force Determination
2.2.8. Sensory Evaluation of the Quality of Dry-Aged Beef
2.2.9. Sensory Consumer Study
2.2.10. Determination of Volatile Compounds
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Meat Quality Traits
3.2. Volatile Aroma Compounds Characteristic
3.3. Influence of Fungal Biostarter on Bacterial Growth on DAB
3.4. Inoculated Listeria monocytogenes Development on DAB
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezende-de-Souza, J.H.; Cardello, F.A.B.; de Paula, A.P.M.; Ribeiro, F.A.; Calkins, C.R.; Pflanzer, S.B. Profile of producers and production of dryaged beef in Brazil. Foods 2021, 10, 2447. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lee, E.-S.; Kim, B.-M.; Oh, M.-H. Potential Correlation between Microbial Diversity and Volatile Flavor Compounds in Different Types of Korean Dry-Fermented Sausages. Foods 2022, 11, 3182. [Google Scholar] [CrossRef] [PubMed]
- Hanagasaki, T.; Asato, N. Effect of dry-ageing with Mucor flavus on beef taste and aroma. Food Res. 2023, 7, 224–229. [Google Scholar] [CrossRef]
- Walther, G.; Pawłowska, J.; Alastruey-Izquierdo, A.; Wrzosek, M.; Rodriguez-Tudela, J.L.; Dolatabadi, S.; Chakrabarti, A.; de Hoog, G.S. DNA barcoding in Mucorales: An invetory of biodiversity. Persoonia 2013, 30, 11–47. [Google Scholar] [CrossRef]
- Mikami, N.; Toyotomi, T.; Yamashiro, Y.; Sugo, K.; Yoshitomi, K.; Takaya, M.; Han, K.H.; Fukushima, M.; Shimada, K. Dry-aged beef manufactured in Japan: Microbiota identification and their effects on product characteristics. Food Res. Int. 2021, 140, 110020. [Google Scholar] [CrossRef]
- Zamuz, S.; Munekata, P.E.; Dzuvor, C.K.; Zhang, W.; Sant’Ana, A.S.; Lorenzo, J.M. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends Food Sci. Technol. 2021, 110, 385–392. [Google Scholar] [CrossRef]
- Casaburi, A.; Piombino, P.; Nychas, G.J.; Villani, F.; Ercolini, D. Bacterial Populations and the Volatilome Associated to Meat Spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef]
- Liu, S.Q. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. J. Food Microbiol. 2003, 83, 115–131. [Google Scholar] [CrossRef]
- Coton, E.; Dubée, M.; Pawtowski, A.; Denoyelle, C.; Mounier, J. Microbiota associated with commercial dry-aged beef in France. Food Res. Int. 2024, 181, 114118. [Google Scholar] [CrossRef]
- Irlinger, F.; Mounier, J. Microbial interactions in cheese: Implications for cheese quality and safety. Curr. Opin. Biotechnol. 2009, 20, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Hanagasaki, T.; Asato, N. Changes in free amino acid content and hardness of beef while dry-aging with Mucor flavus. J. Anim. Sci. Technol. 2018, 60, 19. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Park, M.R.; Maburutse, B.E.; Lee, W.J.; Park, D.J.; Cho, S.; Hwang, I.; Oh, S.; Kim, Y. Diversity and characteristics of the meat microbiological community on dry aged beef. J. Microbiol. Biotechnol. 2018, 28, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Shin, M.; Cho, S.; Hwang, I.; Kim, Y.; Oh, S. Molecular characterization of microbial and fungal communities on dry-aged beef of hanwoo using metagenomic analysis. Foods 2020, 9, 1571. [Google Scholar] [CrossRef]
- Ostrowski, G.; Jaworska, D.; Płecha, M.; Przybylski, W.; Sałek, P.; Sawicki, K.; Pawłowska, K. Cold adapted and closely related mucoraceae species colonise dry-aged beef (DAB). Fungal Biol. 2023, 127, 1397–1404. [Google Scholar] [CrossRef]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection Method. ISO: Geneva, Switzerland, 2017.
- Przybylski, W.; Jaworska, D.; Płecha, M.; Dukaczewska, K.; Ostrowski, G.; Sałek, P.; Sawicki, K.; Pawłowska, J. Fungal Biostarter Effect on the Quality of Dry-Aged Beef. Foods 2023, 12, 1330. [Google Scholar] [CrossRef]
- ISO 1871. 2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. ISO: Geneva, Switzerland, 2009.
- PN-ISO 1444:2000; Meat and Meat Products–Determination of free Fat Content. Polish Committee for Standardization: Warsaw, Poland, 2013.
