Comparative Exploration of Antioxidant Properties of Alcalase- and Trypsin-Hydrolyzed Porcine By-Products and Their Classification for Industrial Use
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Enzymatic Hydrolysis Procedure
2.3. Chemical Composition and Extractable Protein of Porcine Organs
2.3.1. Chemical Composition
2.3.2. Extractable Protein
2.4. Analysis of Hydrolytic Characteristics
2.4.1. Degree of Hydrolysis
2.4.2. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.5. Antioxidant Assay of Porcine By-Products Hydrolyzates
2.5.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.5.2. 2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Radical Scavenging Activity
2.5.3. Hydroxyl Radical Scavenging Activity
2.5.4. Reducing Power
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Extractable Protein of Porcine Organs
3.1.1. Chemical Composition
3.1.2. Extractable Protein
3.2. Hydrolytic Characteristics
3.2.1. Degree of Hydrolysis
3.2.2. SDS-PAGE
3.3. Antioxidant Capacities of Porcine Organ Hydrolyzates
3.3.1. DPPH Radical Scavenging Activity
3.3.2. ABTS Radical Scavenging Activity
3.3.3. Hydroxyl Radical Scavenging Activity
3.3.4. Reducing Power
3.4. Cluster Analysis and Raw Material Classification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irshad, A.; Sharma, B.D. Abattoir By-Product Utilization for Sustainable Meat Industry: A Review. J. Anim. Pro. Adv. 2015, 5, 681–696. [Google Scholar]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. The Potential of Animal By-Products in Food Systems: Production, Prospects, and Challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein Hydrolysates from Animal Processing By-Products as a Source of Bioactive Molecules with Interest in Animal Feeding: A Review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Zheng, K.; Liang, M.; Yao, H.; Wang, J.; Chang, Q. Effect of Size-Fractionated Fish Protein Hydrolysate on Growth and Feed Utilization of Turbot (Scophthalmus maximus L.). Aquac. Res. 2012, 44, 895–902. [Google Scholar] [CrossRef]
- Hu, R.; Dunmire, K.M.; Truelock, C.N.; Paulk, C.B.; Aldrich, G.; Li, Y. Antioxidant Performances of Corn Gluten Meal and DDGS Protein Hydrolysates in Food, Pet Food, and Feed Systems. J. Agric. Food Res. 2020, 2, 100030. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. Antioxidant and Antimicrobial Activity of Protein Hydrolysate Extracted from Porcine Liver. Indian J. Anim. Sci. 2017, 87, 711–717. [Google Scholar] [CrossRef]
- Borrajo, P.; Pateiro, M.; Gagaoua, M.; Franco, D.; Zhang, W.; Lorenzo, J.M. Evaluation of the Antioxidant and Antimicrobial Activities of Porcine Liver Protein Hydrolysates Obtained Using Alcalase, Bromelain, and Papain. Appl. Sci. 2020, 10, 2290. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Borrajo, P.; Pateiro, M.; Lorenzo, J.M.; Franco, D. Antioxidant Activity and Peptidomic Analysis of Porcine Liver Hydrolysates Using Alcalase, Bromelain, Flavourzyme and Papain Enzymes. Food Res. Int. 2020, 137, 109389. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. In-Vitro Assessment of Antioxidant and Antimicrobial Activity of Whole Porcine-Liver Hydrolysates and Its Fractions. Anim. Prod. Sci. 2018, 59, 641–646. [Google Scholar] [CrossRef]
- Seong, P.N.; Park, K.M.; Cho, S.H.; Kang, S.M.; Kang, G.H.; Park, B.Y.; Moon, S.S.; Ba, H.V. Characterization of Edible Pork By-products by Means of Yield and Nutritional Composition. Korean J. Food Sci. Anim. Resour. 2014, 34, 297–306. [Google Scholar] [CrossRef]
