Influence of Oxygen and Carbon Dioxide Content in Modified Atmosphere Packaging on the Colour and Water-Holding Capacity of Pork Loin
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. pH Measurements
2.3. Colour Measurements and Calculations
2.4. Sensory Assessment of the Meat Colour
2.5. Nutritional Value
2.6. Water-Holding Capacity
2.7. Statistical Analysis
3. Results
3.1. Proximate Composition of Pork Loin and the Composition of a Modified Atmosphere during Storage
3.2. Colour Changes
3.3. The ΔE Colour Difference and Sensory Colour Evaluation
3.4. Changes in pH and Water-Holding Capacity
4. Discussion
4.1. Colour Changes and Differences
4.2. pH and Water-Holding Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. Meat Consumption. 2024. Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 10 January 2024).
- Penkert, L.P.; Li, R.; Huang, J.; Gurcan, A.; Chung, M.; Wallace, T.C. Pork Consumption and Its Relationship to Human Nutrition and Health: A Scoping Review. Meat Muscle Biol. 2021, 5, 1–22. [Google Scholar] [CrossRef]
- Zduńczyk, W.; Tkacz, K.; Modzelewska-Kapituła, M. The Effect of Superficial Oregano Essential Oil Application on the Quality of Modified Atmosphere-Packed Pork Loin. Foods 2023, 12, 2013. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mardiansyah, S.T.; Kuuliala, L.; Somrani, M.; Walgraeve, C.; Demeestere, K.; Devlieghere, F. Selected-Ion Flow-Tube Mass Spectrometry for the Identification of Volatile Spoilage Markers for Fresh Pork Packaged under Modified Atmospheres. Food Chem. 2023, 423, 136318. [Google Scholar] [CrossRef] [PubMed]
- Dursun, A.; Güler, Z. Colour and Pigment in Raw Ground Meat Incorporated Crushed Garlic during the Refrigerated Storage: Their Relationship to Lipolytic and Volatilomic Changes. Food Chem. 2023, 419, 136042. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Agathaggelou, E.I.; Skandamis, P.N. Storage of Pork Meat under Modified Atmospheres Containing Vapors from Commercial Alcoholic Beverages. Int. J. Food Microbiol. 2014, 178, 65–75. [Google Scholar] [CrossRef]
- Peng, Y.; Adhiputra, K.; Padayachee, A.; Channon, H.; Ha, M.; Warner, R.D. High Oxygen Modified Atmosphere Packaging Negatively Influences Consumer Acceptability Traits of Pork. Foods 2019, 8, 567. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Suman, S.P.; Ramanathan, R. The Eating Quality of Meat: I Color. In Lawrie’s Meat Science; Springer: Berlin/Heidelberg, Germany, 2022; pp. 363–392. [Google Scholar] [CrossRef]
- Purslow, P.P.; Warner, R.D.; Clarke, F.M.; Hughes, J.M. Variations in Meat Colour Due to Factors Other than Myoglobin Chemistry; a Synthesis of Recent Findings (Invited Review). Meat Sci. 2020, 159, 107941. [Google Scholar] [CrossRef]
- Gagaoua, M.; Suman, S.P.; Purslow, P.P.; Lebret, B. The Color of Fresh Pork: Consumers Expectations, Underlying Farm-to-Fork Factors, Myoglobin Chemistry and Contribution of Proteomics to Decipher the Biochemical Mechanisms. Meat Sci. 2023, 206, 109340. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-D.; Jeong, J.-Y.; Hur, S.-J.; Yang, H.-S.; Jeon, J.-T.; Joo, S.-T. The Relationship between Meat Color (CIE L* and a*), Myoglobin Content, and Their Influence on Muscle Fiber Characteristics and Pork Quality. Korean J. Food Sci. Ani. Resour. 2010, 30, 626–633. [Google Scholar] [CrossRef]
