Analysis of Aspirin and Dipyridamole in a Modern Pharmaceutical Formulation-Drug Release Study and Permeability Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Equipment
2.2. Reagents and Solvents
2.3. Solutions
2.3.1. Stimulated Fluids
2.3.2. Stock Solutions and Diluent
2.4. Preparation of the Formulation
2.5. Pretreatment of Samples (Preparation) Before Analysis
2.6. In Vitro Digestion Protocol
2.6.1. In Vitro Samples Pretreatment
2.6.2. Sediment Reconstitution
2.7. In Vitro Permeability Study
3. Results and Discussion
3.1. Chromatographic Method Development
3.2. Method Validation
3.2.1. System Suitability
3.2.2. Selectivity
3.2.3. Linearity
3.2.4. Precision Repeatability
3.2.5. Accuracy
3.2.6. Limit of Detection (LOD) and Quantification (LOQ)
3.2.7. Robustness
3.3. Stability Study of the Analytes
3.3.1. Stability in Different Solvents
3.3.2. Stability at 37 °C in Different Medias
3.4. Formulation Studies
3.4.1. Preparation Processing Method
3.4.2. Formulation Stability Study
3.4.3. Drug Release and Permeability Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, A.M.; Prasad, V.N.; Fidelis, N. Drugs used in thromboembolic disorders: An insight into their mechanisms. Asian J. Cardiol. Res. 2019, 2, 55–65. [Google Scholar]
- Alkarithi, G.; Duval, C.; Shi, Y.; Macrae, F.L.; Ariëns, R.A.S. Thrombus Structural Composition in Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2370–2383. [Google Scholar] [CrossRef]
- Patrono, C.; Morais, J.; Baigent, C.; Collet, J.-P.; Fitzgerald, D.; Halvorsen, S.; Rocca, B.; Siegbahn, A.; Storey, R.F.; Vilahur, G. Antiplatelet Agents for the Treatment and Prevention of Coronary Atherothrombosis. J. Am. Coll. Cardiol. 2017, 70, 1760–1776. [Google Scholar] [CrossRef]
- Jourdi, G.; Lordkipanidzé, M.; Philippe, A.; Bachelot-Loza, C.; Gaussem, P. Current and Novel Antiplatelet Therapies for the Treatment of Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 13079. [Google Scholar] [CrossRef]
- Kamarova, M.; Baig, S.; Patel, H.; Monks, K.; Wasay, M.; Ali, A.; Redgrave, J.; Majid, A.; Bell, S.M. Antiplatelet Use in Ischemic Stroke. Ann. Pharmacother. 2022, 56, 1159–1173. [Google Scholar] [CrossRef]
- Greco, A.; Occhipinti, G.; Giacoppo, D.; Agnello, F.; Laudani, C.; Spagnolo, M.; Mauro, M.S.; Rochira, C.; Finocchiaro, S.; Mazzone, P.M.; et al. Antithrombotic Therapy for Primary and Secondary Prevention of Ischemic Stroke. J. Am. Coll. Cardiol. 2023, 82, 1538–1557. [Google Scholar] [CrossRef] [PubMed]
- Allahham, M.; Lerman, A.; Atar, D.; Birnbaum, Y. Why Not Dipyridamole: A Review of Current Guidelines and Re-evaluation of Utility in the Modern Era. Cardiovasc. Drugs Ther. 2022, 36, 525–532. [Google Scholar] [CrossRef]
- Mattiello, T.; Guerriero, R.; Lotti, L.V.; Trifirò, E.; Felli, M.P.; Barbarulo, A.; Pucci, B.; Gazzaniga, P.; Gaudio, C.; Frati, L.; et al. Aspirin Extrusion From Human Platelets Through Multidrug Resistance Protein-4–Mediated Transport. J. Am. Coll. Cardiol. 2011, 58, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Lenz, T.L.; Hilleman, D.E. Aggrenox: A Fixed-Dose Combination of Aspirin and Dipyridamole. Ann. Pharmacother. 2000, 34, 1283–1290. [Google Scholar] [CrossRef]
