Non-Conscious Affective Processing in Asset Managers during Financial Decisions: A Neurobiological Perspective
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Procedure
2.4. Startle Reflex Modulation
2.5. Data Analysis
3. Results
3.1. Overall Scenario Effect
3.2. Scenario Effects Depending on High Exposure (25%) versus No Exposure (0%)
3.3. Scenario Effects Depending on Experience
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Perrin, S.; Roncalli, T. Machine Learning Optimization Algorithms & Portfolio Allocation. In Machine Learning for Asset Management; Jurczenko, E., Ed.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Klaassen, P. Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis. Manag. Sci. 1998, 44, 31–48. [Google Scholar] [CrossRef]
- Bustos, O.; Pomares-Quimbaya, A. Stock market movement forecast: A Systematic review. Expert Syst. Appl. 2020, 156, 113464. [Google Scholar] [CrossRef]
- Walla, P. Affective Processing Guides Behavior and Emotions Communicate Feelings: Towards a Guideline for the NeuroIS Community. In Information Systems and Neuroscience; Davis, F., Riedl, R., vom Brocke, J., Léger, P.M., Randolph, A., Eds.; Lecture Notes in Information Systems and Organisation; Springer: Cham, Switzerland, 2018; Volume 25. [Google Scholar]
- Walla, P.; Panksepp, J. Neuroimaging Helps to Clarify Brain Affective Processing without Necessarily Clarifying Emotions; InTech: London, UK, 2013. [Google Scholar] [CrossRef]
- Constantinou, M. Multiple Memory Systems. In Encyclopedia of Evolutionary Psychological Science; Shackelford, T., Weekes-Shackelford, V., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Walla, P.; Brenner, G.; Koller, M. Objective measures of emotion related to brand attitude: A new way to quantify emotion-related aspects relevant to marketing. PLoS ONE 2011, 6, e26782. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Walla, P. Towards Alternative Ways to Measure Attitudes Related to Consumption: Introducing Startle Reflex Modulation. J. Agric. Food Ind. Organ. 2015, 13, 83–88. [Google Scholar] [CrossRef]
- Kirchgässner, G. Homo Oeconomicus in Economics. In Homo Oeconomicus. The European Heritage in Economics and the Social Sciences; Springer: New York, NY, USA, 2008; Volume 6. [Google Scholar]
- Franke, M.K. Der Konsument. Essentials; Springer Gabler: Wiesbaden, Germany, 2014. [Google Scholar]
- Güth, W.; Schmittberger, R.; Schwarze, B. An experimental analysis of ultimatum bargaining. J. Econ. Behav. Organ. 1982, 3, 367–388. [Google Scholar] [CrossRef]
- Rugg, M.D.; Mark, R.E.; Walla, P.; Schloerscheidt, A.M.; Birch, C.S.; Allan, K. Dissociation of the neural correlates of implicit and explicit memory. Nature 1998, 392, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Schacter, D.L. Implicit memory: History and current status. J. Exp. Psychol. Learn. Mem. Cogn. 1987, 13, 501–518. [Google Scholar] [CrossRef]
- Walla, P.; Endl, W.; Lindinger, G.; Deecke, L.; Lang, W. Implicit memory within a word recognition task: An event-related potential study in human subjects. Neurosci. Lett. 1999, 269, 129–132. [Google Scholar] [CrossRef]
- Bradley, M.M.; Sabatinelli, D. Startle Reflex Modulation: Perception, Attention, and Emotion. In Experimental Methods in Neuropsychology; Hugdahl, K., Ed.; Neuropsychology and Cognition; Springer: Boston, MA, USA, 2003; Volume 21. [Google Scholar]
- Blumenthal, T.D. Inhibition of the human startle response is affected by both prepulse intensity and eliciting stimulus intensity. Biol. Psychol. 1996, 44, 85–104. [Google Scholar] [CrossRef]
- Yang, X.; Spangler, D.P.; Thayer, J.F.; Friedman, B.H. Resting heart rate variability modulates the effects of concurrent working memory load on affective startle modification. Psychophysiology 2021, 58, e13833. [Google Scholar] [CrossRef] [PubMed]
- Geiser, M.; Walla, P. Objective measures of emotion during virtual walks through urban neighbourhoods. Appl. Sci. 2011, 1, 1–11. [Google Scholar] [CrossRef]