- Ruedt, C.; Gibis, M.; Weiss, J. Meat Color and Iridescence: Origin, Analysis, and Approaches to Modulation. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3366–3394. [Google Scholar] [CrossRef]
- Gurunathan, K.; Tahseen, A.; Manyam, S. Effect of Aerobic and Modified Atmosphere Packaging on Quality Characteristics of Chicken Leg Meat at Refrigerated Storage. Poult. Sci. 2022, 101, 102170. [Google Scholar] [CrossRef]
- Teuteberg, V.; Kluth, I.K.; Ploetz, M.; Krischek, C. Effects of Duration and Temperature of Frozen Storage on the Quality and Food Safety Characteristics of Pork after Thawing and after Storage under Modified Atmosphere. Meat Sci. 2021, 174, 108419. [Google Scholar] [CrossRef]
- Czerwiński, K.; Rydzkowski, T.; Wróblewska-Krepsztul, J.; Thakur, V.K. Towards Impact of Modified Atmosphere Packaging (Map) on Shelf-Life of Polymer-Film-Packed Food Products: Challenges and Sustainable Developments. Coatings 2021, 11, 1504. [Google Scholar] [CrossRef]
- Uysal, C.; Enişte, İ.; Çifçi, M.; Şimşek, A.; Kılıç, B. Effects of Different Packaging Methods and Storage Temperatures on Physicochemical, Microbiological, Textural and Sensorial Properties of Emulsion-Type Sausage Chips. J. Stored Prod. Res. 2022, 98, 102002. [Google Scholar] [CrossRef]
- Murphy, K.M.; O’Grady, M.N.; Kerry, J.P. Effect of Varying the Gas Headspace to Meat Ratio on the Quality and Shelf-Life of Beef Steaks Packaged in High Oxygen Modified Atmosphere Packs. Meat Sci. 2013, 94, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, X.; Shen, Y.; Pan, J.; Dong, X. Effects of Oxygen Concentrations in Modified Atmosphere Packaging on Pork Quality and Protein Oxidation. Meat Sci. 2022, 189, 108826. [Google Scholar] [CrossRef] [PubMed]
- Arias, E.; Sierra, V.; Prado, N.; González, P.; Fiorentini, G.; Díaz, J.; Oliván, M. Development of a Portable Near-Infrared Spectroscopy Tool for Detecting Freshness of Commercial Packaged Pork. Foods 2022, 11, 3808. [Google Scholar] [CrossRef]
- Cayuela, J.M.; Gil, M.D.; Bañón, S.; Garrido, M.D. Effect of Vacuum and Modified Atmosphere Packaging on the Quality of Pork Loin. Eur. Food Res. Technol. 2004, 219, 316–320. [Google Scholar] [CrossRef]
- Bao, Y.; Ertbjerg, P. Relationship between Oxygen Concentration, Shear Force and Protein Oxidation in Modified Atmosphere Packaged Pork. Meat Sci. 2015, 110, 174–179. [Google Scholar] [CrossRef]
- Lu, X.; Cornforth, D.P.; Carpenter, C.E.; Zhu, L.; Luo, X. Effect of Oxygen Concentration in Modified Atmosphere Packaging on Color Changes of the M. longissimus thoraces et lumborum from Dark Cutting Beef Carcasses. Meat Sci. 2020, 161, 107999. [Google Scholar] [CrossRef]
- Viana, E.S.; Gomide, L.A.M.; Vanetti, M.C.D. Effect of Modified Atmospheres on Microbiological, Color and Sensory Properties of Refrigerated Pork. Meat Sci. 2005, 71, 696–705. [Google Scholar] [CrossRef]