- Chan, B.P.L.; Wong, L.Y.H.; Tan, B.Y.Q.; Yeo, L.L.L.; Venketasubramanian, N. Dual Antiplatelet Therapy for the Acute Management and Long-term Secondary Prevention of Ischemic Stroke and Transient Ischemic Attack, An Updated Review. J. Cardiovasc. Dev. Dis. 2024, 11, 48. [Google Scholar] [CrossRef]
- Michelson, A.D. Antiplatelet Drugs in the Management of Thrombotic/Ischemic Events in Children. In Platelets; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1079–1083. [Google Scholar] [CrossRef]
- Monagle, P.; Chan, A.K.C.; Goldenberg, N.A.; Ichord, R.N.; Journeycake, J.M.; Nowak-Gottl, U.; Vesely, S.K. Antithrombotic Therapy in Neonates and Children. Chest 2012, 141, e737S–e801S. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Gan, Q.; Ma, W.; Qiao, C.; Luo, Y. Efficacy of dipyridamole plus IVIG and aspirin on anti-platelet aggregation factors and inflammatory factors in children with Kawasaki disease. Am. J. Transl. Res. 2025, 17, 330–337. [Google Scholar] [CrossRef]
- Sivén, M.; Kovanen, S.; Siirola, O.; Hepojoki, T.; Isokirmo, S.; Laihanen, N.; Eränen, T.; Pellinen, J.; Juppo, A.M. Challenge of paediatric compounding to solid dosage forms sachets and hard capsules–Finnish perspective. J. Pharm. Pharmacol. 2017, 69, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Fijałkowski, Ł.; Skubiszewska, M.; Grześk, G.; Koech, F.K.; Nowaczyk, A. Acetylsalicylic Acid–Primus Inter Pares in Pharmacology. Molecules 2022, 27, 8412. [Google Scholar] [CrossRef]
- Patel, H.; Raje, V.; Maczko, P.; Patel, K. Application of 3D printing technology for the development of dose adjustable geriatric and pediatric formulation of celecoxib. Int. J. Pharm. 2024, 655, 123941. [Google Scholar] [CrossRef]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. Honey-Based Medicinal Formulations: A Critical Review. Appl. Sci. 2021, 11, 5159. [Google Scholar] [CrossRef]
- Synaridou, M.S.; Morichovitou, A.K.; Markopoulou, C.K. Innovative Pediatric Formulations: Ibuprofen in Chocolate-Coated Honey Core. J. Pharm. Innov. 2020, 15, 404–415. [Google Scholar] [CrossRef]
- Mennella, J.A.; Pepino, M.Y.; Reed, D.R. Genetic and Environmental Determinants of Bitter Perception and Sweet Preferences. Pediatrics 2005, 115, e216–e222. [Google Scholar] [CrossRef]
- Abraham, J.; Mathew, F. Taste masking of peadiatric formulation: A review on technologies, recent trends and regulatory aspects. Int. J. Pharm. Pharm. Sci. 2014, 6, 12–19. [Google Scholar]
- El-Ragehy, N.A.; Hassan, N.Y.; Tantawy, M.A.; Abdelkawy, M. Simultaneous Determination of Aspirin, Dipyridamole and Two of Their Related Impurities in Capsules by Validated TLC-Densitometric and HPLC Methods. J. Chromatogr. Sci. 2016, 54, 1120–1128. [Google Scholar] [CrossRef]
- Thamizhanban, D.; Rani, G.T.; Krishnasamy, K. Development of RP-HPLC method for simultaneous evaluation of uniformity of dosage units from aspirin and dipyridamole extended-release capsules. Int. J. Pharm. Sci. Res. 2020, 11, 2470–2481. [Google Scholar] [CrossRef]
