Changes in Quality Features of Pork Burgers Prepared with Chokeberry Pomace During Storage
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Black Chokeberry Pomace and Determination of Dry Matter in Fresh Pomace
2.3. Pork Burgers Formulation and Production and Experiment Design
2.4. Methods
2.4.1. Culinary Quality Characteristics and Chemical Properties of Pork Burgers—Production Day
Thermal Loss
Shrinkage
Chemical Properties
2.4.2. Quality Characteristics of Pork Burgers—During Storage
pH
L*, a* and b* Color Parameters
Texture—Shear Force
Microbiological Analyses
Statistical Analysis
3. Results and Discussion
3.1. Culinary Quality Characteristics and Chemical Properties of Pork Burgers
3.2. pH Value of Pork Burgers During Storage
3.3. L*, a*, and b* Color Parameters of Pork Burgers During Storage
3.4. Texture (Shear Force) of Pork Burgers During Storage
3.5. Microbiological Quality of Pork Burgers During Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gadzała, K.; Lesiów, T. Wybrane aktualne trendy żywieniowe. Praca przeglądowa, Nauki Inżynierskie i Technologie. Pr. Nauk. Uniw. Ekon. We Wrocławiu Uniw. Ekon. We Wrocławiu 2019, 2, 9–25. [Google Scholar] [CrossRef]
- Gralak, A.; Grochowska, R.; Szczepaniak, I. Uwarunkowania implementacji gospodarki o obiegu zamkniętym w sektorze przetwórstwa spożywczego na przykładzie branży mleczarskiej. Zagadnienia Ekon. Rolnej/Probl. Agric. Econ. 2022, 372, 64–84. [Google Scholar] [CrossRef]
- Montowska, M. Konsumpcja mięsa w świetle dylematów związanych z etyka i troską o środowisko. In Proceedings of the Mięso i Jego Przyszłość w Erze Zrównoważonego Rozwoju, Poznań, Poland, 28 September 2023. [Google Scholar]
- Barusiak, B.; Kucharska, B. Opinie studentów na temat konsumpcji mięsa i jej konsekwencji dla środowiska naturalnego. Ekon. Wroc. Econ. Rev. Acta Univ. Wratislav. 2020, 4008, 53–64. [Google Scholar] [CrossRef]
- Collier, E.S.; Normann, A.; Harris, K.L.; Oberrauter, L.-M.; Bergman, P. Making More Sustainable Food Choices One Meal at a Time: Psychological and Practical Aspects of Meat Reduction and Substitution. Foods 2022, 11, 1182. [Google Scholar] [CrossRef] [PubMed]
- Hązła, M.; Michowska, K. Limiting meat consumption in the view of the students of the Poznań University of Economics and Business. Res. Pap. Econ. Financ. 2022, 6, 107–120. [Google Scholar] [CrossRef]
- Ammann, J.; Mack, G.; El Benni, N.; Jin, S.; Newell-Price, P.; Tindale, S.; Hunter, E.; Vicario-Modroño, V.; Gallardo-Cobos, R.; Sánchez-Zamora, P.; et al. Consumers across five European countries prioritize animal welfare above environmental sustainability when buying meat and dairy products. Food Qual. Prefer. 2024, 117, 105179. [Google Scholar] [CrossRef]
- Grasso, S.; Goksen, G. The best of both worlds? Challenges and opportunities in the development of hybrid meat products from last 3 years. LWT—Food Sci. Technol. 2023, 173, 114235. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; López-Hernández, L.H. Food Vegetable and Fruit Waste Used in Meat Products. Food Rev. Int. 2020, 38, 628–654. [Google Scholar] [CrossRef]
- Kawecka, L.; Galus, S. Wytłoki owocowe—Charakterystyka i możliwości zagospodarowania®. Postępy Tech. Przetwórstwa Spożywczego/Technol. Prog. Food Process. 2021, 1, 156–167. [Google Scholar]
- Majerska, J.; Michalska, A.; Figiel, A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Technol. 2019, 88, 207–219. [Google Scholar] [CrossRef]
