Gentamicin Susceptibility and Comparison of Adhesion and Invasion of Caco-2 and HD11 Cell Lines by Salmonella enterica Serotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains for Antibiotic Susceptibility Testing
2.2. Antibiotic Susceptibility Testing
2.3. Cell Cultures
2.4. Bacterial Cultures for Adhesion and Invasion Assays
2.4.1. Adhesion Assays
2.4.2. Invasion Assays
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as xoonotic foodborne diseases: A review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Heithoff, D.M.; Shimp, W.R.; House, J.K.; Xie, Y.; Weimer, B.C.; Sinsheimer, R.L.; Mahan, M.J. Intraspecies variation in the emergence of hyperinfectious bacterial strains in nature. PLoS Pathog. 2012, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- White, A.E.; Tillman, A.R.; Hedberg, C.; Bruce, B.B.; Batz, M.; Seys, S.A.; Dewey-Mattia, D.; Bazaco, M.C.; Walter, E.S. Foodborne illness outbreaks reported to national surveillance, United States, 2009–2018. Emerg. Infect. Dis. 2022, 28, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.J.; Cole, D.; Nisler, A.; Mahon, B.E. Poultry: The most common food in outbreaks with known pathogens, United States, 1998-2012. Epidemiol. Infect. 2017, 145, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed]
- Holt, P.S.; Davies, R.H.; Dewulf, J.; Gast, R.K.; Huwe, J.K.; Jones, D.R.; Waltman, D.; Willian, K.R. The impact of different housing systems on egg safety and quality. Poultry Sci. 2011, 90, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Landínez, M. Food safety-Salmonella update in broilers. Anim. Feed Sci. Technol. 2019, 250, 53–58. [Google Scholar] [CrossRef]
- dos Santos, A.M.P.; Ferrari, R.G.; Conte-Junior, C.A. Virulence factors in Salmonella Typhimurium: The sagacity of a bacterium. Curr. Microbiol. 2019, 76, 762–773. [Google Scholar] [CrossRef]
- Cirillo, D.M.; Valdivia, R.H.; Monack, D.M.; Falkow, S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretions system and its role in intracellular survival. Mol. Microbiol. 1998, 30, 175–188. [Google Scholar] [CrossRef]
- Ohl, M.E.; Miller, S.I. Salmonella: A model for bacterial pathogenesis. Annu. Rev. Med. 2001, 52, 259–274. [Google Scholar] [CrossRef]
- Foley, S.L.; Lynne, A.M.; Nayak, R. Salmonella challenges: Prevalence in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci. 2008, 86, E149–E162. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzelsen, J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef] [PubMed]
- Winnen, B.; Schlumberger, M.C.; Sturm, A.; Schupbach, K.; Siebenmann, S.; Jenny, P.; Hardt, W.D. Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system. PLoS ONE 2008, 3, e2178. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Beug, H.; von Kirchbach, A.; Doderlein, G.; Conscience, J.F.; Graf, T. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 1979, 18, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Bueno, S.M.; Riquelme, S.; Riedel, C.A.; Kalergis, A.M. Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 2012, 137, 28–36. [Google Scholar] [CrossRef]
- Calo, J.R.; Park, S.H.; Baker, C.A.; Ricke, S.C. Specificity of Salmonella Typhimurium strain (ATCC 14028) growth responses to Salmonella serovar-generated spent media. J. Environ. Sci. Health 2015, B50, 422–429. [Google Scholar] [CrossRef] [PubMed]
- MacBeth, K.J.; Lee, C.A. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion. Infect. Immun. 1993, 61, 1544–1546. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef]