- Prakash, K.; Kalakuntla, R.R.; Sama, J.R. Rapid and simultaneous determination of aspirin and dipyridamole in pharmaceutical formulations by reversed-phase high performance liquid chromatography (RP-HPLC) method. Afr. J. Pharm. Pharmacol. 2011, 5, 244–251. [Google Scholar]
- Rajput, A.P.; Sonanis, M.C. Development and validation of a rapid RP-UPLC method for the determination of aspirin and dipyridamole in combined capsule formulation. Int. J. Pharm. Pharm. Sci. 2011, 3, 156–160. [Google Scholar]
- Hammud, H.H.; El Yazbi, F.A.; Mahrous, M.E.; Sonji, G.M.; Sonji, N.M. Stability-Indicating Spectrofluorimetric and RP-HPLC Methods for the Determination of Aspirin and Dipyridamole in their Combination. Open Spectrosc. J. 2008, 2, 19–28. [Google Scholar] [CrossRef]
- Umapathi, P.; Parimoo, P.; Thomas, S.K.; Agarwal, V. Spectrofluorometric estimation of aspirin and dipyridamole in pure admixtures and in dosage forms. J. Pharm. Biomed. Anal. 1997, 15, 1703–1708. [Google Scholar] [CrossRef]
- Fahelelbom, K.M.; El-Shabrawy, Y. Simultaneous determination of dipyridamole and acetylsalicylic acid in pharmaceuticals and biological fluids by synchronous and first derivative synchronous fluorimetry. J. Pharm. Sci. Res. 2019, 11, 2949–2955. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.A.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Jabeen, F.; Wahab, S.; Hashmi, M.S.; Mehmood, Z.; Riaz, A.; Ayub, M.; Muneeb, M. Liquid stevia extract as a substitute of sucrose in the preparation of guava drink. Fresenius Environ. Bull. 2019, 28, 233–243. [Google Scholar]
- Das, K.; Abdoolah, T.A.; Sounder, J. Formulation and evaluation of Stevia oral hygiene preparation: A noble herbal toothpaste. Ann. Phytomed. Int. J. 2020, 9, 91–97. [Google Scholar] [CrossRef]
- Kamaris, G.; Mitsiou, V.-P.M.; Chachlioutaki, K.; Almpani, S.; Markopoulou, C.K. Development and Validation of an HPLC-FLD Method for the Determination of Pyridoxine and Melatonin in Chocolate Formulations—Digestion Simulation Study. Chemistry 2025, 7, 14. [Google Scholar] [CrossRef]
- Tsanaktsidou, E.; Chatzitaki, A.-T.; Chatzichristou, A.; Fatouros, D.G.; Markopoulou, C.K. A Comparative Study and Prediction of the Ex Vivo Permeation of Six Vaginally Administered Drugs across Five Artificial Membranes and Vaginal Tissue. Molecules 2024, 29, 2334. [Google Scholar] [CrossRef] [PubMed]
- Bakar, S.K.; Niazi, S. Stability of Aspirin in Different Media. J. Pharm. Sci. 1983, 72, 1024–1026. [Google Scholar] [CrossRef]
- Nordström, F.L.; Rasmuson, Å.C. Solubility and Melting Properties of Salicylic Acid. J. Chem. Eng. Data 2006, 51, 1668–1671. [Google Scholar] [CrossRef]
- Hayat, S.; Ali, B.; Ahmad, A. Salicylic Acid: Biosynthesis, Metabolism and Physiological Role in Plants. In Salicylic Acid: A Plant Hormone; Springer: Dordrecht, The Netherlands, 2006; pp. 1–14. [Google Scholar] [CrossRef]
- Özdemir, T.; Keskiner, A.Ü. Spectroscopic Analysis of the Boric Acid and Salicylic acid-Boric acid-Ethanol Solution. J. Boron 2018, 3, 118–125. [Google Scholar] [CrossRef]
