Gelatine-Based Biopolymer Film Produced from Ozone-Treated Film-Forming Solutions Containing Whey Protein Concentrate: Effects on Physical, Mechanical, and Thermal Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Film-Forming Solutions
2.3. Ozone Treatment of Film-Forming Solutions
2.4. Preparation of Biopolymer Films
2.5. Characterisation of Film-Forming Solutions
2.6. Characterisation of Biopolymer Films
2.6.1. Thickness and Density
2.6.2. Biopolymer Film Colour
2.6.3. Opacity
2.6.4. Contact Angle
2.6.5. Thermo-Gravimetric Analysis (TGA)
2.6.6. Mechanical Characteristics
2.7. Statistical Analysis
3. Results and Discussion
3.1. pH, Zeta Potential, and Average Particle Diameter of Film-Forming Solutions
3.2. Thickness, Density, and Contact Angle Parameters of Films
3.3. Colour Characteristics and Opacity Parameter of Biopolymer Films
3.4. Thermal Characteristics of Films
3.5. Mechanical Characteristics of Biopolymer Films
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Afzaal, M.; Saeed, F.; Anwer, K.; Khan, M.R.; Jawad, M.; Akram, N.; Faisal, Z. Mechanical Properties of Protein-Based Food Packaging Materials. Polymers 2023, 15, 1724. [Google Scholar] [CrossRef]
- Fitriani, F.; Aprilia, S.; Arahman, N.; Bilad, M.R.; Suhaimi, H.; Huda, N. Properties of Biocomposite Film Based on Whey Protein Isolate Filled with Nanocrystalline Cellulose from Pineapple Crown Leaf. Polymers 2021, 13, 4278. [Google Scholar] [CrossRef]
- Papadaki, A.; Lappa, I.K.; Manikas, A.C.; Carbone, M.G.P.; Natsia, A.; Kachrimanidou, V.; Kopsahelis, N. Grafting Bacterial Cellulose Nanowhiskers into Whey Protein/Essential Oil Film Composites: Effect on Structure, Essential Oil Release and Antibacterial Properties of Films. Food Hydrocoll. 2024, 147, 109374. [Google Scholar] [CrossRef]
- Papadaki, A.; Manikas, A.C.; Papazoglou, E.; Kachrimanidou, V.; Lappa, I.; Galiotis, C.; Mandala, I.; Kopsahelis, N. Whey Protein Films Reinforced with Bacterial Cellulose Nanowhiskers: Improving Edible Film Properties Via a Circular Economy Approach. Food Chem. 2022, 385, 132604. [Google Scholar] [CrossRef]
- Sert, D.; Üçok, G.; Kara, Ü.; Mercan, E. Development of Gelatine-Based Edible Film by Addition of Whey Powders with Different Demineralisation Ratios: Physicochemical, Thermal, Mechanical and Microstructural Characteristics. Int. J. Dairy Technol. 2021, 74, 414–424. [Google Scholar] [CrossRef]
- Herrera-Vázquez, S.E.; Dublán-García, O.; Arizmendi-Cotero, D.; Gómez-Oliván, L.M.; Islas-Flores, H.; Hernández-Navarro, M.D.; Ramírez-Durán, N. Optimization of the Physical, Optical and Mechanical Properties of Composite Edible Films of Gelatin, Whey Protein and Chitosan. Molecules 2022, 27, 869. [Google Scholar] [CrossRef] [PubMed]
- Ramos, Ó.L.; Reinas, I.; Silva, S.I.; Fernandes, J.C.; Cerqueira, M.A.; Pereira, R.N.; Vicente, A.A.; Poças, M.F.; Pintado, M.E.; Malcata, F.X. Effect of Whey Protein Purity and Glycerol Content Upon Physical Properties of Edible Films Manufactured Therefrom. Food Hydrocoll. 2013, 30, 110–122. [Google Scholar] [CrossRef]
- Díaz, O.; Candia, D.; Cobos, Á. Effects of Ultraviolet Radiation on Properties of Films from Whey Protein Concentrate Treated before or after Film Formation. Food Hydrocoll. 2016, 55, 189–199. [Google Scholar] [CrossRef]
- Ustunol, Z.; Mert, B. Water Solubility, Mechanical, Barrier, and Thermal Properties of Cross-Linked Whey Protein Isolate-Based Films. J. Food Sci. 2004, 69, FEP129–FEP133. [Google Scholar] [CrossRef]