- Spanos, D.; Tørngren, M.A.; Christensen, M.; Baron, C.P. Effect of Oxygen Level on the Oxidative Stability of Two Different Retail Pork Products Stored Using Modified Atmosphere Packaging (MAP). Meat Sci. 2016, 113, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Li, X.; Zhang, C. Effects of Oxygen Concentration in Modified Atmosphere Packaging on Water Holding Capacity of Pork Steaks. Meat Sci. 2019, 148, 189–197. [Google Scholar] [CrossRef]
- Ye, K.; Ding, D.; Zhu, X.; Wu, Z.; Hu, Q.; Li, R. Modified Atmosphere Packaging with a Small Change in Gas Ratio Could Maintain Pork Quality during −3 °C Storage. Food Control 2020, 109, 106943. [Google Scholar] [CrossRef]
- Fang, Z.; Lin, D.; Warner, R.D.; Ha, M. Effect of Gallic Acid/Chitosan Coating on Fresh Pork Quality in Modified Atmosphere Packaging. Food Chem. 2018, 260, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Kernberger-Fischer, I.; Kehrenberg, C.; Klein, G.; Schaudien, D.; Krischek, C. Influence of Modified Atmosphere and Vacuum Packaging with and without Nanosilver-Coated Films on Different Quality Parameters of Pork. J. Food Sci. Technol. 2017, 54, 3251–3259. [Google Scholar] [CrossRef]
- Alessandroni, L.; Sagratini, G.; Gagaoua, M. Proteomics and Bioinformatics Analyses Based on Two-Dimensional Electrophoresis and LC-MS/MS for the Primary Characterization of Protein Changes in Chicken Breast Meat from Divergent Farming Systems: Organic versus Antibiotic-Free. Food Chem. Mol. Sci. 2024, 8, 100194. [Google Scholar] [CrossRef]
- Wimmers, K.; Ngu, N.T.; Jennen, D.G.J.; Tesfaye, D.; Murani, E.; Schellander, K.; Ponsuksili, S. Relationship between Myosin Heavy Chain Isoform Expression and Muscling in Several Diverse Pig Breeds. J. Anim. Sci. 2008, 86, 795–803. [Google Scholar] [CrossRef]
- Tian, Z.; Cui, Y.; Lu, H.; Wang, G.; Ma, X. Effect of Long-Term Dietary Probiotic Lactobacillus reuteri 1 or Antibiotics on Meat Quality, Muscular Amino Acids and Fatty Acids in Pigs. Meat Sci. 2021, 171, 108234. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Yang, X.; Liang, R.; Mao, Y.; Hou, X.; Lu, X.; Luo, X. Potential Mechanisms of Carbon Monoxide and High Oxygen Packaging in Maintaining Color Stability of Different Bovine Muscles. Meat Sci. 2014, 97, 189–196. [Google Scholar] [CrossRef]
- Hunt, M.; King, A. (Eds.) AMSA Meat Color Measurement Guidelines, 1st ed.; American Meat Science Association: Champaign, IL, USA, 2012; ISBN 8005172672. [Google Scholar]
- Tkacz, K.; Modzelewska-Kapituła, M.; Więk, A.; Nogalski, Z. The Applicability of Total Color Difference ∆E for Determining the Blooming Time in Longissimus Lumborum and Semimembranosus Muscles from Holstein-Friesian Bulls at Different Ageing Times. Appl. Sci. 2020, 10, 8215. [Google Scholar] [CrossRef]
- Jeong, K.; Hyeonbin, O.; Shin, S.Y.; Kim, Y.S. Effects of Different Marination Conditions on Quality, Microbiological Properties, and Sensory Characteristics of Pork Ham Cooked by the Sous-Vide Method. Korean J. Food Sci. Anim. Resour. 2018, 38, 506–514. [Google Scholar] [CrossRef] [PubMed]
- HAMM, R. Functional Properties of the Myofibrillar System and Their Measurements. In Muscle as Food; Elsevier: Amsterdam, The Netherlands, 1986; pp. 135–199. [Google Scholar]