- Abounassif, M.A.; Mian, M.S.; Mian, N.A.A. Salicylic Acid. Anal. Profiles Drug Subst. Excip. 1994, 23, 421–470. [Google Scholar] [CrossRef]
- Shah, D.K. Formulation and characterization of inclusion complex of acetyl salicylic acid (aspirin) and [beta]-cyclodextrin by solvent evaporation & its comparative study to aspirin alone. Int. J. Pharm. Sci. Res. 2012, 3, 2831. [Google Scholar]
- Olmsted, J.A. Synthesis of Aspirin: A General Chemistry Experiment. J. Chem. Educ. 1998, 75, 1261. [Google Scholar] [CrossRef]
- Dressman, J.B.; Nair, A.; Abrahamsson, B.; Barends, D.M.; Groot, D.W.; Kopp, S.; Langguth, P.; Polli, J.E.; Shah, V.P.; Zimmer, M. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Acetylsalicylic Acid. J. Pharm. Sci. 2012, 101, 2653–2667. [Google Scholar] [CrossRef]
- Florey, K. Aspirin. Anal. Profiles Drug Subst. 1979, 8, 1–46. [Google Scholar] [CrossRef]
- Li, R.; Fu, L.; Zhang, J.; Wang, W.; Chen, X.; Zhao, J.; Han, D. Solid-liquid equilibrium and thermodynamic properties of dipyridamole form II in pure solvents and mixture of (N-methyl pyrrolidone + isopropanol). J. Chem. Thermodyn. 2020, 142, 105981. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef] [PubMed]
- Zaki, N.M.; Artursson, P.; Bergström, C.A.S. A Modified Physiological BCS for Prediction of Intestinal Absorption in Drug Discovery. Mol. Pharm. 2010, 7, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Belal, F.; Al-Badr, A.A. Dipyridamole: Comprehensive Profile. Profiles Drug Subst. Excip. Relat. Methodol. 2005, 31, 215–280. [Google Scholar] [CrossRef]
- ICH. ICH Q2(R2) Guideline on Validation of Analytical Procedures. December 2023. Available online: www.ema.europa.eu/contact (accessed on 19 February 2025).
- Skibinski, R.; Komsta, L. The stability and degradation kinetics of acetylsalicylic acid in different organic solutions revisited—An UHPLC–ESI-QTOF spectrometry study. Curr. Issues Pharm. Med. Sci. 2016, 29, 39–41. [Google Scholar] [CrossRef]
- Gharbo, S.A.; Williamson, M.J. Degradation of Aspirin in Solutions. Drug Dev. Ind. Pharm. 1986, 12, 927–929. [Google Scholar] [CrossRef]
- Jun, H.W.; Whitworth, C.W.; Luzzi, L.A. Aspirin stability in substituted and nonsubstituted polyhydric alcohols in absence and presence of added water. J. Pharm. Sci. 1974, 63, 133–135. [Google Scholar] [CrossRef]
- Needham, T.E.; Gerraughty, R.J. Ultrasonic Degradation of Aspirin in Mixed Solvent Systems. J. Pharm. Sci. 1969, 58, 62–64. [Google Scholar] [CrossRef]
- Chang, R.-K.; Whitworth, C.W. Aspirin Degradation in Mixed Polar Solvents. Drug Dev. Ind. Pharm. 1984, 10, 515–526. [Google Scholar] [CrossRef]
- Tafere, D.A. Chemical composition and uses of Honey: A Review. J. Food Sci. Nutr. Res. 2021, 04, 194–201. [Google Scholar] [CrossRef]
- Derendorf, H.; Estes, K.S. The Significance of Optimized Formulation for Dipyridamole in Stroke Risk Reduction. Eur. Neurol. Rev. 2007, 2, 21. [Google Scholar] [CrossRef]
