Estimation of the Effect of Oblique Positioned Obstacle Placement on Thermal Performance of a Horizontal Mantle Hot Water Tank with Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Studied Tank Model
2.2. Numerical Model and Procedure
2.3. Experimental Design and Methodology
2.4. Thermodynamic Analysis
- It was assumed that the physical properties of the water did not change with temperature.
- The flow inside the tank was considered to be frictionless.
- It was accepted that the pump power was zero.
- Heat losses from the tank to the environment were disregarded.
- The ambient temperature was 24 °C.
- Energy Analysis:
- Exergy Analysis:
3. Numerical Findings
3.1. Effect of Oblique Obstacle Placement on Temperature Distribution in Tank for Different Flow Rates
3.2. Effect of Oblique Obstacle Placement on the Average Storage Water Temperature in Tank for Different Flow Rates
3.3. Effect of Oblique Obstacle Placement on the Mantle Outlet and Main Outlet Temperature in Tank for Different Flow Rates
4. Artificial Neural Networks
4.1. Modular Neural Network (MNN)
4.2. Model Performance
5. Simulation Results
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
HTF | Heat transfer fluid |
HWT | Hot water tank |
MNN | Modular Neural Network |
PCM | Phase change materials |
SDHW | Solar domestic hot water |
TRNSYS | Transient System Simulation Tool |
MSE | Mean Square Error |
R2 | R Square |
Symbols | |
A | Mantle inlet |
a | Angle of obstruction with horizontal axis |
B | Mantle outlet |
C | Main inlet |
c | Specific heat [J/kg K] |
D | Main outlet |
Total energy [kWh] | |
I | Exergy destroyed [kWh] |
Energy Accumulation | |
ΔEx | Energy Accumulation |
Ex | Total exergy [kWh] |
m | Distance from obstacle tank edge [kg] |
Mass flow rate [kg/s] | |
T | Temperature [K, °C] |
T∞ | Ambient Temperature [K, °C] |
Q | Heat transfer [kWh] |
V | Velocity [m/s] |
η | Energy efficiency |
ψ | Exergy efficiency |
ith | İnput layer |
jth | Hidden layer |
kth | Output layer |
yj | Local networks output |
yk | Gating networks output |
gj | Gating networks |
ui | Weighted inputs |
xi | Model output |
yi | Actual system output |
Subscripts | |
cv | Control volume |
i | İnlet |
o | Outlet |
loss | Heat loss |
dest | Destruction |
References
- Acar, C. A comprehensive evaluation of energy storage options for better sustainability. Int. J. Energy Res. 2018, 42, 3732–3746. [Google Scholar] [CrossRef]
- Morrison, G.L.; Nasr, A.; Behnia, M.; Rosengarten, G. Analysis of horizontal mantle heat exchangers in solar water heating systems. Sol. Energy 1998, 64, 19–31. [Google Scholar] [CrossRef]
- Carrillo Andrés, A.; Cejudo López, J.M. TRNSYS model of a thermosiphon solar domestic water heater with a horizontal store and mantle heat exchanger. Sol. Energy 2002, 72, 89–98. [Google Scholar] [CrossRef]
- Khalifa, A.J.N.; Mehdi, M.M. On The Verification Of One Dimensional Heat Flow In A Horizontal Thermosyphon Storage Tank. Energy Convers. Manag. 1999, 40, 961–974. [Google Scholar] [CrossRef]
- Alizadeh, S. An Experimental And Numerical Study Of Thermal Stratification In A Horizontal Cylindrical Solar Storage Tank. Sol. Energy 1999, 66, 409–421. [Google Scholar] [CrossRef]
- Helwa, N.H.; Mobarak, A.M.; El-Sallak, M.S.; El-Ghetany, H.H. Effect of hot-water consumption on temperature distribution in a horizontal solar water storage tank. Appl. Energy 1995, 52, 185–197. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Papamarcou, C. Modelling of a thermosyphon solar water heating system and simple model validation. Renew. Energy 2000, 21, 471–493. [Google Scholar] [CrossRef]
- Rosengarten, G.; Behnia, M.; Morrison, G. Some aspects concerning modelling the flow and heat transfer in horizontal mantle heat exchangers in solar water heaters. Int. J. Energy Res. 1999, 23, 1007–1016. [Google Scholar] [CrossRef]
- Rosengarten, G.; Morrison, G.L.; Behnia, M. Mixed convection in a narrow rectangular cavity with bottom inlet and outlet. Int. J. Heat Fluid Flow 2001, 22, 168–179. [Google Scholar] [CrossRef]