- Modzelewska-Kapituła, M.; Dabrowska, E.; Jankowska, B.; Kwiatkowska, A.; Cierach, M. The Effect of Muscle, Cooking Method and Final Internal Temperature on Quality Parameters of Beef Roast. Meat Sci. 2012, 91, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.P.; Joseph, P. Myoglobin Chemistry and Meat Color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, S.; Ray, S.; Fallon, E.; Bradfield, J.; Eden, T.; Kohlmeier, M. Dietary Micronutrients in the Wake of COVID-19: An Appraisal of Evidence with a Focus on High-Risk Groups and Preventative Healthcare. BMJ Nutr. Prev. Health 2020, 3, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mangla, S.K.; Kumar, P.; Song, M. Mitigate Risks in Perishable Food Supply Chains: Learning from COVID-19. Technol. Forecast. Soc. Change 2021, 166, 120643. [Google Scholar] [CrossRef]
- Lukic, M.; Petronijevic, R.; Petrovic, Z.; Karan, D.; Djordjevic, V.; Trbovic, D.; Parunovic, N. Effects of Different Gas Compositions on the Color Estimations of MAP Packaged Pork Chops. Procedia Food Sci. 2015, 5, 168–171. [Google Scholar] [CrossRef]
- Kropf, D.H.; Mancini, R.A. Modified and Controlled Atmosphere. In Encyclopedia of Meat Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 9–12. ISBN 9780123847317. [Google Scholar]
- Mancini, R.A.; Hunt, M.C. Current Research in Meat Color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Lee, S.; Phillips, A.L.; Liebler, D.C.; Faustman, C. Porcine Oxymyoglobin and Lipid Oxidation In Vitro. Meat Sci. 2003, 63, 241–247. [Google Scholar] [CrossRef]
- Estévez, M.; Kylli, P.; Puolanne, E.; Kivikari, R.; Heinonen, M. Fluorescence Spectroscopy as a Novel Approach for the Assessment of Myofibrillar Protein Oxidation in Oil-in-Water Emulsions. Meat Sci. 2008, 80, 1290–1296. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, G.H.; Zhang, W.G. Effects of High Oxygen Packaging on Tenderness and Water Holding Capacity of Pork through Protein Oxidation. Food Bioprocess Technol. 2015, 8, 2287–2297. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of Water-Holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Holmer, S.F.; McKeith, R.O.; Boler, D.D.; Dilger, A.C.; Eggert, J.M.; Petry, D.B.; McKeith, F.K.; Jones, K.L.; Killefer, J. The Effect of PH on Shelf-Life of Pork during Aging and Simulated Retail Display. Meat Sci. 2009, 82, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Liu, C.; Unsalan, O.; Altunayar-Unsalan, C.; Xiong, S.; Manyande, A.; Chen, H. Development and Characterization of Fish Myofibrillar Protein/Chitosan/Rosemary Extract Composite Edible Films and the Improvement of Lipid Oxidation Stability during the Grass Carp Fillets Storage. Int. J. Biol. Macromol. 2021, 184, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Coba, A.; Navarro, M.; Dunshea, F.R.; Roura, E. High Dietary Monounsaturated Fatty Acids Fed to Pigs Improve pH and Colour of Pork Loins. Anim.-Sci. Proc. 2021, 12, 232. [Google Scholar] [CrossRef]