- ISO 3496:1994; Meat and Meat Products—Determination of Hydroxyproline Content. 2nd ed. ISO: Geneva, Switzerland, 1994.
- Nollet, L.M.L.; Toldrá, F. Handbook of Muscle Foods Analysis; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Food Research; Wydawnictwo Naukowe PTTZ: Kraków, Poland, 2014; ISBN 978-83-935421-3-0. [Google Scholar]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques; Taylor & Francis: Abingdon, UK, 2006; ISBN 9780849338397. [Google Scholar]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Xing, J.; Xing, W.; Tang, C.; Rao, Z.; Zhang, J. Untargeted profiling and differentiation of volatiles in varietes of meat using GC orbitrap MS. Foods 2022, 11, 3997. [Google Scholar] [CrossRef]
- Colle, M.J.; Richard, R.P.; Killinger, K.M.; Bohlscheid, J.C.; Gray, A.R.; Loucks, W.I.; Doumit, M.E. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the biceps femoris and semimembranosus. Meat Sci. 2016, 119, 110–117. [Google Scholar] [CrossRef]
- Passetti, R.A.C.; Macedo, F.D.A.F.D.; Santos, G.R.D.A.; Bonin, E.; Vital, A.C.P.; Ramos, T.R.; Gomes Passetti, L.C.; Ornaghi, M.G.; Almeida Costa, I.C. Sensorial, color, lipid oxidation, and visual acceptability of dry-aged beef from young bulls with different fat thickness. Anim. Sci. J. 2019, 91, e13498. [Google Scholar] [CrossRef]
- Mancini, R.A.; Ramanathan, R. Effects of postmortem storage time on color and mitochondria in beef. Meat Sci. 2014, 98, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Lee, H.J.; Yoon, J.W.; Choe, J.; Jo, C. Electrical resistance and mold distribution on beef surface as indicators of dry aging. J. Food Process Eng. 2019, 42, e13122. [Google Scholar] [CrossRef]
- Sha, K.; Lang, Y.M.; Sun, B.Z.; Su, H.W.; Li, H.P.; Zhang, L.; Lei, Y.H.; Li, H.B.; Zhang, Y. Changes in lipid oxidation, fatty acid profile and volatile compounds of traditional Kazakh dry-cured beef during processing and storage. J. Food Process. Preserv. 2017, 41, e13059. [Google Scholar] [CrossRef]
- Iida, F.; Miyazaki, Y.; Tsuyuki, R.; Kato, K.; Egusa, A.; Ogoshi, H.; Nishimura, T. Changes in taste compounds, breaking properties, and sensory attributes during dry aging of beef from Japanese black cattle. Meat Sci. 2016, 112, 46–51. [Google Scholar] [CrossRef]
- Obuz, E.; Akkaya, L.; Gók, V.; Dikeman, M.E. Effects of blade tenderization, aging method and aging time on meat quality characteristics of longissimus lumborum steaks from cull Holstein cows. Meat Sci. 2014, 96, 1227–1232. [Google Scholar] [CrossRef]
- Lee, Y.E.; Lee, H.J.; Kim, C.H.; Ryu, S.; Kim, Y.; Jo, C. Effect of Penicillium candidum and Penicillium nalgiovense and their combination on the physicochemical and sensory quality of dry-aged beef. Food Microbiol. 2022, 107, 104083. [Google Scholar] [CrossRef]
- Dashdorj, D.; Tripathi, V.K.; Cho, S.; Kim, S.; Hwang, I. Dry aging of beef; Review. J. Anim. Sci. Technol. 2016, 58, 20. [Google Scholar] [CrossRef]
- Campbell, R.E.; Hunt, M.C.; Levis, P.; Chambers, E. Dry-Aging Effects on Palatability of Beef Longissimus Muscle. J. Food Sci. 2001, 66, 196–199. [Google Scholar] [CrossRef]
- Wrona, M.; Vera, P.; Pezo, D.; Nerín, C. Identification and quantification of odours from oxobiodegradable polyethylene oxidised under a free radical flow by headspace solid-phase microextraction followed by gas chromatography, olfactometry-mass spectrometry. Talanta 2017, 172, 37–44. [Google Scholar] [CrossRef]