- Diez-Sánchez, E.; Quiles, A.; Hernando, I. Use of Berry Pomace to Design Functional Foods. Food Rev. Int. 2023, 39, 3204–3224. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Zorzi, M.; Aigotti, R.; Medana, C. The effect of blueberry pomace on the oxidative stability and cooking properties of pork patties during chilled storage. J. Food Process. Preserv. 2020, 44, e14520. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Unal, K.; Dilek, N.M.; Poçan, H.B.; Karakaya, M. Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage. Meat Sci. 2022, 187, 108765. [Google Scholar] [CrossRef]
- Skwarek, P.; Karwowska, M. Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace. Biomolecules 2022, 12, 1695. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. [Google Scholar] [CrossRef]
- Garrido, M.D.; Auqui, M.; Martí, N.; Belén Linares, M. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT—Food Sci. Technol. 2011, 44, 2238–2243. [Google Scholar] [CrossRef]
- Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P.R. Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food Bioprod. Process. 2017, 105, 36–50. [Google Scholar] [CrossRef]
- Nemetz, N.J.; Schieber, A.; Weber, F. Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules 2021, 26, 2689. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed]
- Production of Agricultural and Horticultural Crops in 2022. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/produkcja-upraw-rolnych-i-ogrodniczych-w-2022-roku,9,21.html (accessed on 10 October 2024).
- Negreanu-Pirjol, B.-S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.-M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health benefits of antioxidant bioactive compounds from Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef] [PubMed]
- Białek, M.; Rutkowska, J.; Hallmann, E. Aronia czarnoowocowa (Aronia melanocarpa) jako potencjalny składnik żywności funkcjonalnej. ZYWN-Nauk. Technol. Ja. 2012, 6, 21–30. Available online: https://wydawnictwo.pttz.org/wp-content/uploads/2015/02/02_Bialek.pdf (accessed on 1 September 2024).
- Sójka, M.; Kołodziejczyk, K.; Milala, J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Int. Crops Prod. 2013, 51, 77–86. [Google Scholar] [CrossRef]
- Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product. Agriculture 2012, 2, 244–258. [Google Scholar] [CrossRef]
- Kapci, B.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Cegiełka, A.; Perchuć, J.; Pietrzak, D.; Chmiel, M. An attempt to use black chokeberry pomace in the production of hamburgers. Food Biotechnol. Agric. Sci. 2024, 78, 68–73. [Google Scholar] [CrossRef]
- Polish Standard PN-A-82109:2010; Meat and Meat Products—Determination of Fat, Protein and Water Content—Near Infrared Transmission Spectrometry (NIT) Method Using Calibration on Artificial Neural Networks (ANN). Polish Committee for Standardization: Warsaw, Poland, 2010.
- Mokrzycki, W.S.; Tatol, M. Color difference ΔE—A survey. M.G.&V. 2011, 20, 383–411. [Google Scholar]
- PN-EN ISO 6887-2:2017; Microbiology of the Food Chain. Preparation of Test Samples, Initial Suspension, and Decimal Dilutions for Microbiological Examination. Part 2: Specific Rules for the Preparation of Meat and Meat Products. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 4833-2:2013-12; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Microorganisms. Part 2. Colony Count at 30 Degrees C by the Surface Plating Technique. Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN-ISO 17410:2004; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Detection of Psychrotrophic Microorganisms. Polish Committee for Standardization: Warsaw, Poland, 2004.
- PN-ISO 15214:2002; Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria. Plate method at 30 °C. Polish Committee for Standardization: Warsaw, Poland, 2002.