- Nieminen, T.T.; Nummela, M.; Björkroth, J. Packaging Gas Selects Lactic Acid Bacterial Communities on Raw Pork. J. Appl. Microbiol. 2015, 119, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water Distribution and Mobility in Meat during the Conversion of Muscle to Meat and Ageing and the Impacts on Fresh Meat Quality Attributes—A Review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Jankowiak, H.; Cebulska, A.; Bocian, M. The Relationship between Acidification (pH) and Meat Quality Traits of Polish White Breed Pigs. Eur. Food Res. Technol. 2021, 247, 2813–2820. [Google Scholar] [CrossRef]
- Singh, P.; Wani, A.A.; Saengerlaub, S.; Langowski, H.C. Understanding Critical Factors for the Quality and Shelf-Life of MAP Fresh Meat: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 146–177. [Google Scholar] [CrossRef]
- De Palo, P.; Maggiolino, A.; Tateo, A.; Centoducati, P. Influence of Gas Mixture on Quality and Shelf Life of Veal Calf Meat. Ital. J. Anim. Sci. 2014, 13, 226–233. [Google Scholar] [CrossRef]
- Moczkowska, M.; Półtorak, A.; Montowska, M.; Pospiech, E.; Wierzbicka, A. The Effect of the Packaging System and Storage Time on Myofibrillar Protein Degradation and Oxidation Process in Relation to Beef Tenderness. Meat Sci. 2017, 130, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.D.; Lopes, E.R.; Ramos, E.M.; de Oliveira, T.V.; de Oliveira, C.P. Active Packaging: Development and Characterization of Polyvinyl Alcohol (PVA) and Nitrite Film for Pork Preservation. Food Chem. 2024, 437, 137811. [Google Scholar] [CrossRef] [PubMed]
- Claus, J.R.; Du, C. Nitrite-Embedded Packaging Film Effects on Fresh and Frozen Beef Color Development and Stability as Influenced by Meat Age and Muscle Type. Meat Sci. 2013, 95, 526–535. [Google Scholar] [CrossRef]
- Su, L.; Zhao, Z.; Xia, J.; Xia, J.; Nian, Y.; Shan, K.; Zhao, D.; He, H.; Li, C. Protecting Meat Color: The Interplay of Betanin Red and Myoglobin through Antioxidation and Coloration. Food Chem. 2024, 442, 138410. [Google Scholar] [CrossRef]
Attribute | Time (T) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
2 | 5 | 7 | 9 | 12 | 14 | 15 | T | |
LO | ||||||||
O2 (%) | 53.6 ± 0.7 | 54.7 ± 0.9 | 54.8 ± 0.2 | 53.9 ± 0.5 | 54.8 ± 0.3 | 54.3 ± 0.2 | 54.9 ± 0.4 | NS |
CO2 (%) | 39.9 ± 0.1 | 38.9 ± 0.5 | 39.5 ± 0.8 | 39.3 ± 0.3 | 40.3 ± 0.5 | 38.5 ± 0.2 | 39.6 ± 0.4 | NS |
N2 (%) | 6.2 ± 0.9 | 6.5 ± 0.5 | 5.6 ± 0.6 | 6.7 ± 0.4 | 5.0 ± 0.5 | 7.2 ± 0.2 | 5.5 ± 0.7 | NS |
HO | ||||||||
O2 (%) | 75.2 ± 0.3 | 76.4 ± 0.6 | 76.5 ± 0.4 | 76.7 ± 0.4 | 75.9 ± 0.3 | 76.1 ± 0.4 | 76.0 ± 0.3 | NS |
CO2 (%) | 19.8 ± 0.4 | 19.5 ± 0.3 | 19.0 ± 0.2 | 19.0 ± 0.3 | 19.2 ± 0.3 | 19.0 ± 0.1 | 19.1 ± 0.1 | NS |
N2 (%) | 5.0 ± 0.4 | 4.6 ± 0.9 | 4.5 ± 0.5 | 4.3 ± 0.3 | 5.6 ± 0.6 | 4.9 ± 0.5 | 4.9 ± 0.3 | NS |
Attributes | Modified Atmosphere (A) | Time (T) | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LO | HO | 0 | 2 | 5 | 7 | 9 | 12 | 14 | 15 | A | T | AxT | |
L* | 51.8 ± 0.3 | 51.7 ± 0.3 | 47.7 d ± 0.3 | 51.7 c ± 0.3 | 51.3 c ± 0.3 | 53.8 bc ± 0.4 | 54.7 ab ± 0.3 | 55.7 ab ± 0.3 | 56.2 ab ± 0.4 | 57.0 a ± 0.3 | NS | <0.001 | NS |
a* | 4.12 ± 0.06 | 4.37 ± 0.06 | 3.87 c ± 0.06 | 4.2 abc ± 0.2 | 4.5 ab ± 0.2 | 4.6 ab ± 0.2 | 4.1 bc ± 0.2 | 4.5 ab ± 0.2 | 4.8 a ± 0.2 | 4.6 ab ± 0.2 | NS | <0.05 | NS |