- Shah, D.H.; Zhou, X.; Addwebi, T.; Davis, M.A.; Orfe, L.; Call, D.R.; Guard, J.; Besser, T.E. Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. Microbiology 2011, 157, 1428–1445. [Google Scholar] [CrossRef] [PubMed]
- Menashe, O.; Kaganskaya, E.; Baasov, T.; Yaron, S. Aminoglycosides affect intracellular Salmonella enterica serovars Typhimurium and Virchow. Antimicrob. Agents Chemother. 2008, 52, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Giannella, R.A.; Washington, O.; Gemski, P.; Formal, S.B. Invasion of HeLa cells by Salmonella typhimurium: A model for study of invasiveness of Salmonella. J. Infect. Dis. 1973, 128, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Finlay, B.B.; Gumbiner, B.; Falkow, S. Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J. Cell Biol. 1988, 107, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Durant, J.A.; Lowry, V.K.; Nisbet, D.J.; Stanker, L.H.; Corrier, D.E.; Ricke, S.C. Short-chain fatty acids affect cell-association and invasion of HEp-2 cells by Salmonella typhimurium. J. Environ. Sci. Health 1999, B34, 1083–1099. [Google Scholar] [CrossRef]
- Van Asten, F.J.; Hendriks, H.G.; Koninkx, J.F.; Van der Zeijst, B.A.; Gaastra, W. Inactivation of the flagellin gene of Salmonella enterica serotype Enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol. Lett. 2000, 185, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Van Asten, F.J.; Hendriks, H.G.; Koninkx, J.F.; van Dijk, J.E. Flagella-mediated bacterial motility accelerates but is not required for Salmonella serotype Enteritidis invasion of differentiated Caco-2 cells. Int. J. Med. Microbiol. 2004, 294, 395–399. [Google Scholar] [CrossRef]
- Galán, J.E.; Curtis, R., III. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect. Immun. 1990, 58, 1879–1885. [Google Scholar] [CrossRef]
- Tartera, C.; Metcalf, E.S. Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect. Immun. 1993, 61, 3084–3089. [Google Scholar] [CrossRef]
- Schiemann, D.A. Association with MDCK epithelial cells by Salmonella typhimurium is reduced during utilization of carbohydrates. Infect. Immun. 1995, 63, 1462–1467. [Google Scholar] [CrossRef]
- Ernst, R.K.; Dombroski, D.M.; Merrick, J.M. Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEP-2 cells by Salmonella typhimurium. Infect. Immun. 1990, 58, 2014–2016. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.A.; Jones, B.D.; Falkow, S. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl. Acad. Sci. USA 1990, 89, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.L.; Starnbach, M.N.; Falkow, S. Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grow under low-oxygen conditions. Mol. Microbiol. 1992, 6, 3077–3087. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Kong, Q.; Yang, J.; Mitra, A.; Golden, G.; Wanda, S.Y.; Roland, K.L.; Jensen, R.V.; Ernst, P.B.; Curtiss III, R. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1. PLoS ONE 2012, 7, e40645. [Google Scholar]
- Bhowmik, B.K.; Kumar, A.; Gangaiah, D. Transcriptomic analyses of chicken primary macrophages infected with attenuated Salmonella Typhiurium mutants. Front. Microbiol. 2022, 13, 857378. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Genovese, K.J.; Swaggerty, C.L.; Nisbet, D.J.; Kogut, M.H. A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars. Foodborne Pathog. Dis. 2012, 9, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Matulova, M.; Rajova, J.; Vlasatikova, L.; Volf, J.; Stepanova, H.; Havlickova, H.; Sisak, F.; Rychlik, I. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis. PLoS ONE 2012, 7, e48101. [Google Scholar] [CrossRef]
