Characterization of Several 2-Ethylhexyl Nitrates with Vegetable Oil (Castor or Sunflower Oil) Blends in Triple Blends with Diesel, Working as Advanced Biofuels in C.I. Diesel Engines
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Double Blends EHN/SVO and Triple Blends Diesel/EHN/SVO to Be Used as Advanced or Carbon-Neutral Fuels
2.2. Characterization of the Rheological and Physicochemical Properties of the Biofuel Mixtures
Determination of Calorific Value of Biofuel Samples
2.3. Experimental Procedure for Testing the Mechanical and Environmental Performance of Biofuel Blends in a Diesel Engine–Electrogenerator Set
3. Results
3.1. Physicochemical Properties of EHN/SVO Double Blends and D/EHN/SVO Triple Blends
3.2. Performance of EHN/SVO Double Blends and D/EHN/SVO Triple Blends in a Diesel Engine Operating as an Electric Generator
3.3. Brake Specific Fuel Consumption (BSFC)
3.4. Exhaust Emissions from Diesel Engine
3.4.1. Soot Emissions
3.4.2. Carbon Monoxide (CO) Emissions
3.4.3. Nitrogen Oxides (NOx) Emissions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalili, S.; Rantanen, E.; Bogdanov, D.; Breyer, C. Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World. Energies 2019, 12, 3870. [Google Scholar] [CrossRef]
- Senecal, P.K.; Leach, F. Diversity in Transportation: Why a Mix of Propulsion Technologies Is the Way Forward for the Future Fleet. Results Eng. 2019, 4, 100060. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; López-Tenllado, F.J.; Bautista, F.M.; Romero, A.A.; Luna, D. Internal Combustion Engines and Carbon-Neutral Fuels: A Perspective on Emission Neutrality in the European Union. Energies 2024, 17, 1172. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; Bautista, F.M.; Luna, D.; Luna, C.; Calero, J.; Posadillo, A.; Romero, A.A. Biodiesel at the Crossroads: A Critical Review. Catalysts 2019, 9, 1033. [Google Scholar] [CrossRef]
- Kosuru, S.M.Y.; Delhiwala, Y.; Koorla, P.B.; Mekala, M. A Review on the Biodiesel Production: Selection of Catalyst, Pre-Treatment, Post Treatment Methods. Green Technol. Sustain. 2024, 2, 100061. [Google Scholar] [CrossRef]
- Nikolopoulos, I.; Kordouli, E.; Mourgkogiannis, N.; Karapanagioti, H.K.; Lycourghiotis, A.; Kordulis, C. Valorization of Pyrolyzed Biomass Residues for the Transformation of Waste Cooking Oil into Green Diesel. Catalysts 2023, 13, 1004. [Google Scholar] [CrossRef]
- del Río, J.I.; Pérez, W.; Cardeño, F.; Marín, J.; Rios, L.A. Pre-Hydrogenation Stage as a Strategy to Improve the Continuous Production of a Diesel-like Biofuel from Palm Oil. Renew. Energy 2021, 168, 505–515. [Google Scholar] [CrossRef]
- d’Ambrosio, S.; Mancarella, A.; Manelli, A. Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps. Energies 2022, 15, 7202. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; López-Tenllado, F.J.; Luna, C.; Calero, J.; Romero, A.A.; Bautista, F.M.; Luna, D. Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review. Energies 2022, 15, 3173. [Google Scholar] [CrossRef]
- Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Roberts, W.L.; Dibble, R.W. Feasibility of Using Less Viscous and Lower Cetane (LVLC) Fuels in a Diesel Engine: A Review. Renew. Sustain. Energy Rev. 2015, 51, 1166–1190. [Google Scholar] [CrossRef]