- Schmid, M.; Sängerlaub, S.; Wege, L.; Stäbler, A. Properties of Transglutaminase Crosslinked Whey Protein Isolate Coatings and Cast Films. Packag. Technol. Sci. 2014, 27, 799–817. [Google Scholar] [CrossRef]
- Cieśla, K.; Salmieri, S.; Lacroix, M. Γ-Irradiation Influence on the Structure and Properties of Calcium Caseinate−Whey Protein Isolate Based Films. Part 1. Radiation Effect on the Structure of Proteins Gels and Films. J. Agric. Food Chem. 2006, 54, 6374–6384. [Google Scholar] [CrossRef]
- Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Effects of Edible Coatings Based on Ultrasound-Treated Whey Proteins in Quality Attributes of Frozen Atlantic Salmon (Salmo Salar). Innov. Food Sci. Emerg. Technol. 2012, 14, 92–98. [Google Scholar] [CrossRef]
- Marino, M.; Segat, A.; Maifreni, M.; Frigo, F.; Sepulcri, C.; Innocente, N. Efficacy of Ozonation on Microbial Counts in Used Brines for Cheesemaking. Int. Dairy J. 2015, 50, 9–14. [Google Scholar] [CrossRef]
- Varga, L.; Szigeti, J. Use of Ozone in the Dairy Industry: A Review. Int. J. Dairy Technol. 2016, 69, 157–168. [Google Scholar] [CrossRef]
- Feng, C.; Wang, T.; Wang, C.; Chen, X.; Guo, Z.; Chen, Z. Disinfection Effects and Operating Conditions of Tea Polyphenols Combined with Ozone. Ozone Sci. Eng. 2020, 42, 551–557. [Google Scholar] [CrossRef]
- Segat, A.; Misra, N.; Fabbro, A.; Buchini, F.; Lippe, G.; Cullen, P.J.; Innocente, N. Effects of Ozone Processing on Chemical, Structural and Functional Properties of Whey Protein Isolate. Food Res. Int. 2014, 66, 365–372. [Google Scholar] [CrossRef]
- Uzun, H.; Ibanoglu, E.; Catal, H.; Ibanoglu, S. Effects of Ozone on Functional Properties of Proteins. Food Chem. 2012, 134, 647–654. [Google Scholar] [CrossRef] [PubMed]
- La Fuente, C.I.A.; Castanha, N.; Maniglia, B.C.; Tadini, C.C.; Augusto, P.E.D. Biodegradable Films Produced from Ozone-Modified Potato Starch. J. Packag. Technol. Res. 2020, 4, 3–11. [Google Scholar] [CrossRef]
- La Fuente, C.I.A.; de Souza, A.T.; Tadini, C.C.; Augusto, P.E.D. A New Ozonated Cassava Film with the Addition of Cellulose Nanofibres: Production and Characterization of Mechanical, Barrier and Functional Properties. J. Polym. Environ. 2021, 29, 1908–1920. [Google Scholar] [CrossRef]
- La Fuente, C.I.; de Souza, A.T.; Tadini, C.C.; Augusto, P.E.D. Ozonation of Cassava Starch to Produce Biodegradable Films. Int. J. Biol. Macromol. 2019, 141, 713–720. [Google Scholar] [CrossRef]
- Jeya Jeevahan, J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Britto Joseph, G.; Mageshwaran, G.; Durairaj, R.B. Scaling up Difficulties and Commercial Aspects of Edible Films for Food Packaging: A Review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- de Vargas, V.H.; Marczak, L.D.F.; Flôres, S.H.; Mercali, G.D. Advanced Technologies Applied to Enhance Properties and Structure of Films and Coatings: A Review. Food Bioprocess Technol. 2022, 15, 1224–1247. [Google Scholar] [CrossRef]
- Said, N.S.; Sarbon, N.M. A Comparative Study: Development and Characterization of Active Biodegradable Chicken Skin and Mammalian Gelatin Composite Films Incorporated with Curcumin Extracts. J. Food Process. Preserv. 2021, 45, e15771. [Google Scholar] [CrossRef]
- Sarbon, N.M.; Badii, F.; Howell, N.K. Preparation and Characterisation of Chicken Skin Gelatin as an Alternative to Mammalian Gelatin. Food Hydrocoll. 2013, 30, 143–151. [Google Scholar] [CrossRef]