- Hoa, V.B.; Kim, D.G.; Song, D.H.; Ko, J.H.; Kim, H.W.; Bae, I.S.; Kim, Y.S.; Cho, S.H. Quality Properties and Flavor-Related Components of Beef Longissimus Lumborum Muscle from Four Korean Native Cattle Breeds. Food Sci. Anim. Resour. 2024, 44, 832–848. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Kim, T.-K.; Yun, H.-J.; Kim, J.; Cha, J.Y.; Lee, J.H.; Choi, Y.-S. Effects of Grafted Myofibrillar Protein as a Phosphate Replacer in Brined Pork Loin. Meat Sci. 2023, 199, 109142. [Google Scholar] [CrossRef] [PubMed]
- Morais, H.A.; Silvestre, M.P.C.; Silva, V.D.M.; Silva, M.R.; Simoes e Silva, A.C.; Silveira, J.N. Correlation between the Degree of Hydrolysis and the Peptide Profile of Whey Protein Concentrate Hydrolysates: Effect of the Enzyme Type and Reaction Time. Am. J. Food Technol. 2013, 8, 1–16. [Google Scholar] [CrossRef]
- Song, D.-H.; Ham, Y.-K.; Noh, S.-W.; Chin, K.B.; Kim, H.-W. Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths. Foods 2020, 9, 721. [Google Scholar] [CrossRef] [PubMed]
- de Castro, R.J.S.; Sato, H.H. A Response Surface Approach on Optimization of Hydrolysis Parameters for the Production of Egg White Protein Hydrolysates with Antioxidant Activities. Biocatal. Agric. Biotechnol. 2015, 4, 55–62. [Google Scholar] [CrossRef]
- Cui, Q.; Sun, Y.; Cheng, J.; Guo, M. Effect of Two-Step Enzymatic Hydrolysis on the Antioxidant Properties and Proteomics of Hydrolysates of Milk Protein Concentrate. Food Chem. 2022, 366, 130711. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jin, Y.; Lin, S.; Jones, G.S.; Chen, F. Purification and Identification of Novel Antioxidant Peptides from Egg White Protein and Their Antioxidant Activities. Food Chem. 2015, 175, 258–266. [Google Scholar] [CrossRef]
- Rivera, J.A.; Sebranek, J.G.; Rust, R.E.; Tabatabai, L.B. Composition and Protein Fractions of Different Meat By-Products Used for Pet Food Compared with Mechanically Separated Chicken (MSC). Meat Sci. 2000, 55, 53–59. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. Current Insights into Protein Solubility: A Review of Its Importance for Alternative Proteins. Food Hydrocoll. 2023, 137, 108416. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Liu, Q.; Kong, B.; Xiong, Y.L.; Xia, X. Antioxidant Activity and Functional Properties of Porcine Plasma Protein Hydrolysate as Influenced by the Degree of Hydrolysis. Food Chem. 2010, 118, 403–410. [Google Scholar] [CrossRef]
- Mora, L.; Toldrá, F. Advanced Enzymatic Hydrolysis of Food Proteins for the Production of Bioactive Peptides. Curr. Opin. Food Sci. 2023, 49, 100973. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, L.; Cai, J.; Toldrá, F.; Hao, Y.; Zhang, W. Identification of Hepatoprotective Peptides from Porcine Liver and Its Interaction with Ethanol Metabolizing Enzymes In Vitro. Food Biosci. 2023, 55, 103036. [Google Scholar] [CrossRef]
- Kim, K.-B.-W.; Song, E.-J.; Lee, S.-Y.; Park, J.-G.; Lee, J.-W.; Byun, M.-W.; Ahn, D.-H. Changes in Antigenicity of Porcine Serum Albumin in Gamma-Irradiated Sausage Extract by Treatment with Pepsin and Trypsin. Radiat. Phys. Chem. 2011, 80, 1258–1262. [Google Scholar] [CrossRef]
