Exploring Land Use/Land Cover Dynamics and Statistical Assessment of Various Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology and Sources of Land Use/Land Cover Data
2.2. Identification of Urban LULC and Change Detection
2.3. Sources and Methodology of Spatial City Parameters
3. Results
Evaluation of City Parameters for Urban Areas
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sundarakumar, K.; Harika, M.; Begum, A.; Yamini, S.; Balakrishna, K. Land use and land cover change detection and urban sprawl analysis of Vijayawada city using multitemporal LANDSAT data. Int. J. Eng. Sci. Technol. 2012, 4, 170–178. [Google Scholar]
- Akay, S.S.; Sertel, E. Urban land cover/use change detection using high resolution Spot 5 and Spot 6 Images and Urban Atlas Nomenclature. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 789–796. [Google Scholar] [CrossRef]
- Mukherjee, F.; Singh, D. Assessing land use–land cover change and its impact on land surface temperature using LANDSAT data: A comparison of two urban areas in India. Earth Syst. Environ. 2020, 4, 385–407. [Google Scholar] [CrossRef]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A Case Study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Huang, W.; Liu, H.; Luan, Q.; Jiang, Q.; Liu, J.; Liu, H. Detection and prediction of land use change in Beijing based on Remote Sensing and GIS. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2008, 37, 75–82. [Google Scholar]
- Das, S.; Angadi, D.P. Land use land cover change detection and monitoring of urban growth using remote sensing and GIS techniques: A micro-level study. GeoJournal 2022, 87, 2101–2123. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo metropolitan area, Sri Lanka, based on Landsat data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Hoelscher, K.; Aijaz, R. Challenges and opportunities in an urbanizing India. Int. Area Stud. Rev. 2016, 19, 3–11. [Google Scholar] [CrossRef]
- Ullah, S.; Tahir, A.; Akbar, T.; Hassan, Q.; Dewan, A.; Khan, A.; Khan, M. Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region. Sustainability 2019, 11, 5492. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, H.; Chen, W.; Zhang, G.; Luo, Q.; Jia, B. Impacts of urban land surface temperature on tract landscape pattern, physical and social variables. Int. J. Remote Sens. 2019, 41, 683–703. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ishikawa, H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Clim. 2020, 31, 100578. [Google Scholar] [CrossRef]
- Janssen, S.; Dumont, G.; Fierens, F.; Mensink, C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos. Environ. 2008, 42, 4884–4903. [Google Scholar] [CrossRef]
- Prestele, R.; Alexander, P.; Rounsevell, M.D.A.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engström, K.; Fujimori, S.; Hasegawa, T.; et al. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Glob. Change Biol. 2016, 22, 3967–3983. [Google Scholar] [CrossRef]
- Tao, H.; Xing, J.; Zhou, H.; Chang, X.; Li, G.; Chen, L.; Li, J. Impacts of land use and land cover change on regional meteorology and air quality over the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2018, 189, 9–21. [Google Scholar] [CrossRef]
- Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [PubMed]
- Hua, A.K. Land use land cover changes in detection of water quality: A study based on remote sensing and multivariate statistics. J. Environ. Public Health 2017, 2017, 7515130. [Google Scholar] [CrossRef]
- Gupta, N.; Mathew, A.; Khandelwal, S. Spatio-temporal impact assessment of land use / land cover (LU-LC) change on land surface temperatures over Jaipur city in India. Int. J. Urban Sustain. Dev. 2020, 12, 283–299. [Google Scholar] [CrossRef]
- Sarvestani, M.S.; Ibrahim, A.; Kanaroglou, P. Three decades of urban growth in the city of Shiraz, Iran: A remote sensing and geographic information systems application. Cities 2011, 28, 320–329. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using remote sensing and GIS to detect and monitor Land Use and Land Cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Assess. J. 2009, 150, 237–249. [Google Scholar] [CrossRef]