- Migita, K.; Iiduka, T.; Tsukamoto, K.; Sugiura, S.; Tanaka, G.; Sakamaki, G.; Matsuishi, M. Retort beef aroma that gives preferable properties to canned beef products and its aroma components. Anim. Sci. J. 2017, 88, 2050–2056. [Google Scholar] [CrossRef]
- Feng, T.; Shui, M.; Song, S.; Zhuang, H.; Sun, M.; Yao, L. Characterization of the key aroma compounds in three truffle varieties from China by flavoromics approach. Molecules 2019, 24, 3305. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hou, J.; Zhang, X.; Hu, J.; Yu, Z.; Zhu, Y. Improving the Flavor of Fermented Sausage by Increasing Its Bacterial Quality via Inoculation with Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3. Foods 2022, 11, 736. [Google Scholar] [CrossRef] [PubMed]
- Rahmawati, S.I.; Izzati, F.; Yadi, S.; Bustanussalam, E.; Simanjuntak, P. Antioxidant Activities of Mangrove Fruits Endophytic Fungus from Segara Anakan Lagoon, Indonesia. Earth Environ. Sci. 2020, 439, 012034. [Google Scholar] [CrossRef]
- Watanabe, A.; Kamada, G.; Imanari, M.; Shiba, N.; Yonai, M.; Muramoto, T. Effect of aging on volatile compounds in cooked beef. Meat Sci. 2015, 107, 12–19. [Google Scholar] [CrossRef]
- Yang, J.; Dashdorj, D.; Hwang, I. Volatile flavor components as a function of electrical stimulation and chiller aging for m. longissimus and biceps femoris of Hanwoo beef. Food Sci. Anim. Resour. 2019, 39, 474–493. [Google Scholar] [CrossRef]
- Tsao, W.X.; Chen, B.H.; Lin, P.; You, S.H.; Kao, T.H. Analysis of Furan and Its Derivatives in Food Matrices Using Solid Phase Extraction Coupled with Gas Chromatography-Tandem Mass Spectrometry. Molecules 2023, 28, 1639. [Google Scholar] [CrossRef]
- Lee, D.; Lee, H.J.; Yoon, J.W.; Kim, M.; Jo, C. Effect of Different Aging Methods on the Formation of Aroma Volatiles in Beef Strip Loins. Foods 2021, 10, 146. [Google Scholar] [CrossRef]
- Domaradzki, P.; Florek, M.; Litwińczuk, Z. Dry Ageing of Beef—Technological Aspects. Żywność Nauka Technol. Jakość 2016, 26, 17–37. [Google Scholar]
- Zhang, Y.; Kastman, E.K.; Guasto, J.S.; Wolfe, B.E. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat. Commun. 2018, 9, 336. [Google Scholar] [CrossRef]
- Pion, M.; Bshary, R.; Bindschedler, S.; Filippidou, S.; Wick, L.Y.; Job, D.; Junier, P. Gains of bacterial flagellar motility in a fungal world. Appl. Environ. Microbiol. 2013, 79, 6862–6867. [Google Scholar] [CrossRef]
- Schulz-Bohm, K.; Tyc, O.; de Boer, W.; Peereboom, N.; Debets, F.; Zaagman, N.; Janssens, T.K.S.; Garbeva, P. Fungus-associated bacteriome in charge of their host behavior. Fungal Genet. Biol. 2017, 102, 38–48. [Google Scholar] [CrossRef] [PubMed]
Trait | Control | Biostarter | ||
---|---|---|---|---|
Before Aging | After Aging | Before Aging | After Aging | |
pH | 5.68 a | 5.73 a | 5.66 a | 5.88 a |
L* | 33.71 a | 35.99 a | 35.51 a | 33.70 a |
a* | 19.70 a | 16.81 a | 18.23 a | 17.44 a |
b* | 16.93 a | 15.99 a | 18.40 a | 15.96 a |
Protein content (%) | 17.40 a | 21.55 a | 17.73 a | 23.15 a |
Fat content (%) | 17.93 a | 21.90 a | 17.91 a | 21.20 a |
Collagen content (%) | 1.14 a | 1.7 a | 1.10 a | 1.52 a |
Water holding capacity (cm2) | 6.21 a | - | 5.77 a |
Trait | Control | Biostarter |