- Roy, M.; Mailhot, J.-P.; Gosselin, N.; Paquette, S.; Peretz, I. Modulation of the startle reflex by pleasant and unpleasant music. Int. J. Psychophysiol. 2009, 71, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Anokhin, A.P.; Golosheykin, S. Startle modulation by affective faces. Biol. Psychol. 2010, 83, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Ehrlichmann, H.; Brown, S.; Zhu, J.; Warrenburg, S. Startle reflex modulation during exposure to pleasant and unpleasant odors. Psychophysiology 1995, 32, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Walla, P.; Richter, M.; Färber, S.; Leodolter, U.; Bauer, H. Food evoked changes in humans: Startle response modulation and event-related potentials (ERPs). J. Psychophysiol. 2010, 24, 25–32. [Google Scholar] [CrossRef]
- Mühlberger, A.; Wieser, M.J.; Pauli, P. Darkness-enhanced startle responses in ecologically valid environments: A virtual tunnel driving experiment. Biol. Psychol. 2008, 77, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, H.; Gray, J.A.; Checkley, S.A.; Kumari, V.; Wilson, G.D. Modulation of the acoustic startle reflex by emotionally-toned film-clips. Int. J. Psychophysiol. 1999, 32, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Hamm, A.O.; Cuthbert, B.N.; Globisch, J.; Vaitl, D. Fear and the startle reflex: Blink modulation and autonomic response patterns in animal and mutilation fearful subjects. Psychophysiology 1997, 34, 97–107. [Google Scholar] [CrossRef]
- Vrana, S.R.; Lang, P.J. Fear imahery and the startle-probe reflex. J. Abnorm. Psychol. 1990, 99, 189–197. [Google Scholar] [CrossRef]
- Patrick, C.J.; Bradley, M.M.; Lang, P.J. Emotion in the criminal psychopath: Startle reflex modulation. J. Abnorm. Psychol. 1993, 102, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Gallardo, E.; Thunnissen, M.; Scullion, H. Talent management: Context matters. Int. J. Hum. Resour. Manag. 2020, 31, 457–473. [Google Scholar] [CrossRef]
- Atl, D. Applying Neuroscience to Talent Management: The Neuro Talent Management. In Analyzing the Strategic Role of Neuromarketing and Consumer Neuroscience; Atli, D., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 229–252. [Google Scholar] [CrossRef]
- Renshaw, D.; Bice, M.R.; Cassidy, C.; Eldridge, J.A.; Powell, D.W. A Comparison of Three Computer-based Methods Used to Determine EMG Signal Amplitude. Int. J. Exerc. Sci. 2010, 3, 43–48. [Google Scholar] [PubMed]
- Kuhn, M.; Wendt, J.; Sjouwerman, R.; Büchel, C.; Hamm, A.; Lonsdorf, T.B. The Neurofunctional Basis of Affective Startle Modulation in Humans: Evidence From Combined Facial Electromyography and Functional Magnetic Resonance Imaging. Biol. Psychiatry 2020, 87, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Boecker, L.; Pauli, P. Affective startle modulation and psychopathology: Implications for appetitive and defensive brain systems. Neurosci. Biobehav. Rev. 2019, 103, 230–266. [Google Scholar] [CrossRef] [PubMed]
- Vrana, S.R.; Spence, E.L.; Lang, P.J. The startle probe response—A new measure of emotion. J. Abnorm. Psychol. 1988, 97, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. Emotion, attention, and the startle reflex. Psychol. Rev. 1990, 97, 377–395. [Google Scholar] [CrossRef] [PubMed]
- vom Brocke, J.; Hevner, A.; Majorique Léger, P.; Walla, P.; Riedl, R. Advancing a NeuroIS research agenda with four areas of societal contributions. Eur. J. Inf. Syst. 2020, 29, 9–24. [Google Scholar] [CrossRef]
- Schutte, I.; Baas, J.M.; Heitland, I.; Kenemans, J.L. No consistent startle modulation by reward. Sci. Rep. 2021, 11, 4399. [Google Scholar] [CrossRef]
- Jiang, H.; Habib, A.; Monzur Hasan, M. Short Selling: A Review of the Literature and Implications for Future Research. Eur. Account. Rev. 2022, 31, 1–31. [Google Scholar] [CrossRef]
- Diether, K.B.; Lee, K.H.; Werner, I.M. Short-sale strategies and return predictability. Rev. Financ. Stud. 2009, 22, 575–607. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Y.; Chang, L. Short-selling constraints and corporate payout policy. Account. Financ. 2019, 59, 2273–2305. [Google Scholar] [CrossRef]
- Dechow, P.M.; Hutton, A.P.; Meulbroek, L.; Sloan, R.G. Short-sellers, fundamental analysis, and stock returns. J. Financ. Econ. 2001, 61, 77–106. [Google Scholar] [CrossRef]
- Desai, H.; Ramesh, K.; Thiagarajan, S.R.; Balachandran, B.V. An investigation of the informational role of short interest in the Nasdaq market. J. Financ. 2002, 57, 2263–2287. [Google Scholar] [CrossRef]