- Erdemir, D.; Altuntop, N. Improved thermal stratification with obstacles placed inside the vertical mantled hot water tank. Appl. Therm. Eng. 2016, 100, 20–29. [Google Scholar] [CrossRef]
- Erdemir, D.; Altuntop, N. Experimental Investigation on the effect of placing obstacle on flow direction on thermal performance in horizontal mantled hot water tanks. In Proceedings of the 4th Anatolian Energy Symposium, Edirne, Turkey, 18–20 April 2018. [Google Scholar]
- Erdemir, D.; Ateşoğlu, H.; Altuntop, N. Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system. Renew. Energy 2019, 138, 187–197. [Google Scholar] [CrossRef]
- Li, Q.; Huang, X.; Tai, Y.; Gao, W.; Wenxian, L.; Liu, W. Thermal stratification in a solar hot water storage tank with mantle heat exchanger. Renew. Energy 2021, 173, 1–11. [Google Scholar] [CrossRef]
- Setareh, M.; Assari, M.R.; Basirat Tabrizi, H.; Jafar Gholi Beik, A.; Raman, F. A new experimental strategy to enhance thermal stratification of solar hot water storage tank using different PCM layouts. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 6428–6443. [Google Scholar] [CrossRef]
- Bouzaher, M.T.; Lebbi, M.; Boualit, H.; Chergui, T.; Laouar, S. Improvement of the thermal stratification inside a solar hot water storage tank during discharging process. Model. Meas. Control B 2018, 87, 78–82. [Google Scholar] [CrossRef]
- Krafcik, M.; Perackova, J. Experimental Measurements of Hot Water Stratification in a Heat Storage Tank. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 301–307. [Google Scholar] [CrossRef]
- Li, M.; Bu, B.; Wang, Y.; Zhang, H. Optimizing energy conservation of central heating systems based on temperature stratified water tank. J. Phys. Conf. Ser. 2022, 2358, 012006. [Google Scholar] [CrossRef]
- Li, Y.; Sun, F.; Zhang, Q.; Chen, X.; Yuan, W. Numerical Simulation Study on Structure Optimization and Performance Improvement of Hot Water Storage Tank in CHP System. Energies 2020, 13, 4734. [Google Scholar] [CrossRef]
- Obstawski, P.; Janaszek-Mańkowska, M.; Ratajski, A. Diagnostics of a Domestic Hot Water Storage Tank under Operating Conditions. Processes 2021, 9, 1771. [Google Scholar] [CrossRef]
- Vijay, A.; Bhagavathy, S.M.; McCulloch, M. Potential for domestic thermal storage to absorb excess renewable energy in a low carbon future. In Proceedings of the IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, Washington, DC, USA, 17–20 February 2020. [Google Scholar] [CrossRef]
- Altuntop, N.; Kilik, Z.; Ozceyhan, V.; Kincay, O. Effect of water inlet velocity on thermal stratification in a mantled hot water storage tank. Int. J. Energy Res. 2006, 30, 163–176. [Google Scholar] [CrossRef]
- Deng, J.; Furbo, S.; Kong, W.; Fan, J. Thermal performance assessment and improvement of a solar domestic hot water tank with pcm in the mantle. Energy Build. 2018, 172, 10–21. [Google Scholar] [CrossRef]
- Eynard, J.; Grieu, S.; Polit, M. Predictive control and thermal energy storage for optimizing a multi-energy district boiler. J. Process Control 2012, 22, 1246–1255. [Google Scholar] [CrossRef]
- Gelažanskas, L.; Gamage, K.A. Forecasting hot water consumption in dwellings using artificial neural networks. In Proceedings of the IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 11–13 May 2015. [Google Scholar]
- Afrand, M.; Esfe, M.; Abedini, E.; Teimouri, H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys. E Low-Dimens. Syst. Nanostructures 2017, 87, 242–247. [Google Scholar] [CrossRef]
- Sadeghzadeh, M.; Maddah, H.; Ahmadi, M.; Khadang, A.; Ghazvini, M.; Mosavi, A.; Nabipour, N. Prediction of thermo-physical properties of tio2-al2o3/water nanoparticles by using artificial neural network. Nanomaterials 2020, 10, 697. [Google Scholar] [CrossRef] [PubMed]