- Mourad, J.; Hajji, S.; Ayed, H.B.; Lassoued, I.; Mbarek, A.; Kammoun, M.; Souissi, N.; Nasri, M. Physical, Structural, Antioxidant and Antimicrobial Properties of Gelatin–Chitosan Composite Edible Films. Int. J. Biol. Macromol. 2014, 67, 373–379. [Google Scholar]
- Said, N.S.; Mhd, S.N. Chapter 4: Protein-Based Active Film as Antimicrobial Food Packaging: A Review. In Active Antimicrobial Food Packaging; Işıl, V., Sinan, U., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Cataldo, F. On the Action of Ozone on Proteins. Polym. Degrad. Stab. 2003, 82, 105–114. [Google Scholar] [CrossRef]
- Cataldo, F. Ozone Degradation of Biological Macromolecules: Proteins, Hemoglobin, Rna, and DNA. Ozone Sci. Eng. 2006, 28, 317–328. [Google Scholar] [CrossRef]
- Cataldo, F. On the Action of Ozone on Gelatin. Int. J. Biol. Macromol. 2007, 41, 210–216. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Wang, X.; Dong, S.; Sun, Y.; Zhao, Z. The Properties of Chitosan/Zein Blend Film and Effect of Film on Quality of Mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 155, 47–56. [Google Scholar] [CrossRef]
- Rezaei, M.; Pirsa, S.; Chavoshizadeh, S. Photocatalytic/Antimicrobial Active Film Based on Wheat Gluten/Zno Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2654–2665. [Google Scholar] [CrossRef]
- ASTM D882-02; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2002.
- Etxabide, A.; Urdanpilleta, M.; Gómez-Arriaran, I.; De La Caba, K.; Guerrero, P. Effect of Ph and Lactose on Cross-Linking Extension and Structure of Fish Gelatin Films. React. Funct. Polym. 2017, 117, 140–146. [Google Scholar] [CrossRef]
- Gennadios, A.; Brandenburg, A.H.; Weller, C.L.; Testin, R.F. Effect of Ph on Properties of Wheat Gluten and Soy Protein Isolate Films. J. Agric. Food Chem. 1993, 41, 1835–1839. [Google Scholar] [CrossRef]
- Kurek, M.; Galus, S.; Debeaufort, F. Surface, Mechanical and Barrier Properties of Bio-Based Composite Films Based on Chitosan and Whey Protein. Food Packag. Shelf Life 2014, 1, 56–67. [Google Scholar] [CrossRef]
- Langton, M.; Hermansson, A.-M. Fine-Stranded and Particulate Gels of Β-Lactoglobulin and Whey Protein at Varying Ph. Food Hydrocoll. 1992, 5, 523–539. [Google Scholar] [CrossRef]
- Stading, M.; Hermansson, A.-M. Viscoelastic Behaviour of Β-Lactoglobulin Gel Structures. Food Hydrocoll. 1990, 4, 121–135. [Google Scholar] [CrossRef]
- Song, X.; Zhou, C.; Fu, F.; Chen, Z.; Wu, Q. Effect of High-Pressure Homogenization on Particle Size and Film Properties of Soy Protein Isolate. Ind. Crops Prod. 2013, 43, 538–544. [Google Scholar] [CrossRef]
- Jiang, S.; Hussain, M.A.; Cheng, J.; Jiang, Z.; Geng, H.; Sun, Y.; Sun, C.; Hou, J. Effect of Heat Treatment on Physicochemical and Emulsifying Properties of Polymerized Whey Protein Concentrate and Polymerized Whey Protein Isolate. LWT 2018, 98, 134–140. [Google Scholar] [CrossRef]
- Marcet, I.; Álvarez, C.; Paredes, B.; Rendueles, M.; Díaz, M. Transparent and Edible Films from Ultrasound-Treated Egg Yolk Granules. Food Bioprocess Technol. 2018, 11, 735–747. [Google Scholar] [CrossRef]
- Nemati, V.; Hashempour-Baltork, F.; Gharavi-Nakhjavani, M.S.; Feizollahi, E.; Júnior, L.M.; Alizadeh, A.M. Application of a Whey Protein Edible Film Incorporated with Cumin Essential Oil in Cheese Preservation. Coatings 2023, 13, 1470. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010, 122, 161–166. [Google Scholar] [CrossRef]
- Khazaei, N.; Esmaiili, M.; Djomeh, Z.E.; Ghasemlou, M.; Jouki, M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym. 2014, 102, 199–206. [Google Scholar] [CrossRef]