- Hollander, D.; Dadufalza, V.D.; Fairchild, P.A. Intestinal absorption of aspirin: Influence of pH, taurocholate, ascorbate, and ethanol. J. Lab. Clin. Med. 1981, 98, 591–598. [Google Scholar] [PubMed]
- Rocca, B.; Petrucci, G. Variability in the Responsiveness to Low-Dose Aspirin: Pharmacological and Disease-Related Mechanisms. Thrombosis 2012, 2012, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, D.; Berthelsen, R.; Sassene, P.J.; Selen, A.; Müllertz, A. In Vitro Model Simulating Gastro-Intestinal Digestion in the Pediatric Population (Neonates and Young Infants). AAPS PharmSciTech 2017, 18, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, M.; Statelova, M.; Holm, R.; Reppas, C.; Symilllides, M.; Vertzoni, M.; Fotaki, N. Biopharmaceutical considerations in paediatrics with a view to the evaluation of orally administered drug products—A PEARRL review. J. Pharm. Pharmacol. 2019, 71, 603–642. [Google Scholar] [CrossRef]
- Wollmer, E.; Ungell, A.-L.; Nicolas, J.-M.; Klein, S. Review of paediatric gastrointestinal physiology relevant to the absorption of orally administered medicines. Adv. Drug Deliv. Rev. 2022, 181, 114084. [Google Scholar] [CrossRef]
- Kataoka, M.; Fukahori, M.; Ikemura, A.; Kubota, A.; Higashino, H.; Sakuma, S.; Yamashita, S. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur. J. Pharm. Biopharm. 2016, 101, 103–111. [Google Scholar] [CrossRef]
- Koziolek, M.; Carrière, F.; Porter, C.J.H. Lipids in the Stomach—Implications for the Evaluation of Food Effects on Oral Drug Absorption. Pharm. Res. 2018, 35, 55. [Google Scholar] [CrossRef]
- Alshora, D.H.; Ibrahim, M.A.; Zayed, G.; Al Rwashed, M.A.; Abou-Taleb, H.A.; Ali, M.F. The role of sodium lauryl sulfate on formulation of directly compressed tablets containing simvastatin and aspirin: Effect on drugs dissolution and gastric mucosa. Saudi Pharm. J. 2022, 30, 635–645. [Google Scholar] [CrossRef]
- Ramírez-Rigo, M.V.; Olivera, M.E.; Rubio, M.; Manzo, R.H. Enhanced intestinal permeability and oral bioavailability of enalapril maleate upon complexation with the cationic polymethacrylate Eudragit E100. Eur. J. Pharm. Sci. 2014, 55, 1–11. [Google Scholar] [CrossRef]
- Klitgaard, M.; Müllertz, A.; Berthelsen, R. Estimating the Oral Absorption from Self-Nanoemulsifying Drug Delivery Systems Using an In Vitro Lipolysis-Permeation Method. Pharmaceutics 2021, 13, 489. [Google Scholar] [CrossRef]
- Yi, D.; Dong, Y.; Yao, Y.; Hong, M.; Zhu, B.; Ren, G.B.; Qi, M.H. Enhancement of solubility and dissolution rate of dipyridamole by salifying: Preparation, characterization, and theoretical calculation. J. Mol. Struct. 2024, 1296, 136838. [Google Scholar] [CrossRef]
- Nagelschmitz, J.; Blunck, M.; Kraetzschmar, J.; Ludwig, M.; Wensing, G.; Hohlfeld, T. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin. Pharmacol. 2014, 6, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Suwalsky, M.; Belmar, J.; Villena, F.; Gallardo, M.J.; Jemiola-Rzeminska, M.; Strzalka, K. Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes. Arch. Biochem. Biophys. 2013, 539, 9–19. [Google Scholar] [CrossRef] [PubMed]
Reference Title | Comments |
---|---|