- Belal, A.A.; Moghanm, F.S. Detecting urban growth using remote sensing and GIS techniques in Al Gharbiya governorate, Egypt. Egypt. J. Remote Sens. Space Sci. 2011, 14, 73–79. [Google Scholar] [CrossRef]
- Mozumder, C.; Reddy, K.V.; Pratap, D. Air pollution modeling from remotely sensed data using regression techniques. J. Indian Soc. Remote Sens. 2013, 41, 269–277. [Google Scholar] [CrossRef]
- Rawat, J.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef]
- Wang, R.; Derdouri, A.; Murayama, Y. Spatiotemporal simulation of future land use/cover change scenarios in the Tokyo metropolitan area. Sustainability 2018, 10, 2056. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Mcdonald, R.; Green, P.; Balk, D.; Fekete, B.; Revenga, C.; Todd, M.; Montgomery, M. Urban Growth, Climate Change, and Freshwater Availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lin, Y. The impact of rapid urbanization on residential energy consumption in China. PLoS ONE 2022, 28, e0270226. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Gupta, S.K.; Singh, S.K.; Meraj, G.; Kumar, P.; Kanga, S.; Đurin, B.; Dogančić, D. Predicting Future Land Use Utilizing Economic and Land Surface Parameters with ANN and Markov Chain Models. Earth 2023, 4, 728–751. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Barranco, R.R.; Silva, F.B.E.; Herrera, M.M.; Lavalle, C. Integrating the MOLAND and the Urban Atlas Geo-databases to Analyze Urban Growth in European Cities. J. Map Geogr. Libr. 2014, 10, 305–328. [Google Scholar] [CrossRef]
- Aksoy, T.; Dabanli, A.; Cetin, M.; Senyel Kurkcuoglu, M.A.; Cengiz, A.E.; Cabuk, S.N.; Agacsapan, B.; Cabuk, A. Evaluation of comparing urban area land use change with Urban Atlas and CORINE data. Environ. Sci. Pollut. Res. 2022, 29, 28995–29015. [Google Scholar] [CrossRef]
- Büttner, G. CORINE land cover and land cover change products. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 18. [Google Scholar] [CrossRef]
- Pazúr, R.; Feranec, J.; Štych, P.; Kopecká, M.; Holman, L. Changes of urbanised landscape identified and assessed by the Urban Atlas data: Case study of Prague and Bratislava. Land Use Policy 2017, 61, 135–146. [Google Scholar] [CrossRef]
- Urban Atlas, Copernicus, Land Monitoring Services 2022. Urban Atlas. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 23 October 2023).
- Corine Land Cover, Copernicus, Land Monitoring Services Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 23 October 2023).
- TUIK. Statistic Data Protal. Available online: https://data.tuik.gov.tr/ (accessed on 23 October 2023).
- Şehitkamil District Governorship. Our City: Gaziantep. The European Environment Agency. 2022. Available online: http://www.sehitkamil.gov.tr/ilimiz-gaziantep#:~:text=GAZ%C4%B0ANTEP’%C4%B0N%20CO%C4%9ERAF%C4%B0%20%C3%96ZELL%C4%B0KLER%C4%B0,Sar%C4%B1kaya%20Da%C4%9Flar%C4%B1%20da%20yer%20almaktad%C4%B1r (accessed on 1 October 2022).
- The Ministry of Interior. Available online: https://www.icisleri.gov.tr/illeridaresi (accessed on 23 October 2023).
- Boulougari, E. Geoland2. GMES Land Products Training. Available online: https://esdac.jrc.ec.europa.eu/projects/geoland2 (accessed on 23 December 2023).
- Urban Atlas Mapping Guide. Available online: https://land.copernicus.eu/user-corner/technical-library/urban_atlas_2012_2018_mapping_guide (accessed on 23 October 2023).
- Copernicus Land Monitoring Service-Urban Atlas. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas (accessed on 23 October 2023).
- Trimble Documentation eCognition® Developer 8.64.1, Reference Book; Trimble Germany GmbH: München, Germany, 2011.
- Semi-Automatic Classification Plugin (SCP). Available online: https://fromgistors.blogspot.com/p/semi-automatic-classification-plugin.html (accessed on 23 December 2023).