- PN-EN ISO 21528-1:2017; Microbiology of the Food Chain. Horizontal Method for the Detection and Enumeration of Enterobacteriaceae. Part 1: Detection of Enterobacteriaceae. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 13720:2010; Meat and Meat Products-Enumeration of Presumptive Pseudomonas sp. Polish Committee for Standardization: Warsaw, Poland, 2010.
- Nowak, A.; Rygala, A.; Oltuszak-Walczak, E.; Walczak, P. The prevalence and some metabolic traits of Brochothrix thermosphacta in meat and meat products packaged in different ways. J. Sci. Food Agric. 2012, 92, 1304–1310. [Google Scholar] [CrossRef]
- PN-ISO 21527–1:2009; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Yeast and Mold. Part l: Colony Count Technique in Products with Water Activity Greater Than 0.95. Polish Committee for Standardization: Warsaw, Poland, 2009.
- Chmiel, M.; Roszko, M.; Hać-Szymańczuk, E.; Adamczak, L.; Florowski, T.; Pietrzak, D.; Cegiełka, A.; Bryła, M. Time evolution of microbiological quality and content of volatile compounds in chicken fillets packed using various techniques and stored under different conditions. Poult. Sci. 2020, 99, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Cegiełka, A.; Chmiel, M.; Hać-Szymańczuk, E.; Pietrzak, D. Evaluation of the Effect of Sage (Salvia officinalis L.) Preparations on Selected Quality Characteristics of Vacuum-Packed Chicken Meatballs Containing Mechanically Separated Meat. Appl. Sci. 2022, 12, 12890. [Google Scholar] [CrossRef]
- Cegiełka, A.; Bonderski, M. Wpływ dodatku preparatów błonnika pszennego na jakość hamburgerów wołowych. Zesz. Probl. Postęp. Nauk Rol. 2010, 552, 29–37. [Google Scholar]
- Cegiełka, A.; Włoszczuk, K.; Miazek, J.; Hać-Szymańczuk, E. Wpływ preparatu błonnika owsianego VITACEL® HF 600 na jakość hamburgerów wołowo-wieprzowych. Zesz. Probl. Postęp. Nauk Rol. 2015, 583, 35–43. [Google Scholar]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Viuda-Martos, M. Quality characteristics of pork burger added with albedo-fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Meat Sci. 2014, 97, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Di Gregorio, P.; Rando, A.; Perna, A.M. Quality and sensorial evaluation of beef burgers added with Sicilian sumac (Rhus coriaria L.). Heliyon 2024, 10, e26848. [Google Scholar] [CrossRef]
- Savadkoohi, S.; Hoogenkamp, H.; Shamsi, K.; Farahnaky, A. Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat Sci. 2014, 97, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Tamkutė, L.; Vaicekauskaitė, R.; Gil, B.M.; Rovira Carballido, J.; Venskutonis, P.R. Black chokeberry (Aronia melanocarpa L.) pomace extracts inhibit food pathogenic and spoilage bacteria and increase the microbiological safety of pork products. J. Food Process. Preserv. 2021, 45, e15220. [Google Scholar] [CrossRef]
- Tyburcy, A.; Ścibisz, I.; Jabłońska, A. Wpływ dodatku śliwek na wybrane właściwości burgerów wieprzowych. Nauki Inżynierskie i Technologie/Eng. Sci. Technol. 2015, 1, 72–82. Available online: http://fbc.pionier.net.pl/id/oai:dbc.wroc.pl:29004 (accessed on 1 September 2024).
