Isolation of Geranyl Acetate and Chemical Analysis of the Essential Oil from Melaleuca armillaris (Sol. ex Gaertn.) Sm.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material
2.2. Extraction of Essential Oil
2.3. Physical Properties Determination
2.4. EO Composition Analysis and Sample Preparation
2.5. Identification of the EO Components
2.6. Isolation and Identification of Geranyl Acetate
3. Results
3.1. Physical Properties of EO
3.2. Chemical Composition
3.3. Isolation and Characterization of Geranyl Acetate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; De Silva, E.; Göransson, U.; Hettiarachchi, C.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol. 2020, 246, 112158. [Google Scholar] [CrossRef] [PubMed]
- Buldain, D.; Castillo, L.G.; Buchamer, A.V.; Bandoni, A.; Marchetti, L.; Mestorino, N. Erythromycin and Melaleuca armillaris Essential Oil Combination against Staphylococcus aureus Isolated from Dairy Cows. 2022; Preprints. [Google Scholar] [CrossRef]
- Ghangal, R.; Raghuvanshi, S.; Sharma, P.C. Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiol. 2009, 47, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Marques, E.C.; Souza, D.M.S.T.D.; Vilela, F.F.; Teixeira, M.A. Melaleuca armillaris essential oil as an odor reducer in intestinal ostomy bags: A semi-experimental study. Rev. Esc. Enferm. USP 2022, 56. [Google Scholar] [CrossRef] [PubMed]
- Govaerts, R.; Sobral, M.; Ashton, P.; Barrie, F.; Holst, B.K.; Landrum, L.L.; Matsumoto, K.; Mazine, F.F.; Lughadha, E.N.; Proneça, C. World Checklist of Myrtaceae; Royal Botanic Gardens: Kew, UK, 2008. [Google Scholar]
- Hayouni, E.A.; Bouix, M.; Abedrabba, M.; Leveau, J.-Y.; Hamdi, M. Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chem. 2008, 111, 707–718. [Google Scholar] [CrossRef]
- Anjos da Silva, L.; Santos da Silva, R.; Rodrigues de Oliveira, M.; Guimarães, A.C.; Takeara, R. Chemical composition and biological activities of essential oils from Myrtaceae species growing in Amazon: An updated review. J. Essent. Oil Res. 2023, 35, 103–116. [Google Scholar] [CrossRef]
- Massaro, C.F.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.J.; Heard, T.A.; Carvalho, C.; Manley-Harris, M.; Wallace, H.M.; Brooks, P. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, M.É.A.; Pascoal, A.C.; Salvador, M.J. Essential oils from neotropical Myrtaceae: Chemical diversity and biological properties. Chem. Biodivers. 2011, 8, 73–94. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Parveen, Z.; Chaudhary, M.N.; Mazhar, S.; Nawaz, S. The essential oil of Melaleuca armillaris (Sol. ex Gaertn.) Sm. leaves from Pakistan: A potential source of eugenol methyl ether. Ind. Crops Prod. 2017, 109, 912–917. [Google Scholar] [CrossRef]
- Farag, N.F.; El-Ahmady, S.H.; Abdelrahman, E.H.; Naumann, A.; Schulz, H.; Azzam, S.M.; El-Kashoury, E.-S.A. Characterization of essential oils from Myrtaceae species using ATR-IR vibrational spectroscopy coupled to chemometrics. Ind. Crops Prod. 2018, 124, 870–877. [Google Scholar] [CrossRef]