---|---|---|
Shear force after grilling [N] | 97.93 a | 80.42 b |
Penetration force after grilling (mm) | 13.11 a | 12.41 a |
Compound Group | Compound | Control Samples | Samples with Biostarter (M. flavus) |
---|---|---|---|
Alcohols | 2-Propanol | 1.92 ± 0.71 | n.d. |
1-Hexanol | 0.72 ± 0.17 | n.d. | |
1-Heptanol | 1.89 ± 0.67 | n.d. | |
1-Octen-3-ol | 1.17 ± 0.12 a | 0.61 ± 0.08 b | |
1-Hexen-3-ol | 0.80 ± 0.43 | n.d. | |
1-Octanol | 7.12 ± 1.18 a | 6.02 ± 0.78 a | |
1-Decanol | 5.76 ± 1.37 | n.d. | |
1-Tetradecanol | n.d. | 0.09 ± 0.04 | |
Ketones | 2-Butanone | 0.69 ± 0.16 a | 0.36 ± 0.06 b |
3-hydroxy-2-Butanone | 3.84 ± 0.95 | n.d. | |
Aldehydes | Pentanal | 0.43 ± 0.18 b | 0.94 ± 0.22 a |
Hexanal | 2.43 ± 0.22 b | 8.69 ± 1.28 a | |
Heptanal | 6.81 ± 1.13 a | 10.18 ± 0.91 a | |
Octanal | 11.06 ± 2.00 a | 12.51 ± 1.35 a | |
Nonanal | 43.76 ± 4.77 a | 43.92 ± 1.66 a | |
cis-2-Ethylcyclopentanecarboxaldehyde | 0.14 ± 0.04 | n.d. | |
Decanal | 3.35 ± 0.34 | n.d. | |
2-Decenal | 1.97 ± 0.19 b | 3.80 ± 0.38 a | |
2-Nonenal | n.d. | 3.76 ± 0.70 | |
Hydrocarbones | Octane | 0.71 ± 0.15 | n.d. |
6-Tetradecene | 0.09 ± 0.06 | n.d. | |
Tetradecane | 0.45 ± 0.08 | n.d. | |
Pentadecane | 0.45 ± 0.28 | n.d. | |
Terpenes | L-Limonene | 1.13 ± 0.18 a | 1.08 ± 0.07 a |
Acids | Heptanoic acid | 2.72 ± 0.23 a | 0.69 ± 0.07 b |
trans-2-Undecenoic acid | n.d. | 4.08 ± 0.44 | |
Esters | Formic acid, hexyl ester | n.d. | 0.90 ± 0.22 |
10-Undecenoic acid, methyl ester | n.d. | 0.14 ± 0.03 | |
4-methyl-pentanoic acid, methyl ester | n.d. | 0.27 ± 0.02 | |
Others | 1,2-dimethyl-, cis-Cyclopentane | n.d. | 1.07 ± 0.20 |
5-propyl-decane | 0.47 ± 0.19 | n.d. | |
4,5-diethyl-octane | 0.07 ± 0.03 | n.d. |
Medium | Survival in Control | Survival after Biostarter Usage |
---|---|---|
Chromogenic Listeria | 100% | 100% |
PALCAM | 90% | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybylski, W.; Jaworska, D.; Kresa, P.; Ostrowski, G.; Płecha, M.; Korsak, D.; Derewiaka, D.; Adamczak, L.; Siekierko, U.; Pawłowska, J. Fungal Biostarter and Bacterial Occurrence of Dry-Aged Beef: The Sensory Quality and Volatile Aroma Compounds after 21 Days of Aging. Appl. Sci. 2024, 14, 9053. https://doi.org/10.3390/app14199053
Przybylski W, Jaworska D, Kresa P, Ostrowski G, Płecha M, Korsak D, Derewiaka D, Adamczak L, Siekierko U, Pawłowska J. Fungal Biostarter and Bacterial Occurrence of Dry-Aged Beef: The Sensory Quality and Volatile Aroma Compounds after 21 Days of Aging. Applied Sciences. 2024; 14(19):9053. https://doi.org/10.3390/app14199053
Chicago/Turabian StylePrzybylski, Wiesław, Danuta Jaworska, Paweł Kresa, Grzegorz Ostrowski, Magdalena Płecha, Dorota Korsak, Dorota Derewiaka, Lech Adamczak, Urszula Siekierko, and Julia Pawłowska. 2024. "Fungal Biostarter and Bacterial Occurrence of Dry-Aged Beef: The Sensory Quality and Volatile Aroma Compounds after 21 Days of Aging" Applied Sciences 14, no. 19: 9053. https://doi.org/10.3390/app14199053
APA StylePrzybylski, W., Jaworska, D., Kresa, P., Ostrowski, G., Płecha, M., Korsak, D., Derewiaka, D., Adamczak, L., Siekierko, U., & Pawłowska, J. (2024). Fungal Biostarter and Bacterial Occurrence of Dry-Aged Beef: The Sensory Quality and Volatile Aroma Compounds after 21 Days of Aging. Applied Sciences, 14(19), 9053. https://doi.org/10.3390/app14199053