- Taylor, C.; Doyle, M.; Webb, D. The safety of sodium reduction in the food supply: A cross-discipline balancing act—Workshop proceedings. Crit. Rev. Food Sci. Nutr. 2018, 58, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.; Goeler-Slough, N.; Cox, A.; Nolden, A. Examination of the nutritional composition of alternative beef burgers available in the United States. Int. J. Food Sci. Nutr. 2021, 73, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Mehta, N.; Chatli, M.K.; Malav, O.P.; Kumar, P. Quality Attributes of Functional Pork Patties Incorporated with Kinnow (Citrus reticulata) Pomace Powder. J. Anim. Res. 2019, 9, 411–417. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Ciro-Gómez, G.; Sayas, E.; Vilella-Esplá, J.; Ben-Abda, J.; Pérez-Álvarez, J.Á. Date palm by-products as a new ingredient for the meat industry: Application to pork liver pâté. Meat Sci. 2014, 93, 880–887. [Google Scholar] [CrossRef]
- Mladenović, K.G.; Grujović, M.Ž.; Kiš, M.; Furmeg, S.; Tkalec, V.J.; Stefanović, O.D.; Kocić-Tanackov, S.D. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Appl. Microbiol. Biotechnol. 2021, 105, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- Pennacchia, C.; Ercolini, D.; Villani, F. Development of a real-time PCR assay for the specific detection of Brochothrix thermosphacta in fresh and spoiled raw meat. Int. J. Food Microbiol. 2009, 134, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.J.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Koskar, J.; Meremäe, K.; Püssa, T.; Anton, D.; Elias, T.; Rätsep, R.; Mäesaar, M.; Kapp, K.; Roasto, M. Microbial Growth Dynamics in Minced Meat Enriched with Plant Powders. Appl. Sci. 2022, 12, 11292. [Google Scholar] [CrossRef]
Feature | BC * | B2 * | B3.5 * | B5 * |
---|---|---|---|---|
Thermal loss [%] | 23.5 a ± 1.58 | 27.4 b ± 0.85 | 27.7 b ± 1.52 | 30.8 c ± 0.80 |
Shrinkage [%] | 16.9 a ± 1.92 | 17.5 a ± 2.07 | 18.7 a ± 1.68 | 21.1 a ± 0.90 |
Water content [%] | 59.3 d ± 0.06 | 57.74 c ± 0.03 | 57.08 b ± 0.11 | 55.97 a ± 0.11 |
Protein content [%] | 26.68 a ± 0.08 | 27.89 b ± 0.10 | 27.71 b ± 0.11 | 28.47 c ± 0.06 |
Fat content [%] | 12.47 a ± 0.01 | 12.84 b ± 0.00 | 13.77 c ± 0.12 | 13.96 c ± 0.06 |
Sodium chloride content [%] | 1.94 b ± 0.03 | 1.71 a ± 0.04 | 1.64 a ± 0.03 | 1.63 a ± 0.02 |
Storage Time [Days] | BC * | B2 * | B3.5 * | B5 * |
---|---|---|---|---|
1 7 14 | 6.93 e ± 0.02 6.91 e ± 0.01 6.90 e ± 0.01 | 6.82 d ± 0.01 6.80 cd ± 0.00 6.79 bcd ± 0.01 | 6.77 abc ± 0.01 6.76 ab ± 0.01 6.76 ab ± 0.01 | 6.75 ab ± 0.01 6.73 a ± 0.00 6.74 a ± 0.01 |