- Coughlin, B.; Hoxie, A. Combustion Characteristics of Ternary Fuel Blends: Pentanol, Butanol and Vegetable Oil. Fuel 2017, 196, 488–496. [Google Scholar] [CrossRef]
- Che Mat, S.; Idroas, M.Y.; Teoh, Y.H.; Hamid, M.F.; Sharudin, H.; Pahmi, M.A.A.H. Optimization of Ternary Blends among Refined Palm Oil-Hexanol-Melaleuca Cajuputi Oil and Engine Emissions Analysis of the Blends. Renew. Energy 2022, 196, 451–461. [Google Scholar] [CrossRef]
- Eiadtrong, S.; Maliwan, K.; Theppaya, T.; Kattiyawan, T.; Prateepchaikul, G.; Leevijit, T. An Investigation to Utilize Ternary Diesel-Palm Fatty Acid Distillate-10 wt% n-Butanol Blends as Simply Novel Diesel Substitutes. Fuel 2021, 289, 119965. [Google Scholar] [CrossRef]
- Atmanlı, A.; Yüksel, B.; İleri, E. Experimental Investigation of the Effect of Diesel–Cotton Oil–n-Butanol Ternary Blends on Phase Stability, Engine Performance and Exhaust Emission Parameters in a Diesel Engine. Fuel 2013, 109, 503–511. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Dhanasekaran, R.; Rana, D.; Saravanan, S.; Rajesh Kumar, B. A Comparative Assessment of Ternary Blends of Three Bio-Alcohols with Waste Cooking Oil and Diesel for Optimum Emissions and Performance in a CI Engine Using Response Surface Methodology. Energy Convers. Manag. 2018, 156, 337–357. [Google Scholar] [CrossRef]
- Che Mat, S.; Idroas, M.Y.; Teoh, Y.H.; Hamid, M.F. Optimisation of Viscosity and Density of Refined Palm Oil-Melaleuca Cajuputi Oil Binary Blends Using Mixture Design Method. Renew. Energy 2019, 133, 393–400. [Google Scholar] [CrossRef]
- Prakash, T.; Geo, V.E.; Martin, L.J.; Nagalingam, B. Evaluation of Pine Oil Blending to Improve the Combustion of High Viscous (Castor Oil) Biofuel Compared to Castor Oil Biodiesel in a CI Engine. Heat Mass Transf. 2019, 55, 1491–1501. [Google Scholar] [CrossRef]
- Ashok, B.; Jeevanantham, A.K.; Vignesh, R.; Bhat Hire, K.R.; Prabhu, K.; Raaj Kumar, R.A.; Shivshankar, N.; Edwin Sudhagar, P. Calibration of Engine Parameters and Fuel Blend for Vibration and Noise Characteristics in CRDI Engine Fuelled with Low Viscous Biofuel. Fuel 2021, 288, 119659. [Google Scholar] [CrossRef]
- Gurusamy, M.; Ponnusamy, C. The Influence of Hydrogen Induction on The Characteristics of a CI Engine Fueled with Blend of Camphor Oil and Diesel with Diethyl Ether Additive. Int. J. Hydrogen Energy 2023, 48, 24054–24073. [Google Scholar] [CrossRef]
- Che Mat, S.; Idroas, M.Y.; Hamid, M.F.; Zainal, Z.A. Performance and Emissions of Straight Vegetable Oils and Its Blends as a Fuel in Diesel Engine: A Review. Renew. Sustain. Energy Rev. 2018, 82, 808–823. [Google Scholar] [CrossRef]
- Chidambaranathan, B.; Gopinath, S.; Aravindraj, R.; Devaraj, A.; Gokula Krishnan, S.; Jeevaananthan, J.K.S. The Production of Biodiesel from Castor Oil as a Potential Feedstock and Its Usage in Compression Ignition Engine: A Comprehensive Review. Mater. Today Proc. 2020, 33, 84–92. [Google Scholar] [CrossRef]
- Mannu, A.; Garroni, S.; Ibanez Porras, J.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. [Google Scholar] [CrossRef]
- Aguado-Deblas, L.; López-Tenllado, F.J.; Luna, D.; Bautista, F.M.; Romero, A.A.; Estevez, R. Advanced Biofuels from ABE (Acetone/Butanol/Ethanol) and Vegetable Oils (Castor or Sunflower Oil) for Using in Triple Blends with Diesel: Evaluation on a Diesel Engine. Materials 2022, 15, 6493. [Google Scholar] [CrossRef] [PubMed]