- Buldain, D.; Gortari Castillo, L.; Marchetti, M.L.; Julca Lozano, K.; Bandoni, A.; Mestorino, N. Modeling the Growth and Death of Staphylococcus aureus against Melaleuca armillaris Essential Oil at Different pH Conditions. Antibiotics 2021, 10, 222. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef] [PubMed]
- Montalván, M.; Peñafiel, M.A.; Ramírez, J.; Cumbicus, N.; Bec, N.; Larroque, C.; Bicchi, C.; Gilardoni, G. Chemical composition, enantiomeric distribution, and sensory evaluation of the essential oils distilled from the Ecuadorian species Myrcianthes myrsinoides (Kunth) Grifo and Myrcia mollis (Kunth) dc.(Myrtaceae). Plants 2019, 8, 511. [Google Scholar] [CrossRef] [PubMed]
- Scalvenzi, L.; Grandini, A.; Spagnoletti, A.; Tacchini, M.; Neill, D.; Ballesteros, J.L.; Sacchetti, G.; Guerrini, A. Myrcia splendens (Sw.) DC.(syn. M. fallax (Rich.) DC.)(Myrtaceae) essential oil from Amazonian Ecuador: A chemical characterization and bioactivity profile. Molecules 2017, 22, 1163. [Google Scholar] [CrossRef]
- Chavez Carvajal, P.; Coppo, E.; Di Lorenzo, A.; Gozzini, D.; Bracco, F.; Zanoni, G.; Nabavi, S.M.; Marchese, A.; Arciola, C.R.; Daglia, M. Chemical characterization and in vitro antibacterial activity of Myrcianthes hallii (O. Berg) McVaugh (Myrtaceae), a traditional plant growing in Ecuador. Materials 2016, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Buldain, D.; Buchamer, A.V.; Marchetti, M.L.; Aliverti, F.; Bandoni, A.; Mestorino, N. Combination of cloxacillin and essential oil of Melaleuca armillaris as an alternative against staphylococcus aureus. Front. Vet. Sci. 2018, 5, 177. [Google Scholar] [CrossRef]
- De Castro Oliveira, J.A.; Ferreira, L.S.; Garcia, I.P.; de Lima Santos, H.; Ferreira, G.S.; Rocha, J.P.M.; Nunes, S.A.; de Carvalho, A.A.; Pinto, J.E.B.P.; Bertolucci, S.K.V. Eugenia uniflora, Melaleuca armillaris, and Schinus molle essential oils to manage larvae of the filarial vector Culex quinquefasciatus (Diptera: Culicidae). Environ. Sci. Proc. 2022, 29, 34749–34758. [Google Scholar] [CrossRef] [PubMed]
- Zeferino, R.C.F.; Piaia, V.A.A.; Orso, V.T.; Pinheiro, V.M.; Zanetti, M.; Colpani, G.L.; Padoin, N.; Soares, C.; Fiori, M.A.; Riella, H.G. Synthesis of geranyl acetate by esterification of geraniol with acetic anhydride through heterogeneous catalysis using ion exchange resin. Chem. Eng. Res. Des. 2021, 168, 156–168. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Chen, W.; Viljoen, A.M. Geraniol—A review update. S. Afr. J. Bot. 2022, 150, 1205–1219. [Google Scholar] [CrossRef]
- Lin, P.C.; Lee, J.J.; Chang, I.J. Essential oils from Taiwan: Chemical composition and antibacterial activity against Escherichia coli. J. Food Drug Anal. 2016, 24, 464–470. [Google Scholar] [CrossRef]
- Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl.(Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses. Plants 2023, 12, 849. [Google Scholar] [CrossRef] [PubMed]
- ISO 279:1998; Essential Oils. Determination of Relative Density at 20 °C—Reference Method. ISO: Geneva, Switzerland, 1998.
- ISO 280:1998; Essential Oils. Determination of Refractive Index. ISO: Geneva, Switzerland, 1998.
- ISO 592:1998; Essential Oils. Determination of Optical Rotation. ISO: Geneva, Switzerland, 1998.