p-value | Treatment: p = 0.0000 | Storage time: p = 0.039 | Treatment × Storage time: p = 0.6872 |
Storage Time [Days] | BC * | B2 * | B3.5 * | B5 * |
---|---|---|---|---|
L* (Lightness) | ||||
1 7 14 | 64.42 e ± 1.85 63.13 e ± 1.87 62.07 e ± 1.55 | 55.95 d ± 1.77 55.23 d ± 2.46 54.38 d ± 2.02 | 51.02 c ± 2.85 50.23 bc ± 3.00 49.28 abc ± 2.38 | 49.73 abc ± 1.83 47 76 ab ± 2.25 46.98 a ± 2.85 |
p-value | Treatment: p = 0.0000 | Storage time: p = 0.0001 | Treatment × Storage time: p = 0.9588 | |
+a* (redness) | ||||
1 7 14 | +5.77 a ± 1.17 +5.70 a ± 0.85 +5.44 a ± 1.42 | +7.30 b ± 1.05 +6.48 ab ± 0.55 +6.38 ab ± 0.61 | +8.99 c ± 0.97 +9.00 c ± 0.60 +9.27 c ± 0.94 | +9.44 c ± 0.77 +9.59 c ± 0.47 +9.61 c ± 0.76 |
p-value | Treatment: p = 0.0000 | Storage time: p = 0.4558 | Treatment × Storage time: p = 0.2024 | |
+b*/−b* (yellowness/blueness) | ||||
1 7 14 | +8.08 f ± 0.80 +10.53 g ± 0.88 +10.58 g ± 0.57 | +4.46 e ± 0.98 +3.47 e ± 0.85 +1.87 d ± 0.45 | +0.85 cd ± 0.52 −0.74 b ± 1.40 −2.00 a ± 0.66 | +0.44 c ± 0.65 −2.00 a ± 0.62 −2.77 a ± 0.74 |
p-value | Treatment: p = 0.0000 | Storage time: p = 0.0005 | Treatment × Storage time: p = 0.0005 |
Storage Time [Days] | BC * | B2 * | B3.5 * | B5 * |
---|---|---|---|---|
1 7 14 | 20.83 a ± 3.40 21.55 abc ± 21.55 24.17 abcd ± 2.04 | 21.01 ab ± 1.80 21.67 abc ± 1.64 24.64 bcde ± 2.48 | 21.03 ab ± 3.77 23.28 abcd ± 2.04 24.82 cde ± 2.46 | 24.43 abcde ± 2.52 25.88 de ± 3.41 27.99 e ± 2.88 |
p-value | Treatment: p = 0.0000 | Storage time: p = 0.0000 | Treatment × Storage time: p = 0.9568 |
Storage Time [Days] | BC * | B2 * | B3.5 * | B5 * |
---|---|---|---|---|
Total Count of Aerobic Mesophilic Microorganisms | ||||
1 7 14 | 2.2 × 101 a ± 7.6 × 100 2.7 × 102 a ± 3.5 ×102 1.5 × 103 b ± 2.2 × 103 | 1.2 × 101 a ± 5.8 × 100 3.2 × 101 a ± 2.6 × 101 9.0 × 102 ab ± 7.0 × 101 | 1.1 × 101 a ± 1.2 × 100 1.0 × 103 a ± 1.6 × 103 4.2 × 103 ab ± 9.5 × 102 | 3.5 × 101 a ± 5.0 × 100 4.5 × 101 a ± 5.0 × 100 1.9 × 103 b ± 2.0 × 103 |
p-value | Treatment: p = 0.1049 | Storage time: p = 0.0000 | Treatment × Storage time: p = 0.0921 | |
Psychotropic bacteria | ||||
1 7 14 | 2.3 × 101 a ± 2.5 × 100 1.4 × 101 a ± 4.0 × 100 3.6 × 102 d ± 4.0 × 101 | 2.1 × 101 a ± 2.0 × 100 2.0 × 101 a ± 1.0 × 101 1.6 × 102 bc ± 5.3 × 101 | 1.0 × 101 a ± 5.8 × 100 6.0 × 101 ab ± 1.7 × 101 2.7 × 102 cd ± 7.6 × 101 | 1.1 × 101 a ± 2.0 × 100 2.2 × 101 a ± 1.0 × 101 2.0 × 102 cd ± 1.5 × 101 |
p-value | Treatment: p = 0.0040 | Storage time: p = 0.0000 | Treatment × Storage time: p = 0.0027 | |
Lactic acid bacteria (LAB) | ||||