- Schubert, T. Production Routes of Advanced Renewable C1 to C4 Alcohols as Biofuel Components—A Review. Biofuels Bioprod. Biorefining 2020, 14, 845–878. [Google Scholar] [CrossRef]
- Karagöz, M. Investigation of Performance and Emission Characteristics of an CI Engine Fuelled with Diesel–Waste Tire Oil–Butanol Blends. Fuel 2020, 282, 118872. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; López-Tenllado, F.J.; Bautista, F.M.; Romero, A.A.; Luna, D. Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions. Energies 2024, 17, 1322. [Google Scholar] [CrossRef]
- Özer, S. The Effect of Diesel Fuel-Tall Oil/Ethanol/Methanol/Isopropyl/n-Butanol/Fusel Oil Mixtures on Engine Performance and Exhaust Emissions. Fuel 2020, 281, 118671. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Veza, I.; Ampah, J.D.; Afrane, S.; Sarikoç, S.; Mujtaba, M.A.; Yahuza, I. Experimental Study on Emissions and Particulate Characteristics of Diesel Engine Fueled with Plastic Waste Oil, Acetone-Butanol-Ethanol and Diesel Blends. Process Saf. Environ. Prot. 2024, 191, 1419–1431. [Google Scholar] [CrossRef]
- Čedík, J.; Pexa, M.; Holúbek, M.; Aleš, Z.; Pražan, R.; Kuchar, P. Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine. Energies 2020, 13, 3796. [Google Scholar] [CrossRef]
- Gurusamy, M.; Vijayaragavan, M.; Varuvel, E.G. Experimental Investigation of Features of CI Engine Fueled with Blends of Camphor Oil with Biomass Waste Simarouba Glauca Oil. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 3884–3901. [Google Scholar] [CrossRef]
- Sonthalia, A.; Varuvel, E.G.; Subramanian, T.; Kumar, N. NOx Emission Reduction in Low Viscous Low Cetane (LVLC) Fuel Using Additives in CI Engine: An Experimental Study. Clean. Technol. Environ. Policy 2024. [Google Scholar] [CrossRef]
- Kumar, M.; Karmakar, S.; Nimesh, V. Statistical Investigation of Combustion and Emission Characteristics of Biofuels According to Their Physical Properties: A Way to Explore Suitable Alternative Fuels. Fuel 2024, 358, 130242. [Google Scholar] [CrossRef]
- Qian, W.; Huang, H.; Pan, M.; Huang, R.; Tong, C.; Guo, X.; Yin, J. Effects of 2-Ethylhexyl Nitrate and Post-Injection Strategy on Combustion and Emission Characterizes in a Dimethyl Carbonate/Diesel Blending Engine. Fuel 2020, 263, 116687. [Google Scholar] [CrossRef]
- Simsek, S.; Uslu, S. Investigation of the Effects of Biodiesel/2-Ethylhexyl Nitrate (EHN) Fuel Blends on Diesel Engine Performance and Emissions by Response Surface Methodology (RSM). Fuel 2020, 275, 118005. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, M.; Luo, J.; Chen, H.; Zhang, X. Diesel Engine Combustion and Emissions of 2,5-Dimethylfuran-Diesel Blends with 2-Ethylhexyl Nitrate Addition. Fuel 2013, 111, 887–891. [Google Scholar] [CrossRef]
- Kuszewski, H. Effect of Adding 2-Ethylhexyl Nitrate Cetane Improver on the Autoignition Properties of Ethanol–Diesel Fuel Blend—Investigation at Various Ambient Gas Temperatures. Fuel 2018, 224, 57–67. [Google Scholar] [CrossRef]