- Öcal, S.; Gökçek, M.; Çolak, A.B.; Korkanç, M. A comprehensive and comparative experimental analysis on thermal conductivity of TiO 2-CaCO 3/Water hybrid nanofluid: Proposing new correlation and artificial neural network optimization. Heat Transf. Res. 2021, 52, 55–79. [Google Scholar] [CrossRef]
- Alrumah, M.; Ertekin, T. Prediction of the water saturation around wells with bottom water drive using artificial neural networks. J. Pet. Gas Eng. 2019, 10, 14–22. [Google Scholar] [CrossRef]
- Garud, K.; Seo, J.; Cho, C.; Lee, M. Artificial neural network and adaptive neuro-fuzzy interface system modelling to predict thermal performances of thermoelectric generator for waste heat recovery. Symmetry 2020, 12, 259. [Google Scholar] [CrossRef]
Diameter of inner tank (D) | 400 mm |
Tank Length (L) | 1000 mm |
Mantle Cavity (t) | 20 mm |
Position of input and output ports (X1, X2, Y1, Y2) | 50 mm |
Distance from obstacle tank edge (m) | 50, 100, 150 mm |
Angle af obstruction with horizontal axis (a) | 60° |
Distance between two obstacles (l) | 100, 200 mm |
Vmantle m/s | Tmantle (K) | Vmain m/s | Tmain (K) | Model | |
---|---|---|---|---|---|
Case 1 | 0.147 | 353 | 0.036 | 290 | a.60- m.50- l.100 P |
Case 2 | 0.147 | 353 | 0.073 | 290 | |
Case 3 | 0.147 | 353 | 0.11 | 290 | |
Case 4 | 0.147 | 353 | 0.147 | 290 | |
Case 5 | 0.147 | 353 | 0.036 | 290 | a.60- m.50- l.200 P |
Case 6 | 0.147 | 353 | 0.073 | 290 | |
Case 7 | 0.147 | 353 | 0.11 | 290 | |
Case 8 | 0.147 | 353 | 0.147 | 290 | |
Case 9 | 0.147 | 353 | 0.036 | 290 | a.60- m.100- l.100 P |
Case 10 | 0.147 | 353 | 0.073 | 290 | |
Case 11 | 0.147 | 353 | 0.11 | 290 | |
Case 12 | 0.147 | 353 | 0.147 | 290 | |
Case 13 | 0.147 | 353 | 0.036 | 290 | a.60- m.100- l.200 P |
Case 14 | 0.147 | 353 | 0.073 | 290 | |
Case 15 | 0.147 | 353 | 0.11 | 290 | |
Case 16 | 0.147 | 353 | 0.147 | 290 | |
Case 17 | 0.147 | 353 | 0.036 | 290 | a.60- m.150- l.100 P |
Case 18 | 0.147 | 353 | 0.073 | 290 | |
Case 19 | 0.147 | 353 | 0.11 | 290 | |
Case 20 | 0.147 | 353 | 0.147 | 290 | |
Case 21 | 0.147 | 353 | 0.036 | 290 | a.60- m.150- l.200 P |
Case 22 | 0.147 | 353 | 0.073 | 290 | |
Case 23 | 0.147 | 353 | 0.11 | 290 | |
Case 24 | 0.147 | 353 | 0.147 | 290 |
Tmain | Tmantle | Tstorage | ||||
---|---|---|---|---|---|---|
R2 | MSE | R2 | MSE | R2 | MSE | |
a = 60°, m = 50 mm, l = 100 mm | 0.99841 | 0.0132 | 0.99869 | 0.0104 | 0.99891 | 0.0100 |
a = 60°, m = 100 mm, l = 100 mm | 0.99856 | 0.0121 | 0.99873 | 0.0142 | 0.99844 | 0.0126 |
a = 60°, m = 150 mm, l = 100 mm | 0.99799 | 0.0201 | 0.99766 | 0.0217 | 0.99785 | 0.0204 |
a = 60°, m = 50 mm, l = 200 mm | 0.99886 | 0.0116 | 0.99859 | 0.0115 | 0.99896 | 0.0153 |
a = 60°, m = 100 mm, l = 200 mm | 0.99967 | 0.0101 | 0.99977 | 0.0110 | 0.99943 | 0.0108 |
a = 60°, m = 150 mm, l = 200 mm | 0.99563 | 0.0325 | 0.99545 | 0.0368 | 0.99541 | 0.0389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durmuşoğlu, A.; Turgut, B.; Tekin, Y.; Turgut, B. Estimation of the Effect of Oblique Positioned Obstacle Placement on Thermal Performance of a Horizontal Mantle Hot Water Tank with Machine Learning. Appl. Sci. 2025, 15, 48. https://doi.org/10.3390/app15010048
Durmuşoğlu A, Turgut B, Tekin Y, Turgut B. Estimation of the Effect of Oblique Positioned Obstacle Placement on Thermal Performance of a Horizontal Mantle Hot Water Tank with Machine Learning. Applied Sciences. 2025; 15(1):48. https://doi.org/10.3390/app15010048
Chicago/Turabian StyleDurmuşoğlu, Aslı, Buket Turgut, Yusuf Tekin, and Burak Turgut. 2025. "Estimation of the Effect of Oblique Positioned Obstacle Placement on Thermal Performance of a Horizontal Mantle Hot Water Tank with Machine Learning" Applied Sciences 15, no. 1: 48. https://doi.org/10.3390/app15010048
APA StyleDurmuşoğlu, A., Turgut, B., Tekin, Y., & Turgut, B. (2025). Estimation of the Effect of Oblique Positioned Obstacle Placement on Thermal Performance of a Horizontal Mantle Hot Water Tank with Machine Learning. Applied Sciences, 15(1), 48. https://doi.org/10.3390/app15010048