- NIST Chemistry WebBook, SRD 69. Available online: https://webbook.nist.gov/chemistry (accessed on 15 June 2023).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-193263321. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Indira, T.I.; Burhan, K.H.; Manurung, R.; Widiana, A. Enhancement of essential oil yield from melaleuca leucadendra l. leaves by lignocellulose degradation pre-treatment using filamentous fungi. J. Bioresour. Bioprod. 2021, 6, 379–386. [Google Scholar] [CrossRef]
- Cartuche, L.; Calva, J.; Valarezo, E.; Chuchuca, N.; Morocho, V. Chemical and Biological Activity Profiling of Hedyosmum strigosum Todzia Essential Oil, an Aromatic Native Shrub from Southern Ecuador. Plants 2022, 11, 2832. [Google Scholar] [CrossRef] [PubMed]
- Braga, V.A.Á.; dos Santos Cruz, G.; Guedes, C.A.; dos Santos Silva, C.T.; Santos, A.A.; da Costa, H.N.; Neto, C.J.C.L.; Teixeira, Á.A.C.; Teixeira, V.W. Effect of essential oils of Mentha spicata L. and Melaleuca alternifolia Cheel on the midgut of Podisus nigrispinus (Dallas)(Hemiptera: Pentatomidae). Acta Histochem. Cytochem. 2020, 122, 151529. [Google Scholar] [CrossRef]
- Sakasegawa, M.; Hori, K.; Yatagai, M. Composition and antitermite activities of essential oils from Melaleuca species. J. Wood Sci. 2003, 49, 181–187. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef]
- Accame, M.; Ortega, T. Plantas medicinales y derivados en dermatología (IV). Malaleuca Panor. Actual Medicam. 2014, 38, 694. [Google Scholar]
- Chabir, N.; Romdhane, M.; Valentin, A.; Moukarzel, B.; Marzoug, H.N.B.; Brahim, N.B.; Mars, M.; Bouajila, J. Chemical study and antimalarial, antioxidant, and anticancer activities of Melaleuca armillaris (Sol Ex Gateau) Sm essential oil. J. Med. Food 2011, 14, 1383–1388. [Google Scholar] [CrossRef]
- Rizk, M.; Ibrahim, N.; El-Rigal, N. Comparative in vivo antioxidant levels in Schistosoma mansoni infected mice treated with praziquantel or essential oil of Melaleuca armillaris leaves. Pak. J. Biol. Sci. 2012, 15, 971–978. [Google Scholar] [CrossRef]
- Kumar, A.; Tandon, S.; Yadav, A. Chemical composition of the essential oil from fresh leaves of Melaleuca leucadendron L. from north India. J. Essent. Oil Bear. Plants 2005, 8, 19–22. [Google Scholar] [CrossRef]
- Amri, I.; Mancini, E.; De Martino, L.; Marandino, A.; Lamia, H.; Mohsen, H.; Bassem, J.; Scognamiglio, M.; Reverchon, E.; De Feo, V. Chemical Composition and Biological Activities of the Essential Oils from Three Melaleuca Species Grown in Tunisia. Int. J. Mol. Sci. 2012, 13, 16580–16591. [Google Scholar] [CrossRef] [PubMed]
- Farag, R.S.; Shalaby, A.S.; El-Baroty, G.A.; Ibrahim, N.A.; Ali, M.A.; Hassan, E.M. Chemical and biological evaluation of the essential oils of different Melaleuca species. Phytother. Res. 2004, 18, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.M.; Skellam, E.J.; Oxley, S.J.; Graham, A.E. Highly selective synthesis of oxabicycloalkanes by indium tribromide-mediated cyclization reactions of epoxyalkenes. Org. Biomol. Chem. 2007, 5, 1979–1982. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2005; ISBN 0-471-39362-2. WIE ISBN 0-471-42913-42919. [Google Scholar]
- Van Zyl, R.L.; Seatlholo, S.T.; Van Vuuren, S.F.; Viljoen, A. Pharmacological interactions of essential oil constituents on the viability of microorganisms. Nat. Prod. Commun. 2010, 5, 1934578X1000500909. [Google Scholar] [CrossRef]