- Pan, M.; Huang, R.; Liao, J.; Ouyang, T.; Zheng, Z.; Lv, D.; Huang, H. Effect of EGR Dilution on Combustion, Performance and Emission Characteristics of a Diesel Engine Fueled with n-Pentanol and 2-Ethylhexyl Nitrate Additive. Energy Convers. Manag. 2018, 176, 246–255. [Google Scholar] [CrossRef]
- Alemahdi, N.; Tuner, M. The Effect of 2-Ethyl-Hexyl Nitrate on HCCI Combustion Properties to Compensate Ethanol Addition to Gasoline. Fuel 2020, 270, 117569. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Ni, P.; Zhao, Y.; Li, M.; Li, L. Effects of Cetane Number Improvers on the Performance of Diesel Engine Fuelled with Methanol/Biodiesel Blend. Fuel 2014, 128, 180–187. [Google Scholar] [CrossRef]
- Chacko, N.; Johnson, C.; Varadarajan, P.; Sai Srinivas, S.; Jeyaseelan, T. A Comparative Evaluation of Cetane Enhancing Techniques for Improving the Smoke, NOx and BSFC Trade-off in an Automotive Diesel Engine. Fuel 2021, 289, 119918. [Google Scholar] [CrossRef]
- Sarmah, D.K.; Deka, D.C. Use of Yellow Oleander (Thevetia Peruviana) Seed Oil Biodiesel as Cetane and Lubricity Improver for Petrodiesel. Rasayan J. Chem. 2019, 12, 1547–1556. [Google Scholar] [CrossRef]
- Atmanli, A. Effects of a Cetane Improver on Fuel Properties and Engine Characteristics of a Diesel Engine Fueled with the Blends of Diesel, Hazelnut Oil and Higher Carbon Alcohol. Fuel 2016, 172, 209–217. [Google Scholar] [CrossRef]
- Insausti, M.; Fernández Band, B.S. Fast Determination of 2-Ethylhexyl Nitrate Diesel/Biodiesel Blends by Distillation Curves and Chemometrics. Energy Fuels 2016, 30, 5341–5345. [Google Scholar] [CrossRef]
- Ishaq, H.; Crawford, C. Review and Evaluation of Sustainable Ammonia Production, Storage and Utilization. Energy Convers. Manag. 2024, 300, 117869. [Google Scholar] [CrossRef]
- Razak, N.H.; Hashim, H.; Yunus, N.A.; Klemeš, J.J. Reducing Diesel Exhaust Emissions by Optimisation of Alcohol Oxygenates Blend with Diesel/Biodiesel. J. Clean. Prod. 2021, 316, 128090. [Google Scholar] [CrossRef]
- Mohite, S.; Maji, S. Biofuel Certification Performance: A Review & Analysis. Eur. J. Sustain. Dev. Res. 2020, 4, em0124. [Google Scholar]
- Sendzikiene, E.; Makareviciene, V.; Janulis, P. Influence of Composition of Fatty Acid Methyl Esters on Smoke Opacity and Amount of Polycyclic Aromatic Hydrocarbons in Engine Emissions. Pol. J. Environ. Stud. 2007, 16, 259–265. [Google Scholar]
- Çakmak, A.; Özcan, H. Analysis of Combustion and Emissions Characteristics of a DI Diesel Engine Fuelled with Diesel/Biodiesel/Glycerol Tert-Butyl Ethers Mixture by Altering Compression Ratio and Injection Timing. Fuel 2022, 315, 123200. [Google Scholar] [CrossRef]
- Vellaiyan, S.; Kandasamy, M.; Subbiah, A.; Devarajan, Y. Energy, Environmental and Economic Assessment of Waste-Derived Lemon Peel Oil Intermingled with High Intense Water and Cetane Improver. Sustain. Energy Technol. Assess. 2022, 53, 102659. [Google Scholar] [CrossRef]
Property | Diesel (D) | Sunflower Oil (SO) | Castor Oil (CO) | 2-Ethylhexyl Nitrate (EHN) |
---|---|---|---|---|
Density at 15 °C (kg/m3) | 825–835 | 920 | 962 | 890–963 |
Kinematic viscosity at 40 °C (cSt) 1 | 3.20 ± 0.01 | 37.80 ± 0.05 | 226.20 ± 0.05 | 1.57± 0.01 |
Calorific value (MJ/kg) | 42.8 | 39.5 | 37.2 | 33.0–41.6 |
Flash point (°C) | 66.0–67.5 | 220 | 228 | 76.0–77.0 |
Auto-ignition temperature (°C) | 250–301 | 316 | 448 | 215–333 |