- Saeed, A.M.; Walk, S.T.; Arshad, M.; Whittam, T.S. Clonal structure and variation in virulence of Salmonella Enteritidis isolated from mice, chickens, and humans. J. AOAC Int. 2006, 89, 504–511. [Google Scholar] [CrossRef]
Adhesion and Invasion to Caco-2 Cells | Adhesion and Invasion to HD11 Cells |
---|---|
Salmonella Typhimurium ATCC 14028 | Salmonella Typhimurium ATCC 14028 |
Salmonella Heidelberg ARI-14 | Salmonella Typhimurium UK-1 Salmonella Heidelberg ARI-14 Salmonella Enteritidis ATCC 13076 |
Bacterial Strain | Log Dilution | # of Colonies | # Bacteria Added | # Bacteria Adhering | % Adhesion |
---|---|---|---|---|---|
S. Typhimurium ATCC 14028 | 4 | 17.67 ± 2.31 | 9.83 × 106 ± 0 | 1.78 × 106 ± 0.25 | 18.1 ± 6.25 |
S. Heidelberg ARI-14 | 4 | 26.0 ± 2.83 | 9.13 × 106 ± 0 | 2.63 × 106 ± 0.32 | 28.8 ± 6.37 |
Bacterial Strain | Log Dilution | # of Colonies | # Bacteria Added | # Bacteria Invading | % Invasion |
---|---|---|---|---|---|
S. Typhimurium ATCC 14028 | 2 | 124.75 ± 10.69 | 8.26 × 106 ± 0 | 1.25 × 105 ± 0.01 | 1.52 ± 0.02 |
S. Heidelberg ARI-14 | 2 | 63.17 ± 17.54 | 5.24 × 106 ± 0 | 5.96 × 104 ± 1.42 | 1.37 ± 0.25 |
Bacterial Strain | Log Dilution | # of Colonies | # Bacteria Added | # Bacteria Adhering | % Adhesion * |
---|---|---|---|---|---|
S. Heidelberg | 4 | 59.6 ± 15.96 | 1.3 × 107 ± 0.47 | 5.5 × 106 ± 1.98 | 43.4 ± 7.46 a |
S. Typhimurium ATCC 14028 | 4 | 61.8 ± 17.58 | 1.6 × 107 ± 0.47 | 6.2 × 106 ± 1.15 | 38.7 ± 4.57 a |
S. Typhimurium UK-1 | 4 | 69.2 ± 19.85 | 1.8 × 107 ± 0.71 | 7.0 × 106 ± 1.93 | 38.9 ± 9.24 a |
S. Enteritidis | 4 | 39.2 ± 9.24 | 2.1 × 107 ± 0 | 3.9 × 106 ± 0.50 | 18.6 ± 2.42 b |
Bacterial Strain | Log Dilution | # of Colonies | # Bacteria Added | # Bacteria Invading | % Invasion * |
---|---|---|---|---|---|
S. Heidelberg | 4 | 33.2 ± 9.04 | 6.91 × 107 ± 0 | 3.3 × 106 ± 0.50 | 4.8 ± 0.73 c |
S. Typhimurium ATCC 14028 | 4 | 37.3 ± 4.19 | 4.0 × 107 ± 0.28 | 3.7 × 106 ± 0.08 | 9.3 ± 0.57 b |
S. Typhimurium UK-1 | 4 | 25.3 ± 4.99 | 1.4 × 107 ± 0.15 | 2.5 × 106 ± 0.40 | 17.6 ± 3.29 a |
S. Enteritidis | 4 | 4.05 ± 3.06 | 1.7 × 107 ± 0.04 | 4.9 × 105 ± 2.30 | 2.9 ± 1.48 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera Calo, J.; Rubinelli, P.M.; Ricke, S.C. Gentamicin Susceptibility and Comparison of Adhesion and Invasion of Caco-2 and HD11 Cell Lines by Salmonella enterica Serotypes. Appl. Sci. 2024, 14, 3305. https://doi.org/10.3390/app14083305
Rivera Calo J, Rubinelli PM, Ricke SC. Gentamicin Susceptibility and Comparison of Adhesion and Invasion of Caco-2 and HD11 Cell Lines by Salmonella enterica Serotypes. Applied Sciences. 2024; 14(8):3305. https://doi.org/10.3390/app14083305
Chicago/Turabian StyleRivera Calo, Juliany, Peter M. Rubinelli, and Steven C. Ricke. 2024. "Gentamicin Susceptibility and Comparison of Adhesion and Invasion of Caco-2 and HD11 Cell Lines by Salmonella enterica Serotypes" Applied Sciences 14, no. 8: 3305. https://doi.org/10.3390/app14083305
APA StyleRivera Calo, J., Rubinelli, P. M., & Ricke, S. C. (2024). Gentamicin Susceptibility and Comparison of Adhesion and Invasion of Caco-2 and HD11 Cell Lines by Salmonella enterica Serotypes. Applied Sciences, 14(8), 3305. https://doi.org/10.3390/app14083305