- Damgaard, T.; Lametsch, R.; Otte, J. Antioxidant Capacity of Hydrolyzed Animal By-Products and Relation to Amino Acid Composition and Peptide Size Distribution. J. Food Sci. Technol. 2015, 52, 6511–6519. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.C.; Jen, J.F.; Tsai, T.H. Hydroxyl Radical in Living Systems and Its Separation Methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 781, 481–496. [Google Scholar] [CrossRef]
- Liu, C.; Ding, W.-J.; Huo, Y.; Liu, A.-J. Comprehensive Assessment of Peptide Derived from Pig Spleen: Preparation, Bioactivity and Structure-Activity Relationships. Food Biosci. 2023, 56, 103361. [Google Scholar] [CrossRef]
- Liu, C.; An, H.-X.; Liu, A.-J. Functional Development of Porcine Spleen as a By-Product of Pig Slaughterhouse: Preparation, Identification and Bioactive Activities of a Novel Peptide. Food Biosci. 2023, 56, 103448. [Google Scholar] [CrossRef]
- Czelej, M.; Garbacz, K.; Czernecki, T.; Wawrzykowski, J.; Waśko, A. Protein Hydrolysates Derived from Animals and Plants—A Review of Production Methods and Antioxidant Activity. Foods 2022, 11, 1953. [Google Scholar] [CrossRef]
Trait | Heart | Kidney | Spleen | Liver | Lung | p Value |
---|---|---|---|---|---|---|
Moisture (g/100 g) | 74.08 ± 0.95 b | 72.91 ± 0.34 b | 69.23 ± 0.82 c | 70.37 ± 0.45 c | 75.75 ± 0.74 a | <0.001 |
Protein (g/100 g) | 16.13 ± 0.20 c | 15.90 ± 0.40 c | 20.30 ± 0.99 a | 19.72 ± 0.42 a | 17.48 ± 0.17 b | <0.001 |
Fat (g/100 g) | 4.68 ± 0.12 a | 4.19 ± 0.04 b | 0.46 ± 0.19 d | 1.15 ± 0.11 c | 4.15 ± 0.12 b | <0.001 |
Ash (g/100 g) | 3.65 ± 0.02 c | 3.77 ± 0.01 b | 3.79 ± 0.00 b | 4.41 ± 0.06 a | 3.78 ± 0.00 b | <0.001 |
Collagen (g/100 g) | 0.88 ± 0.21 | 1.09 ± 0.14 | 1.07 ± 0.11 | 1.06 ± 0.01 | 1.57 ± 0.41 | NS 1 |
Factor | Cluster 1 (n = 1) | Cluster 2 (n = 4) | Cluster 3 (n = 8) | Cluster 4 (n = 2) |
---|---|---|---|---|
Z-score (DPPH radical IC50) | 1.886 | 0.924 | −0.500 | −0.793 |
Z-score (ABTS radical IC50) | 3.343 | 0.301 | −0.442 | −0.503 |
Z-score (OH IC50) | 1.135 | 1.210 | −0.682 | −0.259 |
Z-score (reducing power) | −1.396 | 0.970 | −0.583 | 1.091 |
Assigned treatment (1) | H | K, S, V, and L | A-H, T-H, T-K, A-S, T-S, A-V, T-V, and A-L | A-K and T-L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.; Son, W.-Y.; Jeong, E.J.; Kim, K.-S.; Shin, E.-C.; Song, D.-H.; Lee, K.-W.; Kim, H.-W. Comparative Exploration of Antioxidant Properties of Alcalase- and Trypsin-Hydrolyzed Porcine By-Products and Their Classification for Industrial Use. Appl. Sci. 2025, 15, 47. https://doi.org/10.3390/app15010047
Hwang J, Son W-Y, Jeong EJ, Kim K-S, Shin E-C, Song D-H, Lee K-W, Kim H-W. Comparative Exploration of Antioxidant Properties of Alcalase- and Trypsin-Hydrolyzed Porcine By-Products and Their Classification for Industrial Use. Applied Sciences. 2025; 15(1):47. https://doi.org/10.3390/app15010047
Chicago/Turabian StyleHwang, Jun, Woo-Young Son, Eun Ju Jeong, Kyeong-Soo Kim, Eui-Cheol Shin, Dong-Heon Song, Kyung-Woo Lee, and Hyun-Wook Kim. 2025. "Comparative Exploration of Antioxidant Properties of Alcalase- and Trypsin-Hydrolyzed Porcine By-Products and Their Classification for Industrial Use" Applied Sciences 15, no. 1: 47. https://doi.org/10.3390/app15010047
APA StyleHwang, J., Son, W.-Y., Jeong, E. J., Kim, K.-S., Shin, E.-C., Song, D.-H., Lee, K.-W., & Kim, H.-W. (2025). Comparative Exploration of Antioxidant Properties of Alcalase- and Trypsin-Hydrolyzed Porcine By-Products and Their Classification for Industrial Use. Applied Sciences, 15(1), 47. https://doi.org/10.3390/app15010047