- Engelberg, J.E.; Reed, A.V.; Ringgenberg, M.C. How are shorts informed? Short sellers, news, and information processing. J. Financ. Econ. 2012, 105, 260–278. [Google Scholar] [CrossRef]
- Curtis, A.; Fargher, N.L. Does short selling amplify price declines or align stocks with their fu ndamentalvalues? Manag. Sci. 2014, 60, 2324–2340. [Google Scholar] [CrossRef]
- Lamont, O.A.; Stein, J.C. Aggregate short interest and market valuations. Am. Econ. Rev. 2004, 94, 29–32. [Google Scholar] [CrossRef]
- Diamond, D.W.; Verrecchia, R.E. Constraints on short-selling and asset price adjustment to private information. J. Financ. Econ. 1987, 18, 277–311. [Google Scholar] [CrossRef]
- Miller, E.M. Risk, uncertainty, and divergence of opinion. J. Financ. 1977, 32, 1151–1168. [Google Scholar] [CrossRef]
- Soiné, A.; Flöck, A.N.; Walla, P. Electroencephalography (EEG) Reveals Increased Frontal Activity in Social Presence. Brain Sci. 2021, 11, 731. [Google Scholar] [CrossRef]
- Wendt, J.; Kuhn, M.; Hamm, A.O.; Lonsdorf, T.B. Recent advances in studying brain-behavior interactions using functional imaging: The primary startle response pathway and its affective modulation in humans. Psychophysiology 2023, 60, e14364. [Google Scholar] [CrossRef] [PubMed]
- Kofler, M.; Hallett, M.; Iannetti, G.D.; Versace, V.; Ellrich, J.; Téllez, M.J.; Valls-Solé, J. The blink reflex and its modulation—Part 1: Physiological mechanisms. Clin. Neurophysiol. 2023, 160, 130–152. [Google Scholar] [CrossRef] [PubMed]
- Elsey, J.W.B.; Kindt, M. Startle Reflex. In Encyclopedia of Personality and Individual Differences; Zeigler-Hill, V., Shackelford, T.K., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
Mean Amplitude in µV | Standard Deviation | |
---|---|---|
gain | 61.9073 | 42.78397 |
crash | 69.1983 | 43.84410 |
stable | 66.8674 | 40.65043 |
Standard Deviation | p-Values | ||
---|---|---|---|
pair 1: | gain–crash | 26.36250 | 0.001 |
pair 2: | gain–stable | 25.43869 | 0.021 |
pair 3: | crash–stable | 22.65916 | 0.219 |
Mean Amplitude in µV | Standard Deviation | |
---|---|---|
0% exposure–gain | 62.41 | 41.79 |
0% exposure–crash | 68.27 | 41.15 |
0% exposure–stable | 69.64 | 41.00 |
25% exposure–gain | 61.40 | 44.04 |
25% exposure–crash | 70.13 | 46.65 |
25% exposure–stable | 64.09 | 40.39 |
Standard Deviation | p-Value | |
---|---|---|
pair 1: 0% exposure-gain–0% exposure-crash | 25.48 | 0.055 |
pair 2: 0% exposure-gain–0% exposure-stable | 25.03 | 0.017 |
pair 3: 0% exposure-crash–0% exposure-stable | 21.86 | 0.595 |
pair 4: 25% exposure-gain–25% exposure-crash | 27.31 | 0.008 |
pair 5: 25% exposure-gain–25% exposure-stable | 25.81 | 0.380 |
pair 6: 25% exposure-crash–25% exposure-stable | 22.99 | 0.029 |
Mean Amplitude in µV | Standard Deviation | |
---|---|---|
expe_gain_all | 58.0119 | 38.90104 |
expe_crash_all | 64.5808 | 41.29128 |
expe_stable_all | 66.5410 | 42.41478 |
nexp_gain_all | 72.4983 | 43.14908 |
nexp_crash_all | 78.0821 | 40.65377 |
nexp_stable_all | 73.7488 | 35.67074 |
Std. Deviation | p-Value | |
---|---|---|
expe_gain_all–expe_crash_all | 28.08355 | 0.005 |
expe_gain_all–expe_stable_all | 25.93712 | 0.012 |
expe_crash_all–expe_stable_all | 22.06011 | 0.556 |
nexp_gain_all–nexp_crash_all | 22.71346 | 0.095 |
nexp_gain_all–nexp_stable_all | 24.24984 | 0.723 |
nexp_crash_all–nexp_stable_all | 23.92419 | 0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walla, P.; Patschka, M. Non-Conscious Affective Processing in Asset Managers during Financial Decisions: A Neurobiological Perspective. Appl. Sci. 2024, 14, 3633. https://doi.org/10.3390/app14093633
Walla P, Patschka M. Non-Conscious Affective Processing in Asset Managers during Financial Decisions: A Neurobiological Perspective. Applied Sciences. 2024; 14(9):3633. https://doi.org/10.3390/app14093633
Chicago/Turabian StyleWalla, Peter, and Maximilian Patschka. 2024. "Non-Conscious Affective Processing in Asset Managers during Financial Decisions: A Neurobiological Perspective" Applied Sciences 14, no. 9: 3633. https://doi.org/10.3390/app14093633
APA StyleWalla, P., & Patschka, M. (2024). Non-Conscious Affective Processing in Asset Managers during Financial Decisions: A Neurobiological Perspective. Applied Sciences, 14(9), 3633. https://doi.org/10.3390/app14093633