- Mishra, M.K.; Mathew, A. Investigating the spatio-temporal correlation between urban heat island and atmospheric pollution island interaction over Delhi, India using geospatial techniques. Arab. J. Geosci. 2022, 15, 1591. [Google Scholar] [CrossRef]
- Ministry of Environment, Urbanization and Climate Change. National Air Quality Monitoring Network (UHKIA). Available online: https://sim.csb.gov.tr/STN/STN_Report/StationDataDownloadNew (accessed on 23 October 2023).
- Li, S.; Cao, Y.; Liu, J.; Wang, S.; Zhou, W. Assessing Spatiotemporal Dynamics of Land Use and Cover Change and Carbon Storage in China’s Ecological Conservation Pilot Zone: A Case Study in Fujian Province. Remote Sens. 2022, 14, 4111. [Google Scholar] [CrossRef]
- Shi, G.; Ye, P.; Ding, L.; Quinones, A.; Li, Y.; Jiang, N. Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China. Int. J. Environ. Res. Public Health 2019, 16, 907. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Han, X.; Zhang, Y.; Zhang, Q.; Wan, X.; Liang, T.; Song, H.; Bolan, N.; Shaheen, S.M.; White, J.R.; et al. Impacts of land uses on spatio-temporal variations of seasonal water quality in a regulated river basin, Huai River, China. Sci. Total Environ. 2023, 857, 159584. [Google Scholar] [CrossRef] [PubMed]
- Zarin, T.; Esraz-Ul-Zannat, M. Assessing the potential impacts of LULC change on urban air quality in Dhaka city. Ecol. Indic. 2023, 154, 110746. [Google Scholar] [CrossRef]
- Yang, D.; Ye, C.; Xu, J. Land-Use Change and Health Risks in the Process of Urbanization: A Spatiotemporal Interpretation of a Typical Case in Changzhou, China. Land 2021, 10, 820. [Google Scholar] [CrossRef]
Parameter | 2010 | 2012 | 2015 | 2018 |
---|---|---|---|---|
Population | 1,700,763 | 1,889,466 | 1,931,836 | 2,028,563 |
Energy consumption (Mwh) | 8,443,682 | 9,950,493 | 12,435,590 | 16,179,416 |
Waste collected by the municipality (ton/year) | 413,233 | 522,679 | No Data | 650,984 |
Water consumption (thousand m3/year) | 100,367 | 107,480 | No Data | 165,759 |
Number of vehicles | 17,037 | 22,203 | 22,340 | 15,980 |
Residence sales | No Data | No Data | 23,986 | 29,240 |
Average air pollution (SO2 µg/m3) | 16.75 | 12.50 | 11.16 | 6.97 |
Maximum air pollution (SO2 µg/m3) | 177.47 | 273.97 | 231.22 | 495.86 |
Number of doctors (doctors per thousand) | 1.2 | 1.4 | 1.4 | 1.4 |
Number of hospitals | 21 | 24 | 28 | 30 |
Budgets (TL) | 149,052,581 | 141,187,829 | 285,677,956 | No Data |
Syrian population | 240,556 | 311,759 | 421,986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akay, S.S. Exploring Land Use/Land Cover Dynamics and Statistical Assessment of Various Indicators. Appl. Sci. 2024, 14, 2434. https://doi.org/10.3390/app14062434
Akay SS. Exploring Land Use/Land Cover Dynamics and Statistical Assessment of Various Indicators. Applied Sciences. 2024; 14(6):2434. https://doi.org/10.3390/app14062434
Chicago/Turabian StyleAkay, Semih Sami. 2024. "Exploring Land Use/Land Cover Dynamics and Statistical Assessment of Various Indicators" Applied Sciences 14, no. 6: 2434. https://doi.org/10.3390/app14062434
APA StyleAkay, S. S. (2024). Exploring Land Use/Land Cover Dynamics and Statistical Assessment of Various Indicators. Applied Sciences, 14(6), 2434. https://doi.org/10.3390/app14062434