- Karbowiak, T.; Debeaufort, F.; Voilley, A. Importance of surface tension characterization for food, pharmaceutical and packaging products: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 391–407. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, X.; Feng, X.; Ma, Y.; Zou, H. Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90. Polymer 2007, 48, 7455–7460. [Google Scholar] [CrossRef]
- Flaker, C.H.; Lourenço, R.V.; Bittante, A.M.; Sobral, P.J. Gelatin-Based Nanocomposite Films: A Study on Montmorillonite Dispersion Methods and Concentration. J. Food Eng. 2015, 167, 65–70. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Zhang, H.; Ni, Y. Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films. J. Food Sci. 2016, 81, E1151–E1157. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Kosma, I.; Mataragas, M.; Pappa, E.; Badeka, A.V.; Bosnea, L. Innovative Intelligent Cheese Packaging with Whey Protein-Based Edible Films Containing Spirulina. Sustainability 2023, 15, 13909. [Google Scholar] [CrossRef]
- Sert, D.; Mercan, E. The Impact of Ozone Treatment on Whey Concentrate on the Flow Behaviour, Functional and Microbiological Characteristics of Whey Powder. Int. Dairy J. 2022, 134, 105447. [Google Scholar] [CrossRef]
- Mohammadi, H.; Mazloomi, S.M.; Eskandari, M.H.; Aminlari, M.; Niakousari, M. The Effect of Ozone on Aflatoxin M1, Oxidative Stability, Carotenoid Content and the Microbial Count of Milk. Ozone Sci. Eng. 2017, 39, 447–453. [Google Scholar] [CrossRef]
- Üçok, G.; Kara, Ü.; Sert, D. Physical, Mechanical, and Thermal Properties of Gelatine-Based Edible Film Made Using Kefir: Monitoring Aspergillus Flavus and A. Parasiticus Growth on the Film Surface. J. Food Process. Preserv. 2022, 46, e16778. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Sun, Y.; Wang, X.; Li, L. Effect of A-Tocopherol Antioxidant on Rheological and Physicochemical Properties of Chitosan/Zein Edible Films. LWT 2020, 118, 108799. [Google Scholar] [CrossRef]
- Deng, L.; Li, X.; Miao, K.; Mao, X.; Han, M.; Li, D.; Mu, C.; Ge, L. Development of Disulfide Bond Crosslinked Gelatin/Ε-Polylysine Active Edible Film with Antibacterial and Antioxidant Activities. Food Bioprocess Technol. 2020, 13, 577–588. [Google Scholar] [CrossRef]
- Yavari Maroufi, L.; Ghorbani, M.; Tabibiazar, M. A Gelatin-Based Film Reinforced by Covalent Interaction with Oxidized Guar Gum Containing Green Tea Extract as an Active Food Packaging System. Food Bioprocess Technol. 2020, 13, 1633–1644. [Google Scholar] [CrossRef]
- Peng, N.; Gu, L.; Li, J.; Chang, C.; Li, X.; Su, Y.; Yang, Y. Films Based on Egg White Protein and Succinylated Casein Cross-Linked with Transglutaminase. Food Bioprocess Technol. 2017, 10, 1422–1430. [Google Scholar] [CrossRef]
- Yoo, S.; Krochta, J.M. Whey Protein–Polysaccharide Blended Edible Film Formation and Barrier, Tensile, Thermal and Transparency Properties. J. Sci. Food Agric. 2011, 91, 2628–2636. [Google Scholar] [CrossRef] [PubMed]
- Izzi, Y.S.; Gerschenson, L.N.; Jagus, R.J.; Resa, C.P.O. Edible Films Based on Tapioca Starch and Wpc or Gelatine Plasticized with Glycerol: Potential Food Applications Based on Their Mechanical and Heat-Sealing Properties. Food Bioprocess Technol. 2023, 16, 2559–2569. [Google Scholar] [CrossRef]