Development of RP-HPLC method for simultaneous evaluation of uniformity of dosage units from aspirin and dipyridamole extended-release capsules [22] | HPLC PDA/UV-Vis Stationary phase: X Bridge C8 column (250 × 4.6 mm, 5 μm) Mobile phase: 0.05 Μ phosphate buffer pH 2.5-MeOH 55:45 v/v LOD: ACA 0.56 µg/mL, DIP 3.95 µg/mL LOQ: ACA 1.69 µg/mL, DIP 11.96 µg/mL |
Simultaneous Determination of aspirin, Dipyridamole and Two of Their Related Impurities in Capsules by Validated TLC-Densitometric and HPLC Methods [21] | TLC-Densitometric Diluents: MeOH LOD: SAL 0.26 µg/band LOQ: SAL 1.0 µg/band |
HPLC-UV Stationary phase: Zorbax ODS (5 µm, 250 mm × 4.6 mm i.d.) Mobile phase: phosphate buffer pH 3.3: ACN: triethylamine (40:60:0.03) LOD: SAL 0.70 µg/mL LOQ: SAL 2.5 µg/mL | |
Rapid and simultaneous determination of aspirin and dipyridamole in pharmaceutical formulations by RP-HPLC method [23] | Detector: PDA Stationary phase: Waters Symmetry C18 (3.5 µm, 50 × 4.6 mm) Mobile phase: 0.1% o-H3PO4: ACN (75:25) Concentration range: ACA (0.5–10 µg/mL), DIP (4–80 µg/mL) |
Development and validation of a rapid method RP-UPLC for the determination of aspirin and dipyridamole in combined capsule formulation [24] | Stationary phase: Hypersil Gold C18 (1.9 µm, 100 mm × 2.1 mm) Mobile phase: phosphate buffer and triethylamine, pH 2.5- MeOH 50:50 v/v |
Stability-Indicating Spectrofluorimetric and RP-HPLC Methods for the Determination of Aspirine and Dipyridamole in their Combination [25] | Detector: FLD Diluents: CH3COOH in CHCl3, 1% v/v LOD: ACA 0.21 µg/mL, DIP 0.37 µg/mL, SAL 0.25 µg/mL LOQ: ACA 0.97 µg/mL, DIP 1.28 µg/mL, SAL 0.36 µg/mL |
RP-HPLC- UV Stationary phase: Adsorbosil C8 (10 μm, 250 mm × 4.6 mm i.d.) Mobile phase: H2O- ACN: o-H3PO4 (65:35:2, v/v/v) LOD: ACA 0.026 µg/mL, DIP 0.044 µg/mL, SAL 0.015 µg/mL LOQ: ACA 0.074 µg/mL, DIP 0.153 µg/mL, SAL 0.085 µg/mL | |
Spectrofluorometric estimation of aspirin and dipyridamole in pure mixtures and in dosage forms [26] | Diluents: CH3COOH in CHCl3, 1% v/v Concentration range: ACA 2–12 µg/mL, DIP 2–12 µg/mL |
Simultaneous Determination of Dipyridamole and Acetylsalicylic Acid in Pharmaceuticals and Biological Fluids by Synchronous and First Derivative Synchronous Fluorimetry [27] | Diluents: MeOH, phosphate buffer pH 7.4 Concentration range: ACA 5–100 ng/mL, DIP 5–90 ng/mL LOD: 0.05–1 ng/mL |
Analytes | Retention Time (tr) | Tailing Factor (Tf) | Capacity (k’) | Resolution (Rs) | Number of Theoretical Plates (N) | HETP * × 103 USP |
---|---|---|---|---|---|---|
DIP | 5.5 | 1.05 | 1.375 | - | 2265 | 110 |
ACA | 7.2 | 0.975 | 2.1 | 3.69 | 13,818 | 18 |
SAL | 10.2 | 0.989 | 3.388 | 8 | 14,883 | 17 |
Analytes | Concentration (μg/mL) * | Equation * | %y Intercept | (R2) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|---|
DIP (UV 285 nm) | 1.6–40 | y = 67,764.0 ± 104.0 x − 2210.6 ± 2050.8 | 0.08 | 1 | 0.099 | 0.302 |
DIP (FLD λexc/λem:285/480 nm) | 52.3–156.8 * | y = 4353.8 ± 67.2 x + 11,278.5 ± 7027.0 * | 1.61 | 0.999 | 0.011 | 0.033 |
ACA (UV 230 nm) | 1.6–40 | y = 38,234.3 ± 197.6 x + 7042.4 ± 3896.7 | 0.46 | 0.999 | 0.336 | 1.019 |