Cetane number | 51–61.5 | 37 | 40 | * |
Property | Blend | EHN (% by Volume) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 50 | 60 | 65 | 70 | 75 | 80 | 100 | ||
Kinematic viscosity (cSt) | EHN/SO | 37.80 ± 0.36 | 30.54 ± 0.29 | 14.69 ± 0.08 | 7.55 ± 0.15 | 5.70 ± 0.23 | 4.31 | 3.96 ± 0.09 | 3.10 | 2.80 ± 0.08 | 1.57 ± 0.03 |
EHN/CO | 226.20 ± 0.64 | 164.35 ± 0.28 | 39.33 ± 0.12 | 13.19 ± 0.15 | 8.89 ± 0.11 | 6.71 | 5.30 ± 0.14 | 4.79 | 3.37 ± 0.12 | 1.57 ± 0.03 |
Name (% Biodiesel) | D/EHN/SO | Density (kg/m3) | Kinematic Viscosity (cSt) | Cloud Point (°C) | Pour Point (°C) | Calorific Value (MJ/kg) 1 |
---|---|---|---|---|---|---|
Diesel | 100/0/0 | 820 ± 6 | 3.30 ± 0.04 | −6.0 ± 1.0 | −16.0 ± 1.2 | 35.1 |
Bio20CO | 80/13/7 | 830 ± 3 | 3.60 ± 0.04 | −12.6 ± 0.8 | −13.4 ± 2.7 | 34.8 |
Bio40CO | 60/26/14 | 840 ± 6 | 3.70 ± 0.04 | −10.0 ± 1.6 | −13.2 ± 3.0 | 34.4 |
Bio60CO | 40/39/21 | 850 ± 4 | 3.90 ± 0.04 | −9.7 ± 1.0 | −15.5 ± 2.5 | 34.1 |
Bio80CO | 20/52/28 | 890 ± 6 | 4.20 ± 0.07 | −8.5 ± 1.1 | −15.5 ± 3.2 | 33.8 |
Bio100CO | 0/65/35 | 910 ± 1 | 4.30 ± 0.10 | −8.0 ± 0.7 | −15.7 ± 2.3 | 33.4 |
Name (% Biodiesel) | D/EHN/SO | Density (kg/m3) | Kinematic Viscosity (cSt) | Cloud Point (°C) | Pour Point (°C) | Calorific Value (MJ/kg) 1 |
---|---|---|---|---|---|---|
Diesel | 100/0/0 | 820 ± 6 | 3.20 ± 0.04 | −6.0 ± 1.0 | −16.0 ± 1.0 | 35.1 |
Bio20SO | 80/15/5 | 820 ± 6 | 3.60 ± 0.04 | −9.1 ± 2.8 | −17.7 ± 2.0 | 34.8 |
Bio40SO | 60/30/10 | 860 ± 8 | 3.81 ± 0.04 | −7.3 ± 0.4 | −17.0 ± 2.0 | 34.5 |
Bio60SO | 40/45/15 | 880 ± 4 | 3.92 ± 0.09 | −8.9 ± 0.8 | −15.7 ± 1.5 | 34.2 |
Bio80SO | 20/60/20 | 900 ± 8 | 4.70 ± 0.02 | −13.5 ± 0.7 | −15.8 ± 0.7 | 34.0 |
Bio100SO | 0/75/25 | 930 ± 6 | 4.71 ± 0.04 | −6.5 ± 1.5 | −17.2 ± 0.5 | 34.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estevez, R.; López-Tenllado, F.J.; Montes, V.; Romero, A.A.; Bautista, F.M.; Luna, D. Characterization of Several 2-Ethylhexyl Nitrates with Vegetable Oil (Castor or Sunflower Oil) Blends in Triple Blends with Diesel, Working as Advanced Biofuels in C.I. Diesel Engines. Appl. Sci. 2024, 14, 11968. https://doi.org/10.3390/app142411968
Estevez R, López-Tenllado FJ, Montes V, Romero AA, Bautista FM, Luna D. Characterization of Several 2-Ethylhexyl Nitrates with Vegetable Oil (Castor or Sunflower Oil) Blends in Triple Blends with Diesel, Working as Advanced Biofuels in C.I. Diesel Engines. Applied Sciences. 2024; 14(24):11968. https://doi.org/10.3390/app142411968
Chicago/Turabian StyleEstevez, Rafael, Francisco J. López-Tenllado, Vicente Montes, Antonio A. Romero, Felipa M. Bautista, and Diego Luna. 2024. "Characterization of Several 2-Ethylhexyl Nitrates with Vegetable Oil (Castor or Sunflower Oil) Blends in Triple Blends with Diesel, Working as Advanced Biofuels in C.I. Diesel Engines" Applied Sciences 14, no. 24: 11968. https://doi.org/10.3390/app142411968
APA StyleEstevez, R., López-Tenllado, F. J., Montes, V., Romero, A. A., Bautista, F. M., & Luna, D. (2024). Characterization of Several 2-Ethylhexyl Nitrates with Vegetable Oil (Castor or Sunflower Oil) Blends in Triple Blends with Diesel, Working as Advanced Biofuels in C.I. Diesel Engines. Applied Sciences, 14(24), 11968. https://doi.org/10.3390/app142411968