- Guimarães, A.; Ramos, Ó.; Cerqueira, M.; Venâncio, A.; Abrunhosa, L. Active Whey Protein Edible Films and Coatings Incorporating Lactobacillus Buchneri for Penicillium Nordicum Control in Cheese. Food Bioprocess Technol. 2020, 13, 1074–1086. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Nadaud, P.; Krochta, J.M. Water Vapor Permeability, Solubility, and Tensile Properties of Heat-Denatured Versus Native Whey Protein Films. J. Food Sci. 1999, 64, 1034–1037. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M.; Velazquez, G. Composite Films of Regenerate Cellulose with Chitosan and Polyvinyl Alcohol: Evaluation of Water Adsorption, Mechanical and Optical Properties. Int. J. Biol. Macromol. 2018, 117, 235–246. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food Bioprocess Technol. 2021, 14, 209–231. [Google Scholar] [CrossRef]
Sample | pH | ζ-Potential (mV) | Average Diameter (nm) |
---|---|---|---|
Control | 5.71 ± 0.01 c | −0.92 ± 0.03 a | 684 ± 19.8 ab |
O-5 | 5.85 ± 0.01 b | −1.24 ± 0.04 b | 727.5 ± 27.6 a |
O-10 | 5.95 ± 0.02 a | −0.99 ± 0.01 a | 593.0 ± 9.9 c |
O-30 | 5.96 ± 0.03 a | −0.88 ± 0.03 a | 638.5 ± 16.3 bc |
Sample | Thickness (mm) | Density (g/cm3) | θ60s (°) |
---|---|---|---|
Control | 0.31 ± 0.01 ns | 1.13 ± 0.04 a | 104.30 ± 0.99 ns |
O-5 | 0.30 ± 0.02 | 1.00 ± 0.02 b | 101.54 ± 2.06 |
O-10 | 0.34 ± 0.01 | 1.04 ± 0.02 ab | 101.10 ± 1.56 |
O-30 | 0.38 ± 0.03 | 1.07 ± 0.03 ab | 96.92 ± 2.72 |
Sample | Colour | Opacity | Photograph | |||
---|---|---|---|---|---|---|
L* | a* | b* | ΔE* | |||
Control | 80.10 ± 0.14 c | 2.01 ± 0.02 a | 7.58 ± 0.11 b | 0 | 0.990 ± 0.014 c | |
O-5 | 81.28 ± 0.40 c | 1.88 ± 0.03 b | 7.96 ± 0.09 b | 1.25 ± 0.24 c | 0.107 ± 0.005 d | |
O-10 | 83.90 ± 0.42 b | 1.87 ± 0.05 b | 8.46 ± 0.01 a | 3.91 ± 0.57 b | 1.120 ± 0.007 a | |
O-30 | 89.77 ± 0.45 a | 1.77 ± 0.02 b | 8.70 ± 0.13 a | 9.74 ± 0.59 a | 1.027 ± 0.005 b |
Sample | Onset Temp. T0 (°C) | Degradation Temp. Tmax (°C) | Weight Loss (%) |
---|---|---|---|
Control | 152.05 | 238.50 | 93.56 |
O-5 | 154.62 | 209.20 | 92.15 |
O-10 | 156.78 | 214.50 | 90.35 |
O-30 | 158.12 | 227.65 | 89.78 |
Sample | Tensile Strength (MPa) | Elongation at Break “Breaking Strain” (%) | Toughness (MJ/m3) |
---|---|---|---|
Control | 0.986 ± 0.005 c | 139.72 ± 1.80 b | 0.480 ± 0.006 c |
O-5 | 1.093 ± 0.009 b | 143.16 ± 1.19 b | 0.566 ± 0.008 b |
O-10 | 1.110 ± 0.007 ab | 156.62 ± 2.29 a | 0.588 ± 0.003 ab |
O-30 | 1.130 ± 0.008 a | 162.21 ± 2.53 a | 0.611 ± 0.008 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercan, E. Gelatine-Based Biopolymer Film Produced from Ozone-Treated Film-Forming Solutions Containing Whey Protein Concentrate: Effects on Physical, Mechanical, and Thermal Characteristics. Appl. Sci. 2024, 14, 2176. https://doi.org/10.3390/app14052176
Mercan E. Gelatine-Based Biopolymer Film Produced from Ozone-Treated Film-Forming Solutions Containing Whey Protein Concentrate: Effects on Physical, Mechanical, and Thermal Characteristics. Applied Sciences. 2024; 14(5):2176. https://doi.org/10.3390/app14052176
Chicago/Turabian StyleMercan, Emin. 2024. "Gelatine-Based Biopolymer Film Produced from Ozone-Treated Film-Forming Solutions Containing Whey Protein Concentrate: Effects on Physical, Mechanical, and Thermal Characteristics" Applied Sciences 14, no. 5: 2176. https://doi.org/10.3390/app14052176
APA StyleMercan, E. (2024). Gelatine-Based Biopolymer Film Produced from Ozone-Treated Film-Forming Solutions Containing Whey Protein Concentrate: Effects on Physical, Mechanical, and Thermal Characteristics. Applied Sciences, 14(5), 2176. https://doi.org/10.3390/app14052176