b* | 5.5 ± 0.2 | 5.6 ±0.2 | 3.24 c ± 0.06 | 5.7 b ± 0.2 | 6.0 b ± 0.2 | 6.8 ab ± 0.2 | 6.8 ab ± 0.2 | 7.7 a ± 0.2 | 7.9 a ± 0.2 | 8.1 a ± 0.2 | NS | <0.001 | NS |
C* | 7.0 ± 0.2 | 7.2 ± 0.2 | 5.07 f ± 0.07 | 7.1 e ± 0.2 | 7.5 de ± 0.2 | 8.2 cd ± 0.2 | 7.9 bc ± 0.2 | 9.0 ab ± 0.2 | 9.3 a ± 0.2 | 9.4 a ± 0.2 | NS | <0.001 | NS |
H° | 51.3 ± 0.8 | 49.8 ± 0.8 | 39.9 c ± 0.5 | 53.7 b ± 0.6 | 53.6 b ± 0.7 | 55.9 ab ± 0.8 | 59.2 a ± 0.8 | 59.7 a ± 0.9 | 58.9 ab ± 0.8 | 60.8 a ± 0.5 | NS | <0.001 | NS |
RI | 0.85 ± 0.03 | 0.90 ± 0.03 | 1.23 a ± 0.03 | 0.74 b ± 0.02 | 0.74 b ± 0.02 | 0.68 bc ± 0.02 | 0.60 c ± 0.02 | 0.59 c ± 0.03 | 0.61 bc ± 0.02 | 0.56 c ± 0.02 | NS | <0.001 | NS |
Attribute | Storage Time (days) | ||||||
---|---|---|---|---|---|---|---|
2 | 5 | 7 | 9 | 12 | 14 | 15 | |
ΔE LO/HO | 0.81 | 0.53 | 0.36 | 0.57 | 1.34 | 0.60 | 1.42 |
Slight | Slight | Trace | Slight | Slight | Slight | Slight | |
ΔE0 LO | 4.21 | 3.45 | 6.15 | 6.29 | 8.45 | 8.26 | 8.59 |
Appreciable | Appreciable | Much | Much | Much | Much | Much | |
ΔE0 HO | 3.23 | 3.07 | 5.49 | 7.74 | 6.95 | 8.27 | 9.56 |
Appreciable | Appreciable | Appreciable | Much | Much | Much | Much |
Attributes | Modified Atmosphere (A) | Time (T) | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LO | HO | 0 | 2 | 5 | 7 | 9 | 12 | 14 | 15 | A | T | AxT | |
pH | 5.48 ± 0.01 | 5.49 ± 0.01 | 5.58 a ± 0.01 | 5.45 de ± 0.01 | 5.44 e ± 0.01 | 5.45 de ± 0.01 | 5.48 d ± 0.01 | 5.49 cd ± 0.01 | 5.53 c ± 0.01 | 5.63 b ± 0.01 | NS | <0.001 | NS |
Free water (%) | 23.8 ± 0.4 | 24.4 ± 0.3 | 22.0 b ± 0.6 | 24.7 a ± 0.5 | 24.3 ab ± 0.5 | 23.7 ab ± 0.6 | 24.5 ab ± 0.7 | 23.3 ab ± 0.7 | 24.2 ab ± 0.6 | 23.5 ab ± 0.3 | NS | <0.05 | NS |
Purge loss (%) | 5.6 ± 0.4 | 5.2 ± 0.4 | - | 2.8 d ± 0.2 | 4.7 c ± 0.3 | 5.1 bc ± 0.2 | 5.7 abc ± 0.3 | 6.5 ab ± 0.7 | 6.9 a ± 0.8 | 7.4 a ± 0.6 | NS | <0.05 | NS |
Cooking loss (%) | 25.9 ± 0.4 | 26.2 ± 0.4 | 22.3 d ± 0.4 | 23.7 cd ± 0.3 | 24.3 c ± 0.3 | 23.2 cd ± 0.3 | 24.8 c ± 0.2 | 27.9 b ± 0.5 | 30.9 a ± 0.5 | 29.8 a ± 0.7 | NS | <0.001 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zduńczyk, W.; Modzelewska-Kapituła, M.; Tkacz, K. Influence of Oxygen and Carbon Dioxide Content in Modified Atmosphere Packaging on the Colour and Water-Holding Capacity of Pork Loin. Appl. Sci. 2024, 14, 3420. https://doi.org/10.3390/app14083420
Zduńczyk W, Modzelewska-Kapituła M, Tkacz K. Influence of Oxygen and Carbon Dioxide Content in Modified Atmosphere Packaging on the Colour and Water-Holding Capacity of Pork Loin. Applied Sciences. 2024; 14(8):3420. https://doi.org/10.3390/app14083420
Chicago/Turabian StyleZduńczyk, Weronika, Monika Modzelewska-Kapituła, and Katarzyna Tkacz. 2024. "Influence of Oxygen and Carbon Dioxide Content in Modified Atmosphere Packaging on the Colour and Water-Holding Capacity of Pork Loin" Applied Sciences 14, no. 8: 3420. https://doi.org/10.3390/app14083420
APA StyleZduńczyk, W., Modzelewska-Kapituła, M., & Tkacz, K. (2024). Influence of Oxygen and Carbon Dioxide Content in Modified Atmosphere Packaging on the Colour and Water-Holding Capacity of Pork Loin. Applied Sciences, 14(8), 3420. https://doi.org/10.3390/app14083420