- Douglas, M.H.; van Klink, J.W.; Smallfield, B.M.; Perry, N.B.; Anderson, R.E.; Johnstone, P.; Weavers, R.T. Essential oils from New Zealand manuka: Triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 2004, 65, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
N° | Compound | LRI a | LRI b | % | ±SD |
---|---|---|---|---|---|
1 | α-Thujene | 933 | 924 | 0.09 | 0.05 |
2 | α-Pinene | 938 | 932 | 5.23 | 0.52 |
3 | Camphene | 952 | 946 | Trace | - |
4 | Sabinene | 973 | 969 | 0.59 | 0.03 |
5 | β-Pinene | 977 | 974 | 1.55 | 0.47 |
6 | Myrcene | 990 | 988 | 2.22 | 0.16 |
7 | ρ-Mentha-1(7),8-diene | 1002 | 1003 | Trace | - |
8 | δ-3-Carene | 1005 | 1008 | Trace | - |
9 | α-Terpinene | 1015 | 1014 | 0.19 | 0.03 |
10 | Limonene | 1016 | 1024 | 10.34 | 1.58 |
11 | 1,8-cineole | 1035 | 1026 | 66.51 | 1.33 |
12 | (E)-β-Ocimene | 1046 | 1044 | 0.39 | 0.06 |
13 | γ-Terpinene | 1056 | 1054 | 0.56 | 0.09 |
14 | cis-Sabinene hydrate | 1070 | 1065 | Trace | - |
15 | Terpinolene | 1083 | 1086 | 0.08 | 0.04 |
16 | trans-Sabinene hydrate (IPP vs. OH) | 1101 | 1098 | Trace | - |
17 | n-Nonanal | 1105 | 1100 | Trace | - |
18 | cis-ρ-Menth-2-en-1-ol | 1124 | 1118 | Trace | - |
19 | δ-Terpineol | 1170 | 1162 | 0.16 | 0.09 |
20 | Terpinen-4-ol | 1180 | 1174 | 0.66 | 0.18 |
21 | α-Terpineol | 1196 | 1186 | 8.83 | 0.79 |
22 | Thymol | 1293 | 1289 | 0.11 | 0.09 |
23 | Geranyl acetate | 1379 | 1379 | 0.68 | 0.06 |
24 | (E)-Caryophyllene | 1415 | 1417 | 0.69 | 0.10 |
25 | Aromadendrene | 1434 | 1439 | Trace | - |
26 | cis-Muurola-3,5-diene | 1445 | 1448 | Trace | - |
27 | α-Humulene | 1451 | 1452 | 0.09 | 0.03 |
28 | Allo-Aromadendrene | 1455 | 1458 | Trace | - |
29 | Dauca-5,8-diene | 1455 | 1471 | Trace | - |
30 | γ-Muurolene | 1487 | 1478 | 0.09 | 0.04 |
31 | Neryl isobutanoate | 1491 | 1490 | 0.13 | 0.03 |
32 | Bicyclogermacrene | 1495 | 1500 | 0.07 | 0.10 |
33 | β-Bisabolene | 1508 | 1505 | Trace | - |
34 | δ-Amorphene | 1515 | 1511 | 0.20 | 0.02 |
35 | Zonarene | 1519 | 1528 | Trace | - |
36 | trans-Cadina-1,4-diene | 1528 | 1533 | Trace | - |
37 | Globulol | 1582 | 1590 | 0.10 | 0.07 |
38 | 1-epi-Cubenol | 1624 | 1627 | 0.06 | 0.02 |
Monoterpene hydrocarbons (%) | 21.31% | ||||
Oxygenated monoterpenoids (%) | 77.01% | ||||
Sesquiterpene hydrocarbons (%) | 1.31% | ||||
Oxygenated sesquiterpenes (%) | 0.16% | ||||
Others (%) | 0.13% | ||||
Total identified (%) | 99.92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo, S.P.; Calva, J.; Jiménez, A.; Armijos, C. Isolation of Geranyl Acetate and Chemical Analysis of the Essential Oil from Melaleuca armillaris (Sol. ex Gaertn.) Sm. Appl. Sci. 2024, 14, 1864. https://doi.org/10.3390/app14051864
Jaramillo SP, Calva J, Jiménez A, Armijos C. Isolation of Geranyl Acetate and Chemical Analysis of the Essential Oil from Melaleuca armillaris (Sol. ex Gaertn.) Sm. Applied Sciences. 2024; 14(5):1864. https://doi.org/10.3390/app14051864
Chicago/Turabian StyleJaramillo, Stalin P., James Calva, Andy Jiménez, and Chabaco Armijos. 2024. "Isolation of Geranyl Acetate and Chemical Analysis of the Essential Oil from Melaleuca armillaris (Sol. ex Gaertn.) Sm." Applied Sciences 14, no. 5: 1864. https://doi.org/10.3390/app14051864
APA StyleJaramillo, S. P., Calva, J., Jiménez, A., & Armijos, C. (2024). Isolation of Geranyl Acetate and Chemical Analysis of the Essential Oil from Melaleuca armillaris (Sol. ex Gaertn.) Sm. Applied Sciences, 14(5), 1864. https://doi.org/10.3390/app14051864