DIP (UV 405 nm) | 1.6–40 | y = 15,398.3 ± 57.5 x − 2565.1 ± 1134.7 | 0.42 | 0.999 | 0.243 | 0.736 |
SAL (SAL 237 nm) | 1.6–40 | y = 50,203.2 ± 71.2 x + 292.1 ± 1403.9 | 0.014 | 1 | 0.092 | 0.279 |
APIs | Repeatability | Intermediate Precision | |||||
---|---|---|---|---|---|---|---|
Concentration (μg/mL) | RSD% | Concentration (μg/mL) | 1st Day | 2nd Day | 3rd Day | RSD% | |
DIP (UV) | 1.6 (n = 4) | 0.54 | 1.6 (n = 4) | 0.54 | 0.17 | 0.19 | 0.43 |
16 (n = 6) | 0.25 | 16 (n = 6) | 0.25 | 0.23 | 0.11 | 0.20 | |
40 (n = 4) | 0.25 | 40 (n = 4) | 0.25 | 0.78 | 1.53 | 1.75 | |
DIP (FLD) | 0.052 (n = 4) | 0.61 | 0.052 (n = 4) | 0.61 | 1.40 | 1.61 | 1.88 |
0.104 (n = 6) | 0.97 | 0.104 (n = 6) | 0.97 | 0.99 | 1.84 | 1.85 | |
0.157 (n = 4) | 0.70 | 0.157 (n = 4) | 0.70 | 0.21 | 0.33 | 0.53 | |
ACA (UV) | 1.6 (n = 4) | 0.86 | 1.6 (n = 4) | 0.86 | 1.00 | 1.64 | 1.63 |
16 (n = 6) | 0.28 | 16 (n = 6) | 0.28 | 0.20 | 0.39 | 1.26 | |
40 (n = 4) | 0.39 | 40 (n = 4) | 0.39 | 0.88 | 1.44 | 2.29 | |
SAL (UV) | 1.6 (n = 4) | 0.72 | 1.6 (n = 4) | 0.72 | 0.84 | 1.14 | 1.78 |
16 (n = 6) | 0.58 | 16 (n = 6) | 0.58 | 0.17 | 0.07 | 0.91 | |
40 (n = 4) | 0.30 | 40 (n = 4) | 0.30 | 0.80 | 1.55 | 1.25 |
Parameters | %RSD | |||||
---|---|---|---|---|---|---|
DIP | ACA | SAL | ||||
AUC | Tf | AUC | Tf | AUC | Tf | |
Flow rate mL/min (0.9, 1.0, 1.1) | 9.46 | 2.00 | 9.77 | 0.66 | 9.88 | 0.71 |
Temperature °C (29, 30, 31) | 0.29 | 2.05 | 0.85 | 0.61 | 0.18 | 1.36 |
Mobile phase A:Β (66:34, 65:35, 64:36 v/v) | 0.51 | 9.87 | 0.48 | 0.41 | 0.38 | 0.35 |
λmax (nm) (284, 285, 286 και 229, 230, 231 και 236, 237, 238) | 0.265 | 0.048 | 0.37 | 0.1 | 0.82 | 0.058 |
APIs | Jss (μg cm−2 min−1) | Papp (cm/min) * 10−2 | Statistical Significance vs. DIP |
---|---|---|---|
DIP | 0.0769 ± 0.0068 | 0.1178 ± 0.0121 | - |
ACA + SAL | 0.4778 ± 0.1561 | 0.3233 ± 0.1219 | Significant (p = 0.0439) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamaris, G.; Pantoudi, N.; Chachlioutaki, K.; Markopoulou, C.K. Analysis of Aspirin and Dipyridamole in a Modern Pharmaceutical Formulation-Drug Release Study and Permeability Assessment. Appl. Sci. 2025, 15, 6048. https://doi.org/10.3390/app15116048
Kamaris G, Pantoudi N, Chachlioutaki K, Markopoulou CK. Analysis of Aspirin and Dipyridamole in a Modern Pharmaceutical Formulation-Drug Release Study and Permeability Assessment. Applied Sciences. 2025; 15(11):6048. https://doi.org/10.3390/app15116048
Chicago/Turabian StyleKamaris, Georgios, Nikoletta Pantoudi, Konstantina Chachlioutaki, and Catherine K. Markopoulou. 2025. "Analysis of Aspirin and Dipyridamole in a Modern Pharmaceutical Formulation-Drug Release Study and Permeability Assessment" Applied Sciences 15, no. 11: 6048. https://doi.org/10.3390/app15116048
APA StyleKamaris, G., Pantoudi, N., Chachlioutaki, K., & Markopoulou, C. K. (2025). Analysis of Aspirin and Dipyridamole in a Modern Pharmaceutical Formulation-Drug Release Study and Permeability Assessment. Applied Sciences, 15(11), 6048. https://doi.org/10.3390/app15116048