1 7 14 | 1.2 × 101 a ± 1.5 × 100 2.9 × 101 a ± 1.0 × 101 9.1 × 103 c ± 1.7 × 102 | 1.7 × 101 a ± 6.0 × 101 1.8 × 101 a ± 4.4 × 100 5.7 × 103 b ± 1.9 × 103 | 1.7 × 101 a ± 1.1 × 101 3.6 × 101 a ± 5.3 × 100 5.2 × 103 b ± 3.4 × 103 | 3.3 × 101 a ± 2.1 × 101 2.7 × 101 a ± 2.1 × 101 2.5 × 103 ab ± 5.6 × 102 |
p-value | Treatment: p = 0.0040 | Storage time: p = 0.0000 | Treatment × Storage time: p = 0.0007 | |
Bacteria from the Enterobacteriaceae family | ||||
1 | ND ** | ND ** | ND ** | ND ** |
7 | ND ** | ND ** | ND ** | ND ** |
14 | ND ** | ND ** | ND ** | ND ** |
Pseudomonas spp. | ||||
1 | 1.5 × 102 a ± 5.0 × 101 | 1.5 × 102 a ± 7.0 × 101 | 2.7 × 102 a ± 2.1 × 102 | 1.1 × 102 a ± 1.5 × 101 |
7 | 1.9 × 102 a ± 6.0 × 101 | 1.4 × 102 a ± 4.0 × 101 | 2.8 × 102 a ± 1.9 × 102 | 5.3 × 102 a ± 2.8 × 102 |
14 | 8.9 × 103 c ± 6.3 × 102 | 2.5 × 103 b ± 1.4 × 103 | 1.3 × 103 ab ± 2.1 × 102 | 2.7 × 103 b ± 1.2 × 103 |
p-value | Treatment: p = 0.0000 | Storage time: p = 0.0000 | Treatment × Storage time: p = 0.0000 | |
Brochothrix thermosphacta | ||||
1 | ND ** | ND ** | ND ** | ND ** |
7 | 1.3 × 102 a ± 5.8 × 101 | 1.1 × 102 a ± 1.0 × 101 | 1.0 × 102 a ± 6.0 × 100 | 1.6 × 102 a ± 3.6 × 101 |
14 | 7.5 × 103 b ± 1.3 × 103 | 5.7 × 103 b ± 1.1 × 103 | 6.9 × 103 b ± 2.5 × 103 | 5.2 × 103 b ± 2.0 × 103 |
p-value | Treatment: p = 0.4225 | Storage time: p = 0.0000 | Treatment × Storage time: p = 0.4491 | |
Yeast and molds | ||||
1 | ND ** | ND ** | ND ** | ND ** |
7 | ND ** | ND ** | ND ** | ND ** |
14 | ND ** | ND ** | ND ** | ND ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cegiełka, A.; Piątkowska, J.; Chmiel, M.; Hać-Szymańczuk, E.; Kalisz, S.; Adamczak, L. Changes in Quality Features of Pork Burgers Prepared with Chokeberry Pomace During Storage. Appl. Sci. 2025, 15, 2337. https://doi.org/10.3390/app15052337
Cegiełka A, Piątkowska J, Chmiel M, Hać-Szymańczuk E, Kalisz S, Adamczak L. Changes in Quality Features of Pork Burgers Prepared with Chokeberry Pomace During Storage. Applied Sciences. 2025; 15(5):2337. https://doi.org/10.3390/app15052337
Chicago/Turabian StyleCegiełka, Aneta, Jagoda Piątkowska, Marta Chmiel, Elżbieta Hać-Szymańczuk, Stanisław Kalisz, and Lech Adamczak. 2025. "Changes in Quality Features of Pork Burgers Prepared with Chokeberry Pomace During Storage" Applied Sciences 15, no. 5: 2337. https://doi.org/10.3390/app15052337
APA StyleCegiełka, A., Piątkowska, J., Chmiel, M., Hać-Szymańczuk, E., Kalisz, S., & Adamczak, L. (2025). Changes in Quality Features of Pork Burgers Prepared with Chokeberry Pomace During Storage. Applied Sciences, 15(5), 2337. https://doi.org/10.3390/app15052337